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Abstract

Purpose of review—With global demographic changes and an overall improved healthcare, 

more older end-stage-renal-disease (ESRD) patients receive kidney transplants. At the same time, 

organs from older donors are utilized more frequently. Those developments have and will continue 

to impact allocation, immunosuppression and efforts improving organ quality.

Recent findings—Findings mainly outside the field of transplantation have provided insights 

into mechanisms that drive immunosenescence and immunogenicity, thus providing a rationale for 

an age-adapted immunosuppression and relevant clinical trials in the elderly. With fewer rejections 

in the elderly, alloimmune responses appear to be characterized by a decline in effectiveness and 

an augmented unspecific immune response.

Summary—Immunosenescence displays broad and ambivalent effects in elderly transplant 

recipients. Those changes appear to compensate a decline in allospecific effectiveness by a shift 

towards an augmented unspecific immune response. Immunosuppression needs to target those age-

specific changes to optimize outcomes in elderly transplant recipients,
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Introduction

Aging is of broad relevance and affects a wide range of physiological conditions. 

Consequences include a deteriorating and less effective immune response towards 
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exogenous antigens. This phenomenon has been coined immunosenescence by the 

geriatrician Roy Walford [1]. To date, the concept of immunosenescence remains loosely 

defined, but is receiving increasing attention with the demographic shift and an overall 

improved healthcare.

In organ transplantation, data provided from the Organ Procurement and Transplantation 

Network (OPTN) emphasize on the relevance of the current demographics. Strikingly, 

patients on waiting lists for renal transplants > than 65 years have tripled during the last 

decade [2]. Similar tendencies have been observed for organ donors. [2,3].

Of clinical relevance, donor organ age has been identified as an independent risk factor for 

graft survival [4]. Demographic changes, in addition to the growing shortage of donor 

organs in general, have impacted organ allocation in the US and in Europe. In the US, the 

introduction of the Expanded Criteria Donors (ECD) classification attempted to increase the 

recruitment of marginal donor organs. Notably, age determined the principal criteria for the 

ECD classification [5]. The recently introduced Kidney Donor Profile Index (KDPI) 

determines the relative organ quality by calculating a numerical score from ten 

characteristics which include the donor age [6]. Along the same lines, Eurotransplant 

launched the European Senior Program (ESP) in 1999 that matched kidney recipients and 

deceased donor organs ≥65 years without emphasizing on HLA-matching while keeping 

cold ischemic times brief [7]. The introduction of the ESP led to a doubling of transplanted 

kidneys from donors older than 60 years from 1998 to 2002 [8].

The concept of immunosenescence in kidney transplantation

Immunosenescence affects both recipients’ immune response and organ aging with 

consequences on injury, repair and immunogenicity. For any detailed analysis, effects of 

increased prevalences of co-morbidities in the elderly need to be distinguished from changes 

related to immunosenescence. Although, mortality rates after kidney transplantation are 

elevated in older recipients, well-selected older patients clearly benefit from renal 

transplantation. Indeed, death-censored graft survival is best in older transplant recipients 

[9,10]. Moreover, rates of acute rejections are lowest in older recipients [11], effects clearly 

attributed to immunosenescence.

Alloimmunity in the elderly

Telomere length is playing a critical role in the aging of cellular compartments [12]. 

Telomere length is determined by telomerase activity, which is compromised by aging 

[13,14]. In experimental kidney models, for example, compromised regenerative capacities 

subsequent to Ischemia/Reperfusion Injury (IRI) have been linked to telomere attrition [15].

Lymphocyte subsets and proliferation capacity

The effect of aging on absolute lymphocyte counts remains controversial [16–18]. In 

general, it is presumed that changes of absolute numbers of T cells and NK cells play only a 

minor role in immunosenescence. Of relevance, numerous studies have characterized a 

modified distribution of subsets within these populations, in addition to a diminished 
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proliferative response of T and NK cells to mitotic stimuli [18–22]. These compromised 

proliferative T cell responses limit the effectiveness of alloimmunity, thus characterizing 

functional consequences rather than numerical T cell responses in immunosenescence. 

Distributional changes within T cell populations are characterized by a shift from the naïve 

CCR7+ CD45RA+ subset to an effector memory CCR7− CD45RA− population [18]. This 

phenomenon can be explained, at least in part, by thymic involution and a subsequent 

decline in naïve T cell production [17]. The shift from naïve to effector memory T cell 

subsets emphasizes on the predominant role of ‘experienced’ T cells in aging while 

reflecting a compromised ‘de novo’ T cell response to new antigens in addition to an 

impaired chemotactic migration capacity towards secondary lymphoid organs. Thus, the 

elderly T cell response is mainly built on less effective memory responses that lack the 

migratory- and naïve de novo-production capacity of younger T cells [23].

Phenotypic changes in aging

The decline of CD28 expression on CD4+ and CD8+ T cells has been characterized as a 

hallmark of T cell senescence [24]. CD28 is a key co-stimulatory surface receptor and the 

blockade of this pathway has been shown to prolong graft survival in mice [25,26]. In 

elderly kidney recipients, an increased proportion of peripheral CD28− CD4+ has been 

associated with an absence of acute rejections [27]. More recently, the blockade of co-

stimulation gained further clinical relevance with the approval of belatacept, a T lymphocyte 

antigen-4 immunoglobulin fusion protein (CTLA-4-Ig) that blocks the CD28 co-stimulatory 

pathway. Additional in vitro studies have shown that a loss of CD28 is accompanied by an 

increased gene expression of its antagonist, the CTLA-4 receptor, which potentially 

augments the already inhibitory effect [28,29].

The loss of CD28 may be compensated by a de novo expression of cytotoxic NK cell 

receptors on senescent T cells. Recently, de novo expression and transcriptional upregulation 

of the stimulatory NKG2D receptor on elderly CD4+ CD28− T cells have been reported 

clinically [30]. Of note, old CD8+ T cells displayed a transcriptional upregulation of 

activating killer cell lectin-like receptors (KLR) and killer-cell immunoglobulin-like 

receptors (KIRs). Together, it seems that CD8+ T cell resemble an innate NK cell receptor 

repertoire with aging [31]. These findings correlate with a general increase of CD3+ T cells 

that co-express NK cell receptors in elderly individuals [32]. Noteworthy, pre-existing or de 
novo synthesized antibodies against the MHC class I polypeptide-related sequence A 

(MICA) that bind to the NKG2D receptor have been linked to either an early graft loss or 

late graft dysfunction in kidney transplantation [33,34].

These alterations indicate that the increased expression of NK cell receptors will impact 

alloimmune responses in the elderly, potentially reflecting relevance of an augmented innate 

immune response. While the overall significance of NK cell receptors in kidney 

transplantation remains sparsely investigated, recent work has shown phenotypic changes of 

NK cell repertoires driven by immunosuppressive treatment [35].

NK cell senescence, in turn, is attributed to a distributional shift from the CD56bright subset 

to the cytotoxic CD56dim subset [19,36]. Moreover, CD56dim NK cells of elderly individuals 
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have been shown to increasingly express the senescence-associated surface molecule CD57 

[37,38]. The expression of CD57 was additionally identified on CD8+ CD28− T cells [39]. 

The CD57 subset is associated with an advanced cytotoxic and proinflammatory cytokine 

capacity and several studies have reported on a potential link between circulating CD57+ 

CD28− CD8+ T cells, HLA mismatch and late kidney graft dysfunction, although the impact 

of de novo expressed NK cell receptors has not been investigated [40*,41**–44].

Furthermore, the tendency for a high CD28− CD57+ CD4+ T cell frequency in kidney 

recipients treated with polyclonal anti-thymocyte globulin (ATG) has recently been 

associated with acute rejection, whereas ATG was thought to accelerate cellular senescence 

[45*]. Another recent study indicated that the expression of CD57 on CD8+ T cells might 

have utility as a predictive marker for the development of cutaneous squamous cell 

carcinoma in renal transplant recipients [46*]. Thus, despite an impaired per cell NK cell 

activity, the overall de novo synthesis of NK cell receptors on T cells, CD57 expression and 

the general CD56dim shift may enhance an overall, however less specific cytotoxic capacity 

during immunosenescence, [47–49]. Moreover, the ability of CD56dim NK cells to bind anti-

HLA antibodies (donor-specific antibodies, DSA) has been linked to complement-

independent pathways of antibody-mediated rejections (AMR) in kidney transplantation, 

leading to the assumption that NK cells contribute to a chronic active antibody-mediated 

rejection [50,51].

Cytokine capacity

Maintenance immunosuppression critically relies on calcineurin inhibitors that specifically 

target the production of IL-2 in T cells. Strikingly, it has been shown that both IL-2 cytokine 

capacity and sensitivity of CD4+ T cells decreases with aging, at least in murine models [52–

54]. This effect may be most likely accounted for by the distributional shift to memory T 

cells. Indeed, naïve CD4+ T cells responded with an unimpaired IL-2 production to 

neoantigenic stimulation in the elderly [55]. Moreover, age-dependent downregulation of 

CD28 on CD4+ and CD8+ T cells correlated with an impaired IL-2 production as the co-

stimulatory cell surface receptor CD28 is critical for the activation of T cells and their 

subsequent production of IL-2.

Taken together, loss of CD28 and diminished IL-2 release may represent critical drivers of a 

compromised alloimmune response in the elderly affecting both, immunosuppression and 

tolerance protocols.

B cells and humoral responses

It is noteworthy to recognize that B cell development and humoral responses depend on 

interactions between provided by T- and dendritic cells (DC). The downmodulation of 

CD154 (CD40L) and CD28 on CD4+ T cells, in addition to a diminished IL-2 production 

may lead to an impaired B cell proliferation and antibody production [56–58]. Moreover, 

compromised T cell help will impair B cell diversity linked to a hampered humoral response 

and affinity of antibodies [59]. Similarly, as with age-mediated shifts in T cell 

compartments, distributional shifts of B cell subsets are observed. Moreover, the production 

of naïve B cells appears affected by shifts towards myelopoiesis at the expense of the 
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lymphopoiesis [60–62]. Furthermore, aging-associated CD11b+ CD11c+ B cells (ABC) with 

innate immune responsive characteristics have been identified as unique B cell subset in the 

periphery of elderly mice and were linked to autoimmunity [63,64].

In summary, immunosenescence appears to alter B cell development contributing to a 

compromised de novo donor specific HLA antibody (DSA) production that has been linked 

to allograft function [65]. Although DSAs have not been shown to be impacted by age, the 

de novo DSA genesis has not been studied in an age-dependent approach [66].

Innate immunity in the elderly

Initial studies on immunosenescence focused on alterations within the adaptive immune 

system and have only marginally investigated effects on the innate immunity. It has now 

become evident that aging will not only affect innate immunity, but also equips adaptive 

immune components with tools of innate immune responses, potentially enabling players of 

adaptive immunity to act in an antigen-independent manner. DCs with their cardinal feature 

as antigen presenting cells are potent instigators of T cell stimulation and it is presumed that 

the change of the absolute numbers of DCs plays an inferior role in aging [67]. Depending 

on their maturity, DCs in rodents have been shown to critically impact rejection or tolerance 

in kidney transplantation [67,68]. Several studies have addressed TLR expression on old 

DCs and neutrophilic granulocytes, and at least for TLR-4, a downmodulation over age has 

not been identified [69,70]. However, migration, cytokine and phagocytotic responses of 

DCs encountering new antigens had been compromised, linked to an impaired functional 

status [69]. Similarly, function of neutrophilic granulocytes appears to diminish with age in 

parallel with a compromised capacity for phagocytosis, Fcγ receptor type III (CD16) 

expression and subsequent superoxide production [71,72]. Of interest, an elevated basal 

cytokine production of DCs and macrophages has been reported in elderly individuals [73]. 

This phenomenon touches upon the “paradox” of aging and immune functions with a 

general decline of immune functions and effectiveness appears balanced with an overall 

augmented reactivity towards self antigens, a process called inflamm-aging [69].

Organ age and immunogenicity

While old macrophages and DCs appear to have a compromised capacity for phagocytosis, 

this aspect may contribute to a diminished clearance of apoptotic cells [74]. Indeed, a 

prolonged presence of apoptotic cells may lead to proteolytic degradation and a subsequent 

release of intracellular damage associated molecular pattern molecules (DAMPs), potentially 

enhancing immunogenicity [75]. Mounting evidence acknowledges the link between renal 

IRI in the elderly linked to an augmented release of DAMPs [76,77]. DAMPs in aging are 

more likely of mitochondrial origin related to a direct exposure to the reactive oxygen 

species (ROS) [78]. The severity of IRI thereby depends on the level of ROS, again shown to 

be elevated in elderly individuals [79]. The subsequent recruitment and inflammatory 

degranulation of neutrophilic granulocytes is facilitated through the binding of DAMPs to 

Pattern Recognition Receptors, most notably TLRs. More recently, we have been able to 

show that old donor DCs accelerated rejection, demonstrating the relevance of an augmented 

immunogenicity when utilizing older organs for transplantation (unpublished data). Of 
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additional relevance, young donor organs may induce significantly more tolerogenic ILT4+ 

DCs compared to older donor organs [80]. Others have suggested that cellular senesescence 

might contribute to an impaired physiological potential of old nephrons to cope with stress 

stimuli [81].

Conclusion

The immunology of elderly recipients presents an ambivalent picture of changes. On the one 

hand, an impaired naïve T and B cell alloresponse through the diminished production of 

high affinity antibodies as well as less effective CD28− memory T cell subsets may be the 

driving force behind less potent immune responses in elderly recipients. On the other hand, 

the aging immune response appears to promote a compensation of lost allospecific functions 

through the expression of innate immune receptors in memory subsets, providing a more 

unspecific immune response (Fig. 1).

Understanding this ambivalent concept of immunosenescence bears the potential of 

developing age-adjusted immunosuppressive therapies for older transplant recipients, as 

their less effective adaptive response may not be the primary target for treatment.

With regards to donor organ age, recent studies indicate that advanced age may augment 

injuries subsequent to ischemia and reperfusion, potentially eliciting the release of DAMPs, 

which in turn can lead to an increased inflammatory response and eventually enhance a 

potential rejection.
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Key points

• Immunosenescence may shift the balance between innate and adaptive immunity 

towards more dominant unspecific immune responses.

• Key players of adaptive immunity acquire receptors characteristic of innate 

immunity

• Enhanced expression of CD57 on CD8+ T cells has been linked to rejection, yet 

current studies remain rather descriptive and mechanisms require a more 

detailed investigation.

• Changes of co-stimulatory pathways in addition to compromised IL-2 responses 

provide additional opportunities for age-specific treatments.
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Figure 1. 
Concept of a less effective allospecific but augmented unspecific immune response in the 

elderly. (a) T cell subsets in the healthy individuals. (b) Old CD4+ T cell with diminished 

alloresponse potential, including an impaired IL-2 capacity and CD28 downregulation 

coincide with an increasing NK cell receptor equipment [30,52–54]. (c) Enhanced cytotoxic 

capacity of old CD28− CD8+ T cells that upregulate CD57 while co-expressing NK cell 

receptors [43,44].
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