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Generation of reactive oxygen species (ROS) by diverse anti-cancer drugs or phytochemicals has been closely related with the induction 
of apoptosis in cancers. Also, the downregulation of ROS by these chemicals has been found to block initiation of carcinogenesis. Therefore, 
modulation of ROS by phytochemicals emerges as a crucial mechanism to regulate apoptosis in cancer prevention or therapy. This review  
summarizes the current understanding of the selected chemical compounds and related cellular components that modulate ROS during 
apoptotic process. Metformin, quercetin, curcumin, vitamin C, and other compounds have been shown to downregulate ROS in the 
cellular apoptotic process, and some of them even induce apoptosis in cancer cells. The cellular components mediating the downregulation 
of ROS include nuclear factor erythroid 2-related factor 2 antioxidant signaling pathway, thioredoxin, catalase, glutathione, heme 
oxygenase-1, and uncoupling proteins. The present review provides information on the relationship between these compounds and the 
cellular components in modulating ROS in apoptotic cancer cells.
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INTRODUCTION

The increase of reactive oxygen species (ROS) is often observed 

in the progress of apoptosis,1,2 and the generation/ upregulation 

of ROS can be an indication of apoptosis. Indeed, many anticancer 

drugs and natural compounds (curcumin,3 garlic,4 quercetin,1 

cisplatin,5 etc.) have been known to increase the level of ROS as 

they induce the apoptosis in cancer cells. While the increase of 

ROS usually correlates with the apoptotic progress, the 

downregulation of ROS in apoptotic cancer cells is often 

observed. While it may seem perplexing at first glance, it is 

plausible considering the beneficial and essential roles of ROS in 

physiological conditions.

In this review, we have summarized the current understanding 

of the selected chemical compounds (Fig. 1) and the related 

cellular components which modulate ROS during the apoptotic 

process (Fig. 1). The studies on the apoptotic or anti-apoptotic 

effects of metformin, quercetin, curcumin, vitamin C, and other 

compounds in diverse cancer cells are presented (Table 1), 

followed by the cellular components, including nuclear 

factor-erythroid2-related factor 2 (Nrf2) antioxidant signaling 

pathway, thioredoxin (TRX), catalase, glutathione (GSH), heme 

oxygenase-1 (HO-1), and uncoupling proteins (UCPs). We focus 

here on the cell-specific downregulation of ROS by selected 

chemicals as a modulator of apoptosis.

NATURAL/SYNTHETIC ANTIOXIDANTS 
THAT DOWNREGULATE REACTIVE 

OXYGEN SPECIES
1. Metformin

Metformin is an oral antidiabetic medication to treat type 2 

diabetes. It enhances insulin sensitivity by increasing glucose 

uptake and utilization in peripheral tissues. These effects are 
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Figure 1. Chemical structures of natural/synthetic compounds. Metformin (A). Quercetin (B). Dihydromyricetin (C). Curcumin (D). Rutin (E). 
Spirafolide (F). Vitamin C (G).

Table 1. Cell-specific modulation of ROS generation by selected compounds

Compound Cell type Effect on ROS Cellular effect Reference

Metformin Renal tubular cells, fatty liver cells Decrease Anti-apoptotic 13, 15
Metformin Pancreatic cancer cells Decrease Apoptotic 16
Quercetin Hepatoma, leukemia Increase Apoptotic 24, 25
Quercetin HUVEC cells Decrease Anti-apoptotic 26
Curcumin Renal, skin, fibroblast, lung adenocarcinoma Decrease Anti-apoptotic 3, 30, 31, 32
Curcumin Neuroblastoma Increase Apoptotic 33
Vitamin C WISH Decrease Anti-apoptotic 36
Vitamin C B16 murine cells Increase Apoptotic 38
Spirafolide Neuroblastoma Decrease Anti-apoptotic 39
Retinoic acid Neuron, cardiomyocyte Decrease Anti-apoptotic 41, 42
Retinoic acid HL60 cells Increase Apoptotic 44
Dihydromyricetin Hepatocarcinoma Decrease Apoptotic 45, 46
Dihydromyricetin Lymphocytes, PC12 Decrease Anti-apoptotic 47, 48

ROS, reactive oxygen species.
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mainly mediated by the activation of AMP-activated protein 

kinase (AMPK). Quite recently, metformin was suggested to be 

related with the reduced risk of cancer in diabetic patients.6,7 

While the mechanism by which metformin protects against 

cancer is veiled yet, metformin has been reported to decrease ROS 

in several cases. Metformin, at the pharmacological level of ∼10−5 

mol/L, lowered the level of ROS in bovine aortic endothelial cells.8 

The production of ROS in endothelial cells, upon glucose-induc-

tion, is mainly mediated by several pathways of hyperglycemic 

responses, including the activation of protein kinase C (PKC).9 

Metformin inhibited the activity of PKC, although it does not 

have direct inhibitory activity against PKC in vitro. It appears that 

metformin inhibits the upstream of the activation of PKC, such as 

membrane translocation of PKC.10 The AMPK pathway, activated 

by metformin, increased the expression of the TRX through 

forkhead transcription factor 3, and the TRX functions as 

antioxidant to reduce the ROS.11 The decrease of ROS could 

reduce the DNA damage, and possibly the risk of cancer.12 

Metformin inhibited the advanced glycation end product-indu-

ced apoptosis in renal tubular cells through ROS reduction 

mediated by the activation of AMPK pathway.13 The role of the 

AMPK in the reduction of ROS is not essential, as metformin 

decreases the ROS even in the AMPK-deficient cells.14 Moreover, 

the protective effect of metformin was observed in the fatty liver 

cell under oxidative stress, probably due to the increased antio-

xidant enzyme activity, lower ROS production, and reduction of 

inflammation.15 While the role of metformin was mostly related 

with cell protective effects, it was recently reported that met-

formin decreased the growth of pancreatic cancer cells by 

reducing ROS production.16

2. Quercetin

Quercetin is a widespread flavonoid compound from 

numerous vegetables and fruits. At least 50 mg of quercetin is 

estimated to be present in a daily diet.17 Several clinically relevant 

functions of quercetin are antihypertensive, anti-inflammatory, 

hypocholesterolaemic, and antitumor activity.18 Early studies 

reported quercetin as a mutagenic compound in the Ames 

test.19,20 However, later studies indicated anticancer activity of 

quercetin.21,22 Interestingly, quercetin has both pro-oxidative and 

anti-oxidative properties depending on the redox state of the 

biological environment.23 In relation with the apoptosis, 

quercetin induced the generation of ROS, resulting in apoptosis 

in hepatoma cells24 and leukemia cells.25 Therefore, the 

pro-apoptotic role of quercetin appears to be related with the 

upregulation of ROS, not the downregulation. In contrast, the 

downregulation of ROS by rutin, a quercetin glycoside, was 

observed in the hydrogen peroxide-induced apoptosis of human 

umbilical vein endothelial cells.26

3. Curcumin

Curcumin is a yellow pigment obtained from the root of the 

Indian turmeric (Curcuma longa). It has been used as a foodstuff, 

cosmetic, and herbal medicine for a long time. The reported 

biological activities of curcumin include antioxidant, anti- 

inflammatory,27 anticancer,28 and chemoprevention,29 etc. 

Curcumin has been reported to induce apoptosis in numerous 

cells, including human renal Caki cells,3 skin squamous cell 

carcinoma COLO-16,30 mouse fibroblast L929 cells,31 and human 

lung adenocarcinoma A549 cells.32 In these cases, the induction of 

ROS mediated the apoptosis. These pro-apoptotic roles of 

curcumin seem to be involved in the upregulation of ROS, and the 

downregulation of ROS inhibited the apoptosis of SH-SY5Y cells.33

4. Vitamin C

Vitamin C is an essential nutrient in human, and it functions 

as an electron donor for many enzymatic reactions. It is widely 

accepted that vitamin C is an antioxidant, and the reduction of 

ROS by vitamin C treatment has been reported in the TRAIL- 

induced apoptosis34 and the oxidized low density lipoprotein 

(LDL)-induced apoptosis.35 The reduction of ROS resulted in the 

protection of the cells from apoptotic damage. On the other hand, 

vitamin C was not effective in the inhibition of the H2O2-induced 

apoptosis.36 Interestingly, the H2O2-induced apoptosis was 

preferably exacerbated by vitamin C.37 Also, vitamin C induced 

the apoptosis of B16 murine melanoma cells by increasing ROS.38 

Therefore, the role of vitamin C as an antioxidant in the apoptosis 

is controversial.

5. Other compounds

Spirafolide is a compound purified from the leaves of Laurus 
nobilis L. It has been reported to decrease the ROS level, thereby 

inhibited dopamine-induced apoptosis in human neuroblastoma 

SH-SY5Y cells.39 Fructose, when used as sole carbon source 

instead of glucose, reduced ROS and stabilized of cellular GSH 

pool as efficient as N-acetyl-cystein in the oxidative stress-indu-

ced apoptosis in liver parenchymal cells.40

Retinoic acid, a metabolite of vitamin A metabolism, has been 

shown to suppress ROS production and inhibit the staurosporine- 

induced apoptosis.41 Previous study indicated that treatment 

with retinoic acid prevented angiotensin II-induced apoptosis in 

cardiomyocyte by decreasing ROS generation.42 However, the 
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upregulation of ROS by retinoic acid was also reported in 

promyelocytic leukemia,43 which resulted in apoptosis of 

granulocyte-differentiated HL60 cells.44 Consistently, it was 

accepted that the downregulation of ROS by retinoic acids was 

related with the prevention of apoptosis.

Dihydromyricetin, a flavonoid compound, was recently shown 

to induce the apoptosis of human hepatocarcinoma cells by 

decreasing ROS generation.45,46 In addition, it is noteworthy that 

the downregulation of the ROS by dihydromyricetin could block 

H2O2-induced apoptosis of MT-4 lymphocytes47 and PC12 cells.48 

These results suggest that the downregulation of ROS can 

differently modulate apoptosis depending on the cell types.

ENDOGENOUS CELLULAR COMPONENTS 
INVOLVED WITH THE DOWNREGULATION 

OF REACTIVE OXYGEN SPECIES
1. Nuclear factor erythroid 2-related factor 2 antioxi-

dant signaling pathway

Nrf2 is a basic leucine zipper transcriptional activator.49 In 

non-stressed cells, Nrf2 is constantly degraded through 

ubiquitin-proteasome pathway mainly regulated by Keap1 

protein.50 In the presence of ROS, activated Nrf2 can act as a 

master regulator of several genes for antioxidant enzymes and 

detoxifying enzymes by binding activated antioxidant response 

elements.51 Those enzymes are NAD(P)H:quinone oxidoreductase 

(NQO1),52 glutathione S-transferase,53 and HO-1.54 The protective 

role of Nrf2 signaling pathway in the apoptotic process was 

evident. Nrf2 mediated the expression of HO-1 and NQO1, 

thereby protected cells from the Cr(VI) induced-apoptosis.55 

Upregulation of HO-1 by Nrf2 rescued PC12 cells from 

H2O2-induced apoptosis.56 Moreover, the presence of Nrf2 

increased the level of TRX, thereby protected human 

dopaminergic neuroblastoma SH-SY5Y cells from the 

paraquat-induced cell death.57 In addition to antioxidant proteins, 

Nrf2 also regulated the expression of anti-apoptotic protein 

Bcl-2.58 While Nrf2 signaling pathway showed the anti-apoptotic 

effect in most cases, constitutively active Nrf2 enhanced the 

apoptosis of damaged liver cells.59 It might be possible to 

modulate the activity of Nrf2 to either protect or damage the 

cells.60

2. Thioredoxin 

TRX is an oxidoreductase enzyme containing dithiol-disulfide 

active site.61 There are TRX isoforms in most organisms, and there 

exist separate TRX system for cytoplasm and mitochondria. TRX 

functions as a protein disulfide reductase and an electron donor 

for other enzymes such as ribonucleotide reductase and 

peroxidase.62 Conditional knockout of a mitochondrial enzyme 

TRX-2 resulted in the induction of apoptosis in chicken B-cell 

lines, DT40,63 and overexpression of TRX-2 inhibited the 

TNF--induced apoptosis of HeLa cells,64 indicating the 

anti-apoptotic role of TRX. Moreover, TRX inhibited apoptosis 

signal-regulating kinase 1 (ASK1) by promoting the ubiqui-

tination of ASK1, demonstrating the role of TRX beyond ROS 

removal.65 In most cases, TRX has been shown to possess a 

protective and anti-apoptotic function. However, the pro-apop-

totic role of TRX was also reported in the anthracycline-induced 

apoptosis of MCF-7 breast cancer cells. The expression of the 

redox-inactive mutant TRX resulted in decreased superoxide 

generation and apoptosis.66

3. Catalase

Catalase is a peroxisomal enzyme that converts hydrogen 

peroxide, a ROS, into water and oxygen. Inhibition of catalase can 

result in the increase in ROS and oxidative damage. Indeed, 

TGF-1-induced suppression of the expression/activity of 

catalase caused the apoptosis of hamster pancreatic beta-cell 

line.67 On the other hand, the overexpression of catalase could 

attenuate the apoptosis induced by oxidized LDL stimulation68 

and UV-B radiation.69 Catalase showed a protective and 

anti-apoptotic role in most cases by eliminating ROS. 

Nevertheless, it was also reported that the overexpression of 

human catalase inhibited proliferation and promoted the 

apoptosis of vascular smooth muscle cells.70

4. Glutathione

GSH is a tripeptide compound containing cysteine present in 

animal, plant, and fungi. It serves as an antioxidant with the free 

thiol group of cysteine residue. The oxidized form of GSH (GSSG) 

contains two GSH with disulfide linkage, and the ratio of GSH vs. 

GSSG can be a good measure of redox state of the cell.71 The 

protective and anti-apoptotic role of GSH was shown in MDBK 

bovine renal epithelial cells: the selenium-dependent GSH 

peroxidase (GPx) protected the cells against the H2O2-induced 

apoptosis,72 whereas the suppression of GPx enhanced the 

H2O2-induced apoptosis.67 Therefore, GSH depletion is closely 

correlated with the apoptotic induction in most cases, and the 

protective and anti-apoptotic role of GSH might be due to its 

antioxidant function.
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5. Heme oxygenase-1 

HO-1 is a stress-responsive enzyme catalyzing the degradation 

of heme into carbon monoxide (CO), biliverdin, and iron (Fe2+).73 

The HO-1-inducing stress stimuli include X-ray-induced oxida-

tive stress,74 hypoxia,75 and ultraviolet.76 All three products of 

HO-1 reaction serve as antioxidants and have other protective 

roles against apoptosis. Pharmacological upregulation of HO-1 

prevented the glutamate-induced apoptosis of cerebral vascular 

endothelial cells.77 Upregulation of HO-1 protected human 

keratinocyte (HaCaT) cells against UV-A–induced oxidative 

stress.78 However, it does not always imply that the induction of 

HO-1 plays a protective role in cells against apoptosis, considering 

that induction of HO-1 increased in the Nickel (II)-induced 

apoptosis of human Jurkat cells.79 This might be resulted from 

the response of cells to the increased level of ROS. It appears that 

the expression of HO-1 has to do with the reduction of ROS as 

seen in the dihydromyricetin-induced apoptosis of human 

hepatoma HepG2 cells.45

6. Uncoupling proteins

UCPs are mitochondrial inner membrane proteins, and they 

dissipate proton gradient. The physiological roles contain heat 

generation as in hibernation, cold exposure, and normal body 

temperature. In addition, UCP2 has been shown to modulate the 

mitochondrial generation of H2O2.
80 Splenocytes, resistant to 

oxidative stress-induced apoptosis, have been reported to show 

high level of UCP2 expression.81 Overexpression of UCP2 

inhibited ROS generation and blocked the apoptosis in human 

aortic endothelial cells induced by lysophophatidylcholine.82 The 

inhibition of UCP2, on the contrary, exacerbated the apoptosis in 

kidney cells.83 Several other reports also supported the 

anti-apoptotic function of UCP2 through the downregulation of 

ROS.

CONCLUSION

We have summarized the controversial role of selected 

natural/synthetic compounds in modulating cell apoptosis by 

different regulation of ROS generation. Because the cellular 

components mediating the downregulation of ROS have not been 

tied up with corresponding compounds yet, further study in this 

field is required to establish clearer relationship between these 

compounds and the cellular components in cancer cells. These 

natural/synthetic compounds can be useful in modulating the 

apoptotic process, and in providing new strategies in cancer 

prevention and therapy.
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