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Abstract

In this work, we propose a novel method for deformable tensor–to–tensor registration of Diffusion 

Tensor Images. Our registration method models the distances in between the tensors with Geode-

sic–Loxodromes and employs a version of Multi-Dimensional Scaling (MDS) algorithm to unfold 

the manifold described with this metric. Defining the same shape properties as tensors, the vector 

images obtained through MDS are fed into a multi–step vector–image registration scheme and the 

resulting deformation fields are used to reorient the tensor fields. Results on brain DTI indicate 

that the proposed method is very suitable for deformable fiber–to–fiber correspondence and DTI–

atlas construction.

1 Introduction

Diffusion Tensor Imaging (DTI) [1] is a relatively new Magnetic Resonance Imaging (MRI) 

technique for observing the macro–level anisotropic diffusion of water molecules. DTI 

makes use of directional signal attenuation information to model the water diffusion with 

symmetric positive–definite tensors. In addition to clinical applications, DTI can be used to 

understand the variations of WM fiber organization to better analyze brain functionality and 

disorders. A key functionality in many clinical applications of DTI is the need to establish 

the correspondence between the fibers on any two scanned volumes. However, the lack of 

mathematical tools limits the use of DTI in full potential. A vexing problem pertaining to 

population and longitudinal studies is that the tensors extracted from DTI scans of different 

subjects do not lie in the same coordinate frame given different head orientations and motion 

artifacts that occur during patient scans. Additionally, different subjects’ brains variability 

and Echo Planar Imaging (EPI) artifacts, renders the problem of automatic fiber–to–fiber 

correspondence, a challenging one. This requires more advanced techniques than simple 

registration of diffusion weighted images followed by tensor reconstruction.

The early approaches to DTI registration used derived scalar fields such as Apparent 

Diffusion Coefficients (ADC), Fractional Anisotropy (FA) or tensor components. In spite of 

their simplicity, these approaches disregard important information such as orientation and 
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other shape related features. Next generation of methods operated on the tensor manifolds 

and employed a metric to compute tensor distances such as Riemannian [2] or Log-

Euclidean [3]. Zhang et al. proposed an affine registration algorithm based on diffusion 

profiles, the rate of diffusion at a point, as a function of spatial direction [4]. These methods 

suffer from the disadvantage that the employed metric does not have a physical implication 

such as anisotropy or diffusitivity [5]. To compensate for these problems, several multi–

channel registration algorithms have been proposed. Park et al. [6] introduced a multi-

channel demons algorithm using the sum of squared differences calculated from the 

independent tensor components along with FA, ADC and a T2–weighted channel. Similarly, 

Leemans et al. [7] proposed an affine registration method using K-channel mutual 

information calculated from diffusion weighted and T2-weighted images. Other tensor 

registration approaches include but the works of Guimond et al. [8] and Ruiz et al. [9].

In this paper, we propose a method that exploits the salient statistics of tensors. Our method 

uses a dissimilarity metric between tensors, namely the geodesic–loxodrome distance [5], so 

it does not neglect any tensor information. It then vectorizes the tensors using a version of 

Multi Dimensional Scaling (MDS) algorithm to yield multi–channel vector images. The 

channels used in the registration process come from the eigen–modes of the MDS algorithm 

so the entire tensor information is encoded in these channels without the need for extraneous 

dimensions for tensor shape or orientation. In essence, it identifies the most salient tensors 

and describes a lower–dimensional vector subspace wherein meaningful measurements are 

conducted. This vector space allows for faster and more intuitive computations than what a 

typical tensor manifold can. The registration process for vector images starts with a coarse, 

rigid registration, continues with affine and is concluded with a fine B–Spline deformable 

registration. The deformation fields from each step are used to reorient the original tensor 

field.

2 Methodology

2.1 Distance Metric

Our registration algorithm's flow is described in Figure 1. The most important operators in 

this flow are the metrics and interpolators. The biggest challenge in tensor field registration 

is the need to operate on a manifold, which fully characterizes clinically significant shape 

and orientation information. Multi–channel registration approaches heuristically try to 

achieve this by padding extra channels for diffusion norm and anisotropy. Riemannian 

geodesics get one step closer by implicitly (monotonically) interpolating tensor determinants 

but anisotropy strength and type of anisotropy are not considered. Geodesic–loxodromes 

proposed by Kindlmann et al. introduce an intuitive way to compute the distance in between 

two tensors, which monotonically interpolates all basis shape parameters and orientation [5]. 

The shape of the tensor  is modelled with three orthonormal invariant bases Ri chosen as:

Geodesic–loxodrome γ(t), the curve connecting tensor  and  is defined as:
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where the operator : signifies tensor contraction, l and αi are constants that characterize the 

path of the curve,  is the gradient of the invariant i on the tensor space. The curve 

γ(t) connects the tensors  and  while monotonically interpolating, in a controlled 

manner, the invariants Ri. The distance in between tensors  and  is defined as : 

. This way of computing dissimilarity accords ample importance 

to clinically significant shape parameters as well as orientation.

2.2 Tensor Vectorization

Geodesic–Loxodromes (GL) provide a clinically intuitive way to do tensor interpolation and 

distance measurement but can not directly be used to compute tensor population statistics. 

An ideal way to achieve this would be to unfold the GL manifold (if any) onto a planar one, 

in such a way that the statistics and distances are preserved on the new plane. Then it would 

be possible to just consider the vector coordinates of the points on the projected space.

The main goal of pre–processing is to convert the tensor images into vector images, with 

independent channels, with GL pairwise dissimilarities in between the voxels of all DT 

images. Multi Dimensional Scaling [10] is a statistical dimensionality reduction tool used to 

extract the coordinates of data points on a lower dimensional manifold, when only pairwise 

dissimilarities among the data points are available. In our case, the goal is to compute the 

dissimilarity matrix in between the voxels of two diffusion tensor images, from the tensor 

data and unfold this symmetric matrix onto vectorial coordinates using MDS.

Tensor Sampling—Theoretically, it is possible to use the tensors from every voxel of the 

DT image, build the dissimilarity matrix to be used in MDS, and extract the coordinates of 

each voxel in the lower dimensional space. However, the dissimilarity matrix for two regular 

size DT images would require about 10000GB of memory. Instead, we sample both DT 

images in such a way that the sampled tensors are the best representatives for the entire 

tensor sets in the images. We employ the K–means clustering algorithm on the tensors of 

both images with the GL distance metric, to select the best tensor representatives. K was 

empirically chosen to be 100 based on experiments with a validation set with values ranging 

from 10 to 1000. The mean tensors obtained with clustering are fed into the MDS algorithm. 

Figure 2 displays the mean tensors when K=10 based on the data described in 3. In this 

figure, the tensor a) is the zero–tensor that represents background. Please note that only one 

tensor, tensor h, is completely isotropic and eight tensors are needed to describe the 

anisotropic behavior. Please also note that three tensors (tensors e) , f) and j)) have similar 

directions but different determinants and modes, which is due to special importance assigned 

to these invariants by GL metric.

Multi Dimensional Scaling—Let the mean tensor from K–means be Mi for the first 

image and Li for the second image where i ∈ [1,K]. We concatenate the mean tensors and 
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compute the pairwise distances to obtain the symmetric dissimilarity matrix A, where Aij = 

d(Mi, Mj) when i, j < K, Aij = d(Mi, Lj) when i < K, K ≤ j < 2K and Aij = d(Li, Lj) when K ≤ 

i, j < 2K.

In classical metric MDS, the Euclidean distances are tried to be preserved. Let I2K×2K be an 

identity matrix and 12K×2K be a matrix full of ones, define:

where  signifies component by component multiplication. The matrix B is equal to B = 

XXT where the matrix X contains the coordinates of the data.

We used this classical MDS approach just to understand the intrinsic dimensionality of the 

data by examining the eigenvalues. The first six eigenvalues after spectral decomposition 

were on the order of +1E10 where the remaining eigenvalues were on the order of 1E−2 

except the last six ones which were negative with order −1E3. This fact suggested that the 

intrinsic dimensionality of the data is six. With this in consideration, we applied the non–

classical, non–metric version of MDS [10] to extract the final coordinates of the data points.

DTI projection onto MDS space—MDS vectorizes only the mean tensors computed 

with the clustering algorithm. However, for registration purposes, every tensor in both DTI 

images has to be projected on to this vector space. Here we explain our protocol to project 

the distances for unobserved tensor points to the MDS space. Let  be the ith coordinate of 

the tth data point in the salient MDS space, Yi be the corresponding coordinate of the 

unobserved point, where i ∈ [1,6] and t ∈ [1,2K]. Let dt be the distance of Y to mean point 

Xt. Then Y lies on the sphere defined as . We need to use at least 

six different points Xt in order to have a non–infinite number of solutions for Yi. Because of 

the imperfections in distance computations and in MDS, this system of equations might not 

have a solution. Therefore, we introduce slack variables ξt for distances dt and setup up a 

minimization problem over the slack variables:

We solve this non–linear optimization problem for each voxel in each image with a 

sequential quadratic programming (SQP) method. The mean points, Xt, used in the 

constraints are chosen to be the closest six points to Y and the optimization is initialized 

with the closest point's coordinates. This optimization procedure is inexpensive and requires 

a few seconds to project both images onto the MDS space with a modern computer. To test 

its accuracy, we also implemented the Log–Euclidean metric [3], which has a closed–form 

expression, and were able to recover the exact point coordinates after our projection 

operator. Figure 3 displays the corresponding slices for each of six dimensions from the 

vector images produced with this method.
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2.3 Registration Framework

Vector Image Registration—Once the diffusion tensors in all images are converted to 

vector images as described in Section 2.2, the images are registered with well–known 

registration algorithms, using the following steps:

1. The moving image is translated so that its center of mass matches that of the fixed 

image.

2. The moving image is registered to the fixed image with rigid transformation, vector 

mean squares metric, linear interpolation, and evolutionary optimization. The 

parameters are set to perform the search in a coarse manner.

3. The moving image is registered to the fixed image with an affine transformation 

initialized with a rigid transformation of step 2. The vector mean squares metric 

and linear interpolation are used in conjunction with a regular step gradient descent 

optimizer. After this fine-scale registration, the moving image is resampled and 

transformed to match the fixed image.

4. The output image of step 3 is registered to the fixed image with a B–Spline 

transformation with 15 × 15 × 15 B–Spline grid resolution.

Figure 3 c) displays the output of the registration on the B = 0 image along with the fixed 

image.

Tensor Reorientation—The tensors are reoriented based on the transformation matrix 

from affine registration and the deformation field from B–Spline registration, with 

Preservation of Principal Direction (PPD) method [11]. Let  be the tensor to be 

transformed and  be the resulting tensor.

1. When the transformation is rigid, the new coordinates and the resulting tensors can 

be found as T (x) = Rx + t, , where x is the coordinate vector, R is the 

rotation matrix, t the translation vector.

2. When the transformation is affine the coordinates can be found with T (x) = Fx + t 
where F is the affine transformation matrix. F can be decomposed as F = UR, 

where R = (FFT)−1/2F is the rotation matrix and U is the strain matrix. The simple 

approach for tensor reorientation would be to rotate the tensor with R but U also 

affects the orientation of the tensors so it needs to be included in a detailed 

reorientation strategy.

3. When B–Spline registration is employed, there is no closed linear form for the 

transformation. Since every transformation is locally affine if the underlying 

deformation field u(x) is continuous and smooth, the affine transformation matrix 

can be locally estimated for each point. Let the local coordinate transformation be 

T (x) = x + u(x) and T (x) = Fx + t. Equating the two equations and differentiating 

w.r.t. x yields F = I + Ju, where Ju is the Jacobian of the deformation field.
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3 Experiments and Results

We acquired data from five healthy subjects with an 8–channel head coil in a 3T MR system 

(Achieva, Philips Medical Systems, Cleveland, OH, USA). Diffusion tensor imaging (DTI) 

was performed using a single shot EPI sequence (SENSE factor = 3, b = 1000s/mm2, 6 

diffusion gradient directions). Image sizes for all images were 153 × 153 × 80. One of the 

images was chosen to be the fixed image and the other four were used as moving images. 

The diffusion tensors were extracted by imposing the constraint of positive-definiteness on 

the tensors. For comparison, we implemented a reference multi–channel registration 

algorithm with six channels for tensor components, including one channel for FA and one 

channel for ADC. The reference method had the same vector image registration steps. 

Figure 4 the principal eigenvectors of the moving tensors generated with the proposed 

method and the reference method on the FA map of the fixed image to signify the 

conformance. Please also note that the Euclidean Frobenius difference norm in between the 

fixed tensor field and registered moving tensor field was on the average 1.259 × 109 with the 

proposed method, whereas that quantity was 1.751 × 109 with the reference method. 

Additionally, the proposed method take about two hours on a modern PC, whereas the 

reference method took 3 hours on the average because of the extra channels. About 90% of 

computations for both methods were for B–Spline registration.

Figure 5 a) shows the corresponding fiber set from the fixed image (blue colored fibers) and 

registered moving image (skin colored fibers). The fiber differences are mostly due to 

anatomy and imperfections in the fiber tracking algorithm. Please note the fully 

corresponding fibers on the right picture.

For statistical purpose, we chose an ROI and computed statistics of the tensors and the 

projected vectors. We automatically segmented the Corpus Callosum (CC) within the 

algorithm by selecting K = 2 and compared the mean values of the variables from our 

method with mean tensors from Log-Euclidean.

The mean vector computed from CC with the proposed method was: [6.91, 0.15, –0.21, 

5.62, 0.035, 5.7]T where the matrix produced with Log–Euclidean was [6.8694, 0.1464, – 

0.2083; 0.1464, 5.6471, 0.0338; – 0.2083, 0.0338, 5.6081]. These results indicate that the 

proposed method yield similar outputs for tensor statistics to Log-Euclidean approach.

4 Discussion and Future Work

In this work, we proposed a novel, robust and fast approach for tensor–to–tensor registration 

for Diffusion Tensor Images, which is very suitable for fiber correspondence matching 

problem. Our method was based on vectorization of tensors in such a way to conserve all 

shape and orientation properties. The registration was done on vector image space and the 

resulting deformation fields were used to reorient the tensors. Our next step will be to use 

this approach to compute the mean tensor images and variation mode images and establish a 

protocol for DTI–atlas construction and shape change analysis.
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Fig. 1. 
Illustration of the algorithm. Rectangular boxes represent input, generated and output data 

and elliptic boxes represent algorithm operators.

Irfanoglu et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2016 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Mean tensors obtained with clustering displayed with ellipsoids
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Fig. 3. 
a) The 6 channels of vector images. Top–left corresponds to largest eigenvalue, bottom–right 

corresponds to the lowest one. b) FA and ADC maps. c)B0 map of fixed image (top) and 

registered moving image (bottom).
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Fig. 4. 
Moving images’ eigenvectors plotted on fixed image's FA map. a) Full FA slice with ROI in 

rectangle. b) Proposed method. c) Reference method. Reference method's vectors are correct 

on sides but there is a mismatch on regions indicated by the arrow.
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Fig. 5. 
a) Corresponding fibers from fixed and registered moving images. b) Zoomed in version of 

a. Arrows indicate the fully corresponding fibers.
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