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Abstract

Purpose Heat shock protein 90 (HSP90) is essential for the
activation and stabilization of numerous oncogenic client pro-
teins. AT13387 is a novel HSP90 inhibitor promoting degra-
dation of oncogenic proteins upon binding, and may also act
as a radiosensitizer. For optimal treatment there is, however,
the need for identification of biomarkers for patient stratifica-
tion and therapeutic response monitoring, and to find suitable
targets for combination treatments. The aim of this study was
to assess the response of surface antigens commonly
expressed in squamous cell carcinoma to AT13387 treatment,
and to find suitable biomarkers for molecular imaging and
radioimmunotherapy in combination with HSP90 inhibition.

Methods Cancer cell proliferation and radioimmunoassays
were used to evaluate the effect of AT13387 on target antigen
expression in vitro. Inhibitor effects were then assessed
in vivo in mice-xenografts. Animals were treated with
AT13387 (5%50 mg/kg), and were imaged with PET using
either '®F-FDG or '**I-labelled tracers for EGFR and
CD44v6, and this was followed by ex-vivo biodistribution
analysis and immunohistochemical staining.
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Results AT13387 exposure resulted in high cytotoxicity and
possible radiosensitization with ICs, values below 4 nM. Both
in vitro and in vivo AT13387 effectively downregulated
HSP90 client proteins. PET imaging with '**I-cetuximab
showed a significant decrease of EGFR in AT13387-treated
animals compared with untreated animals. In contrast, the
squamous cell carcinoma-associated biomarker CD44v6, vi-
sualized with '**I-AbD19384 as well as '*F-FDG uptake,
were not significantly altered by AT13387 treatment.
Conclusion We conclude that AT13387 downregulates
HSP90 client proteins, and that molecular imaging of these
proteins may be a suitable approach for assessing treatment
response. Furthermore, radioimmunotherapy targeting
CD44v6 in combination with AT13387 may potentiate the
radioimmunotherapy outcome due to radiosensitizing effects
of the drug, and could potentially lead to a lower dose to
normal tissues.

Keywords HSP90 inhibitor - AT13387 - '**I . PET - EGFR -
CD44v6

Introduction

Head and neck squamous cell carcinoma (HNSCC) is the fifth
most common solid cancer, with more than 500,000 new cases
diagnosed worldwide every year [1]. Current treatment op-
tions for HNSCC are surgery, radiation with or without adju-
vant chemotherapy and antibody therapy. With the exception
of HPV-induced cancer, HNSCC is still a malignancy with a
high risk of both residual and recurrent disease [2]. This dem-
onstrates the need for earlier diagnosis and additional treat-
ment options to target the disease more effectively.

Recent developments in fields such as antigen screening,
protein engineering, and cancer biology have facilitated the
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rational design of targeted pharmaceuticals. However, for
optimal treatment there exist a need for identification of
biomarkers for patient stratification and therapeutic re-
sponse monitoring, and to find suitable targets for combi-
nation treatments. Here, radioimmunotargeting that com-
bines the high sensitivity and resolution of, for example,
a PET camera with the tumour specificity of an antibody-
based molecule, plays an important role. Based on essen-
tial information about potential treatment outcomes and
from knowledge of the underlying molecular mechanisms,
this may enable more personalized cancer treatment with-
out invasive procedures [3].

One recently investigated target protein is the molecular
chaperone heat shock protein 90 (HSP90), which is
overexpressed in several haematological and solid tumours,
including HNSCC [4]. Active HSP90 is essential for the acti-
vation of numerous client proteins that are involved in all
hallmarks of cancer [5]. If HSP90 is inhibited, client proteins
are ubiquitinated and finally destroyed by proteasomal degra-
dation [6]. Thus, targeting and inhibition of HSP90 offers the
unique possibility of overcoming mutations in downstream
signalling proteins and of shutting down several pathways
simultaneously [7]. In order to find a potential biomarker for
early response to HSP90-targeted therapies, several studies
have investigated the effects of first-generation HSP90 inhib-
itors (e.g. 17-AAG, 17-DMAG, NVP-AUY922) on HER2
expression [8—10]. However, HER2 expression in HNSCC
is negligible and cannot be used as a biomarker for treatment
outcomes in this patient group. Instead, overexpression of
EGFR is common in HNSCC patients [4, 11], indicating that
targeting EGFR could be a suitable approach. Wild-type
EGFR has been shown to be a client protein of HSP90 [12]
suggesting that their interaction is vital for the proliferation of
EGFR-dependent cancers. Additionally, inhibition of the
HSP90 chaperone function not only affects new EGFR pro-
tein synthesis: a recent study has demonstrated that fully ma-
ture, membrane-bound EGFR is stabilized by HSP90 inde-
pendent of HER2 and that HSP90 inhibition leads to down-
regulation of mature EGFR [4].

The small-molecule inhibitor of HSP90 AT13387
(onalespib) is a novel second-generation synthetic non-
ansamycin inhibitor currently in clinical trials. It inhibits the
chaperone function of HSP90 and promotes degradation of
oncogenic proteins upon binding [13]. AT13387 may also
act as a radiosensitizer since HSP90 client proteins are in-
volved in DNA repair mechanisms. Thus, this molecule is also
attractive for possible combination treatments with other suit-
able therapeutic modalities such as radiotherapy, internal or
external (including external beam radiation and
radioimmunotherapy). However, given that HSP90 has more
than 200 client proteins [14], it is of great importance to find
suitable antigens for radioimmunotherapy that are not affected
by HSP90 downregulation.

One potential target for radioimmunotherapy is the squamous
cell carcinoma (SCC)-associated cell surface molecule CD44v6.
This antigen has been found to be overexpressed in over 90 % of
HNSCC, as well as in other cancers such as those of the lung,
oesophagus and breast, which makes it an attractive target for
molecular imaging and targeted therapy [15]. CD44v6 has been
suggested to be involved in aggressive tumour behaviour as a
tumour metastasis-promoting protein, and has been associated
with a worse prognosis in several cancers including HNSCC
[16]. Furthermore, in a recent study CD44v6 expression was
not significantly altered by AT13387 treatment in vitro, making
it a promising candidate for radioimmunotherapy in combination
with HSP90 inhibition [17].

Consequently, the main goal of this study was to assess the
response of the biomarkers EGFR and CD44v6 to AT13387
therapy by PET imaging in SCC. Studies were performed in
vitro using cultured tumour cells and in vivo using xenografts
in mice, with the aim of establishing not only reliable moni-
toring of HSP90 inhibition therapy in HNSCC, but also of
combining such therapy with other suitable therapeutic mo-
dalities such as radioimmunotherapy.

Materials and methods
Cancer cell culture

The human SCC cell line A431 (EGFR++/CD44v6++) was
obtained from the American Type Culture Collection
(Manassas, VA) and the cells were cultured in Ham’s F10
medium supplemented with 10 % fetal calf serum, 2 mM L-
glutamine, and antibiotics (100 IU penicillin and 100 pg/ml
streptomycin). The HNSCC cell line UM-SCC-74B (EGFR+/
CD44v6+) was kindly provided by Prof. T.E. Carey,
University of Michigan, USA, and the cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM), with the
same supplements as above as well as 1 % non-essential ami-
no acids. Cells of both cell lines were incubated at 37 °C in an
atmosphere containing 5 % CO,. The cells used in monolayer
culture experiments were detached using trypsin and seeded in
separate dishes used for experiments 2 days prior to the stud-
ies. The cell lines in this study were cultured for less than
6 months after delivery.

Drug and radiation treatment

AT13387 (Astex Pharmaceuticals, Cambridge, UK) was
stored as a lyophilized powder and dissolved in 17.5 %
(w/v) hydroxypropyl-p3-cyclodextrin before use.

In vitro experiments Cells seeded for cell viability (MTT

assay, ICsqg) were preplated and incubated with AT13387
(0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100 uM). Radiation
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treatment was given 1 h after drug incubation using a '*’Cs y-
ray irradiator at a dose of 1 Gy/min (Gammacell® 40 Exactor;
Best Theratronics, Ottawa, ON, Canada). Cells seeded for
radioimmunoassays were treated with 200 nM AT13387 for
24 h before analysis.

In vive experiments Mice in the treatment groups were given
five daily injections of 50 mg/kg AT13387 (dissolved in
17.5 % w/v hydroxypropyl--cyclodextrin) subcutaneously
into the neck area before small-animal imaging studies.

MTT assay

The colorimetric MTT (3-(4,5-dimethylthiazol-2-yl1)-2,5-di-
phenyltetrazolium bromide) assay (Vybrant® MTT cell prolif-
eration assay kit; Life Technologies, Stockholm, Sweden) was
used to determine viable cells after AT13387 and radiation
treatment according to the manufacturer’s instructions. In
brief, defined amounts of A431 and UM-SCC-74B cells were
seeded into a 96-well plate in medium containing no phenol
red and treated with AT13387 (at 0.01, 0.03, 0.1, 0.3, 1, 3, 10,
30 and 100 uM). After exposure to 10 ul of MTT solution for
4 h, cells were incubated with 100 pl of SDS-HCI solution for
another 4 — 18 h. The plate was then read at 570 nm (yellow
absorbance) using a plate reader (Bio-Rad, Sundbyberg,
Sweden).

Antibodies

The chimeric monoclonal antibody cetuximab, which recog-
nizes the extracellular domain of EGFR and is FDA-approved
for HNSCC treatment [4], was obtained from Merck
(Darmstadt, Germany). Upon receipt, the antibody was puri-
fied from salts and amino acids by size exclusion chromatog-
raphy on a PD-10 column (GE Healthcare, Uppsala, Sweden)
and lyophilized. AbD19384 recognizes the cell surface anti-
gen CD44v6, and is a recombinant bivalent antibody fragment
engineered from two fully human monovalent AbD15179 Fab
fragments. This bivalent format is functionally equivalent to a
F(ab"), fragment. The generation of AbD15179 has been de-
scribed previously [18]. AbD19384 was supplied from Bio-
Rad AbD Serotec (Puchheim, Germany) in 3 x PBS.

1241 and "*1 labelling of cetuximab and AbD19384

Labelling of AbD19384 with '**I or '*°I (both PerkinElmer,
Waltham, MA) using 1,3,4,6-tetrachloro-3o,6x-
diphenylglycouril (Iodogen) was performed as following;
three Iodogen buffers (A, B, C) were prepared: A, 0.5 M so-
dium phosphate buffer; B, 0.05 M sodium phosphate and 5 M
NaCl, pH 7.4; C, 0.05 M sodium phosphate, 5 % Kl and 0.5 %
BSA w/v, pH 7.4). Iodogen was dissolved in dichloromethane
to 0.2 mg/ml. '**I or '*°I was incubated with carrier iodide
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(cold Nal) at a molar ratio of 1:1 prior to starting the labelling
procedure in order to improve labelling efficiency.
Radioiodine along with AbD19384 or cetuximab (1 or
5 mg/ml in PBS, respectively) was added to tubes coated with
50 pg of Iodogen. Buffer A was added in an equivalent vol-
ume and incubated at room temperature for 7 min with shak-
ing. The mixture was transferred to a new tube and buffer B
(480 ul) was added. After 10 min incubation, buffer C
(480 pl) was added and mixed thoroughly. Labelled conju-
gates were separated from nonreacted radionuclide and low
molecular weight reaction components by using a NAP-5 or
PD10 column (GE Healthcare, Uppsala, Sweden) pre-
equilibrated with PBS. The yield, purity and stability of the
labelled conjugates were determined by instant thin-layer
chromatography (ITLC). Samples taken immediately and
48 h after the labelling procedure were analysed. Serum sta-
bility tests were performed by 1 h incubation at 37 °C in 42 %
murine serum in PBS, pH 7.4. Approximately 1 pl of sample
was then placed on an ITLC chromatography strip (Biodex)
and placed in a “running buffer” (70 % acetone), followed by
measurements on a Cyclone storage phosphor system
(PerkinElmer, Waltham, MA). Data were analysed using
OptiQuant image analysis software (PerkinElmer).

Radioimmunoassays: in vitro binding, specificity
and antigen density

A431 and UM-SCC-74B cells were seeded into 48-well plates
and treated with 200 nM AT13387 for 24 h before washing
with PBS and incubation with 0.1, 0.25, 1, 2.5, 5, 10, 15 or
30 nM '**I-cetuximab or '**I-AbD19384. Control wells were
incubated with complete medium. After 4 h incubation at
37 °C cells were trypsinized, counted and measured in a gam-
ma counter together with three standards of each concentra-
tion. The cell-bound activity in picomoles per 100,000 cells
was calculated.

Small-animal studies
Animal model

All experiments complied with current Swedish law and were
performed with permission granted by the Uppsala
Committee of Animal Research Ethics. Nu/nu Balb/c mice
(19 mice, female) were housed under standard laboratory con-
ditions and ad libitum access to feed. Approximately 8x10°
A431 cells (high EGFR and CD44v6 expression) suspended
in 150 pl 1:1 cell medium/matrigel were injected subcutane-
ously into the left back leg, and approximately 5x10° UM-
SCC-74B cells (low EGFR and CD44v6 expression) into the
right back leg of the same nude balb/c (nu/nu) mice. After
inoculation, the weight of the animals and size of the tumours
were monitored on alternate days. Mice bearing tumours of
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approximately 1 cm in diameter were used in the studies
2 weeks after injection.

Tracer injection, specific activity and ex vivo measurements

Animals were divided into an untreated/control group (n=10)
and a treatment group (n=9). The groups were injected with
either 16 pg "**I-labelled cetuximab (n=6; injected activity
1.95 MBg/mouse, specific activity 122 kBqg/png cetuximab)
or 11 ug '"**I-labelled AbD19384 (n=6; injected activity
1.5 MBg/mouse, specific activity of 136 kBq/ug) intrave-
nously via a tail vein. Seven mice (four control, three treated)
were injected with 4.0+ 1.8 MBq '®*F-FDG. In each group, one
to three animals were used for small-animal PET/CT imaging
at 48 h after injection (p.i.) for '**I-cetuximab and '**I-
AbD19384 and at 30 min p.i. for '*F-FDG. All animals were
killed with a mixture of ketamine and xylazine followed by
heart puncture. Tumours, blood and tail (injection site) were
collected, weighed and measured in a gamma counter, togeth-
er with three injection standards of '**I-cetuximab and '**I-
AbD19384. Radioactivity uptake in the organs was calculated
as percent of injected dose per gram of tissue (%ID/g).

Small-animal PET/CT

One day before conjugate injections, mice were given potas-
sium iodide (1 %) in their drinking water to block uptake of
free '?*I in the thyroid. Whole-body PET/CT studies were
performed under general anaesthesia (isoflurane 1.0 — 2.5 %
in 50 %/50 % medical oxygen/air at 450 ml/min) at 48 h p.i.
for '**I-labelled cetuximab and AbD19384, and at 30 min p.i.
for '"®F-FDG. Mice with preinjected tracer were placed under
sedation in the gantry of a small-animal PET/CT scanner
(Triumph® trimodality system; TriFoil Imaging, Northridge,
CA) and a whole-body PET scan was performed for 80 min in
list mode followed by a CT scan for 3 min (field of view
8.0 cm). The "®F-FDG scan was performed for 60 min. The
breathing rate was monitored with a camera under controlled
anaesthesia (isoflurane 1.0 — 2.5 % in 50 %/50 % medical
oxygen/air at 450 mL/min). Animals were placed on the heat-
ed bed of the small-animal PET scanner to prevent hypother-
mia and taped to prevent large movements during the study.

The PET data were reconstructed into a static image using
an ordered subsets expectation maximization (OSEM) 3-D al-
gorithm (20 iterations). The CT raw data were reconstructed
using filtered back projection. PET data were reconstructed for
attenuation and scatter correction with their respective CT data.
PET and CT dicom files were analysed using PMOD v3.508
(PMOD Technologies Ltd, Zurich, Switzerland). Volumes of
Interest were drawn manually on the tumours. Tracer uptake
was quantified as the quotient between tumours with high and
tumours with low EGFR/CD44v6 expression.

Ex vivo immunohistochemistry

A431 and UM-SCC-74B tumours were fixed in formalin di-
rectly after dissection. Tumours were paraffin-embedded, sec-
tioned and deparaffinized. Antigens were retrieved by
microwaving (10+15 min) in citrate buffer (DAKO, S2369)
or Tris-EDTA buffer (DAKO, S2367). Sections were immu-
nostained with anti-HSP90 (abcam, UK), anti-CD44v6 (AbD
Serotec) and anti-EGFR (Abcam, UK) according to he man-
ufacturers’ instructions followed by detection using an
EnVision FLEX system (DAKO, K8000). The reaction was
visualized using EnVision FLEX DAB+ (DAKO). Mayer’s
haematoxylin (DAKO) was used as counterstain. Images of
the immunostained sections (magnification x10) were obtain-
ed using a Nikon D3000 digital camera mounted on an
inverted Nikon Diaphot-TMD microscope.

Immunohistochemistry assays were semiquantified ac-
cording to the H-score method described previously [13,
19]. In brief, the H-score is acquired by manual scoring of
each cell in five intensity groups: 0 no staining, / weak stain-
ing, 2 moderate staining, 3 dark staining, 4 maximum staining.
The H-score is then the sum of (0*p0)+(1*pl)+(2*p2)+
(3*p3)+(4*p4), where p0, pl, p2, p3 and p4 are the percent-
ages of cells in the corresponding groups, yielding a range of
0 — 400 for the H-score. The H-score was determined for 16
separate sections of each tumour tissue sample, counting 100
cells per section for a total of 1,600 scored cells per sample.
The immunohistochemistry assays were scored blinded with
respect to target and treatment.

Statistical analysis curve fitting

Microsoft Office Excel 2011 for Mac (Microsoft, Redmond,
WA) and GraphPad Prism 6 for Mac (GraphPad Software, San
Diego, CA) were used for data processing, graph plotting and
statistical analysis. For the ICs, analysis and curve fitting, a
normalized log (response) inhibition model was used, with a
fixed Hill slope of —1: Y=100/(1+10"((X — logICs())), where
Yis percent survival, X is drug concentration, and ICs is drug
concentration at 50 % survival. No parameter constraints were
used. The error is represented as 95 % confidence interval.
The significance of differences in cell viability between unir-
radiated and irradiated cells treated with AT13387 was
assessed using a two-tailed paired #-test. For the in vivo spec-
ificity studies, the differences in 124I-cetuximab, 1241
AbD19384 and '®F-FDG uptake between tumours of control
and AT13387 treatment groups were assessed using a two-
tailed paired 7 test and were considered statistically significant
for P<0.05. The data are presented as means + standard devi-
ation (SD). The immunohistochemistry assays were scored
using the H-score method (see above). A one-way ANOVA
with Tukey’s post hoc test was used to evaluate the signifi-
cance of differences in H-scores.
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Results

Cell viability (ICs¢) after exposure to AT13387 and 2 Gy
external radiation

To assess AT13387 treatment efficacy, MTT assays with various
drug concentrations and/or external beam radiation were per-
formed (Fig. 1). It is important to note that in Fig. 1a, b curves
for A431 and UM-SCC-74B are normalized to survival at 0 nM
AT13387 and curves “A431 and 2 Gy” and “UM-SCC-74B and
2 Gy” are normalized to survival at 0 nM AT13387 in cells
irradiated with 2 Gy, in order to visualize the drug-related effects
only. AT13387 treatment showed high cytotoxicity with ICsq
values of 3.2 nM and 0.3 nM for A431 and UM-SCC-74B,
respectively. Furthermore, all tested doses of AT13387 efficient-
ly radiosensitized the cells of both cell lines. Combination treat-
ment with the HSP90 inhibitor and a single radiation dose of
2 Gy decreased the ICs, value by a factor of three to 0.1 nM in
UM-SCC-74B cells. The radiosensitizing effect of the drug was
even greater for A431 cells in which a 16 times lower dose of
AT13387 (ICso 0.2 nM) reduced cell viability by 50 %. ICsq
values for drug and radiation treatment together with 95 % con-
fidence intervals are shown in Fig. 1c. The paired #-test demon-
strated significant differences in cell viability between unirradi-
ated and irradiated cells (p=0.0053 and p=0.0076 for A431 and
UM-SCC74B cells, respectively).

In vitro binding specificity and antigen density

Radioimmunoassays using the radiolabelled anti-EGFR anti-
body cetuximab and the radiolabelled anti-CD44v6 fragment
AbD19384 were used to determine the expression of the cell
surface markers EGFR and CD44v6, and demonstrated that
A431 cells expressed both markers to a high extent
(EGFR++/CD44v6++) and UM-SCC-74B cells expressed a

Fig. 1 Cell survival in a A431
and b UM-SCC-74B cell lines 1004
after treatment with ten different
concentrations of AT13387, with
and without 2 Gy gamma
radiation. Curves for A431 and
UM-SCC-74B are normalized to
untreated control cells and curves
for A431 2 Gy and UM-SCC-74B
2 Gy to irradiated control cells. ¢
ICs, values in nanomoles for
AT13387 with 95 % confidence
intervals in parentheses (n>3)

[

804

60

Viability (survival after treatment)

lower amount (EGFR+/CD44v6+; for labelling and stability
of the conjugates, see section Labelling and serum stability).
Treatment with AT13387 significantly reduced EGFR expres-
sion by 58 % in A431 cells with high EGFR expression and by
64 % in UM-SCC-74B cells with low EGFR expression.
CD44v6 expression was not significantly altered in either the
cells with high CD44v6 expression or the cells with low
CD44v6 expression (Fig. 2). Furthermore, binding of iodinated
cetuximab and iodinated AbD19384 was blocked in both cell
lines by an excess of unlabelled agent, demonstrating specific
binding of the conjugates.

Labelling and serum stability

Labelling yields for '*I-AbD19384 and '*’I-cetuximab were
46 % and 74 %, respectively. Labelling yields for '**I-
AbD19384 and '**I-cetuximab were 64 % and 72 %, respective-
ly. Purity of all conjugates after size-exclusion chromatography
was >95 %. The specific activities of the injection solutions for
1241_AbD19384 and cetuximab were 136 kBg/pg and 122 kBg/
ug, that resulted in injected activity doses of 1.5 MBq (11 pg)
and 1.95 MBq (16 ug) per mouse, respectively. Radiochemical
purity of labelled conjugates stored in PBS for 48 h, or in serum
for 1 h, was unchanged as shown by ITLC analysis.

Small-animal PET/CT

Small-animal PET/CT imaging was used to trace the
biodistribution of '**I-radiolabelled anti-EGFR cetuximab
and '**I-radiolabelled anti-CD44v6 AbD 19384 in comparison
with the clinical standard '®F-FDG in a mouse xenograft mod-
el. Each mouse was carrying two tumours: an A431 tumour
with high EGFR/CD44v6 expression in the left flank and a
UM-SCC74B tumour with low EGFR/CD44v6 expression in
the right flank. Animals in the treatment group received

-0~ A431
A431 and 2Gy

-+ UM-SCC-74B

604 -~ UM-SCC-74B and 2Gy

60

Viability (survival after treatment)

R R 4 : T
Log [AT13387] (nM) Log [AT13387] (nM)
(o
ICsoinnm | A431 UM-SCC-74B
AT13387 J 3.2 (2.28-4.45) 0.3 (0.24-0.43)
AT13382CGy (0.2 (0.12-0.26) 0.1 (0.06-0.15)
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Fig. 2 Expression of EGFR and a A431
CDA44v6 and binding specificity
in a A431 and b UM-SCC-74B EGFR expression CD44v6 expression specificity
cells using radioimmunoanalysis. ” 025
Cells were exposed to 0.01 to 5 3 — control o100 T
60 nM of '**1/'**I-cetuximab or s s 020 AT13387 5
1241/1251_AbD19384 and a 100- 8 8 os i 5
fold excess of unlabelled antibody § ‘8_ 010 . & 50
was added at the highest 3 3 00 t .g T
concentrations to correct for £ £ °
nonspecific binding. The cells 0.00 T T 2 0
were counted and radioactivity & > & o Q,\°° \q’b% 0\06"
measured in a gamma counter ) )
(n=3, error ba%s SD) Cone (W Cone (W < o.{.\‘& ¥ o\‘bn"%
& W
b UM-SCC-74B
EGFR expression CD44v6 expression specificity
0.04 0.15
% % — control g‘“ T
g %® 8 AT13387 2
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g 0.02 g ¢>§ 50
3 oo 3 £ .
2 E ;
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50 mg/kg AT13387 on five consecutive days before PET/CT
scanning. '**[-Cetuximab clearly distinguished between tu-
mours with high and tumours with low EGFR expression,
demonstrating the in vivo specificity of the conjugate.
Furthermore, in the tumours with high EGFR expression, a
clear reduction in tumour ratio was seen in the AT13387 treat-
ment group (Fig. 3a). The anti-CD44v6 tracer '>*I-AbD19384
successfully imaged the tumours with high expression in the
control group tumours and the treatment group. For CD44vo6,
antigen expression was not significantly changed (Fig. 3b).
Additionally, "®F-FDG PET analysis was not able to reveal
the difference in receptor expression between treated and

a b

124-Cetuximab

control AT13387 control

transverse section

Fig. 3 Representative small-animal PET/CT images of A431 tumours
with high EGFR and CD44v6 expression (7 left posterior flank) and
UM-SCC-74B tumours with low EGFR and CD44v6 expression (7>
right posterior flank) in nude mice after intravenous injection of a '>*I-

1241-.AbD19384
AT13387

untreated mice xenografts imaged 30 min after '*F-FDG in-
jection. The '®F-FDG uptake intensities were similar in the
control and AT13387-treated mice (Fig. 3c). Furthermore,
the '"®F-FDG scans showed nonspecific uptake in brown fat
in the neck/shoulder area (data not shown).

Ex vivo measurements: tumour sizes and tracer uptake

Excised tumours were measured and weighed and tracer uptake
was measured in a gamma counter. As expected, AT13387
treatment showed limited effects on the volume of A431 and
UM-SCC-74B tumours. The changes in tumour size were not

¢ 8F-FDG

control AT13387

~

T ;2
N L
/.
: J-'? 41

- —
| —
av.-NN-00S/1EvY

i 4
\ : ~
NG/ s

| )
‘) £

cetuximab, b '**I-AbD19384, and ¢ '*F-FDG. The upper row shows
representative cross sections of the xenografts. The lower row shows
planar maximum intensity projection images of the tracer distribution
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statistically significant, probably because of the short treatment
time of 5 days (Supplementary Fig. 1). '**I-Cetuximab,
'2*1_.AbD19384 and '"*F-FDG uptake in the tumours with high
and tumours with low EGFR/CD44v6 expression is shown in
Fig. 4. '**I-Cetuximab uptake measurements demonstrated that
AT13387 significantly reduced EGFR expression in tumours
with high expression and tumours with low expression by
67 % (p<0.001) and 40 % (p<0.05), respectively (Fig. 4a).
The expression of CD44v6, measured by 124I-AbD19384,
was not significantly altered (Fig. 4b). Glucose metabolism in
the tumours as measured by '*F-FDG uptake was unchanged in
control and treatment groups (Fig. 4c).

Ex vivo immunohistochemistry

Ex vivo immunohistochemistry staining showed no major
morphological differences between tumours from the control
and AT13387-treated animals (Fig. 5a, c). A431 tumours
(EGFR++/CD44v6++) and UM-SCC-74B tumours
(EGFR+/CD44v6+) contained viable tumour and stromal
cells, well-established blood vessels and minor areas of necro-
sis. Untreated A431 cells showed overexpression of the bio-
markers EGFR and CD44v6, but untreated UM-SCC-74B
cells showed only low expression. AT13387 treatment result-
ed in a strong reduction in the target protein HSP90 and client
protein EGFR in both tumour models as shown by the H-
scoring method, while no significant changes in CD44v6 ex-
pression were observed (Fig. 5b, d).

Discussion

HSP90 client proteins are involved in all hallmarks of cancer,
making HSP90 inhibitors promising as anticancer drugs. This
study focused on the novel HSP90 inhibitor AT13387, and
potential biomarkers for monitoring outcomes of AT13387
treatment with and without radioimmunotargeting. A thorough
understanding of the molecular properties in different tumour

types, before, during and after treatment, is essential to form a
basis for personalized — and consequently more effective —
patient management. Studies such as that presented here are
thus absolutely necessary to realize this goal, and this study can
be seen as a first step towards personalized cancer therapy.

AT13387 is a promising therapeutic drug currently in clin-
ical trials for several cancer types including HNSCC [6, 20].
Toxicity data show that 120 mg/m*/dose is the maximum
tolerated dose in patients with advanced solid tumours based
on the incidence of moderate toxicity [6]. However, only mod-
erate effects have been obtained so far in clinical trials with
AT13387 as the sole agent in patients with advanced solid
tumours [6, 20]. In the present study, we demonstrated
in vitro that AT13387 is indeed very potent with an ICs, value
more than 20 times lower than that of the well-characterized
HSP90 inhibitor 17-AAG. As expected with the short treat-
ment time assessed in vivo, AT13387 treatment showed lim-
ited effects on tumour volume, with no statistically significant
changes in tumour size (Supplementary Fig. 1). The choice of
end-point in the present study was selected in order to measure
rapid, transient effects on protein expression over the initial
days after treatment, not primarily to obtain therapeutic ef-
fects. It is therefore possible that in vivo a treatment effect
could be obtained with other doses and treatment times.

For AT13387, clinical trials are currently in progress
assessing the efficacy of combination treatments, e.g.
AT13387 in combination with crizotinib in the treatment of
non-small-cell lung cancer, in combination with imatinib in
patients with gastrointestinal stromal tumour, and in combina-
tion with paclitaxel in patients with breast cancer. Furthermore,
a clinical study assessing AT13387 in HNSCC patients receiv-
ing radiation therapy and cisplatin is one of several interesting
clinical trials in the pipeline [6, 21]. In the present study, we
assessed the potential benefit of combining AT13387 with ra-
diotherapy, with promising results. The efficacy of the combi-
nation treatment was significantly greater than with AT13387
alone and radiation treatment alone, suggesting that the drug
has radiosensitizing effects (Fig. 1). These effects have the

a 124]_Cetuximab b 124_AbD19384 ¢ '8F_-FDG
25 — 1.0 8
I Control Il Control I Control
20 Bl AT13387 0.8 Bl AT13387 6 Bl AT13387
o o 06 o
=) =) o 4
s & 04 &
2
0.2
0 0
A431 UM-SCC-74B A431 UM-SCC-74B A431 UM-SCC-74B

Fig. 4 Tumour uptake of a '>*I-Cetuximab (n=6, 48 h after injection), b
124L_AbD19384 (n=6, 48 h after injection) and ¢ '*F-FDG (n=7, 1 h after
injection) in A431 tumours with high EGFR/CD44v6 expression and in
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Fig. 5 a ¢ Ex vivo a b
immunohistochemical staining

for HSP90, EGFR and CD44v6 B HSP90
expression on representative = EGFR
sections of a A431 and ¢ UM- BN CD44v6

SCC-74B tumour xenografts
(x10). A431 tumours show high
expression and UM-SCC-74B
tumours show low expression of
EGFR and CD44v6. HSP90 and
EGFR were downregulated in the
AT13387 treatment group.
CD44v6 expression was
unchanged. b, d Semiquantitative
analysis of immunostaining using c

control

the H-score (n=16, error bars

SD; ***%5<0.0001, one-way

ANOVA with Tukey’s post hoc

test) control

AT13387

potential to be utilized in conventional external beam radiother-
apy or in a radioimmunotherapy, and raise expectations for the
impending clinical trials combining AT13387 with radiothera-
py, and for future combinations with radioimmunotherapy.

The possibility to noninvasively assess treatment efficacy
during ongoing therapy is likely to be an important factor in
estimating the duration of the treatment effect on cellular
events and for defining a personalized drug dose and schedule
[10]. Repeated PET scanning is especially important in
targeted cancer treatments, since the drug-induced effects on
biomarkers are often temporary and not easily assessed by
invasive methods such as tumour biopsy sampling. For treat-
ment response monitoring, we studied the effect of AT13387
on the client protein EGFR. In vitro radioimmunoassays with
cetuximab demonstrated that AT13387 exposure reduced the
receptor expression in SCC cells with high and cells with low
EGFR expression (Fig. 2). This was in line with our results
in vivo demonstrating that molecular imaging using PET can
be used to noninvasively monitor changes in EGFR expres-
sion as a response to treatment with AT13387 (Fig. 3). These
results were further confirmed by biodistribution analysis that
showed that AT13387 significantly reduced EGFR expression
in tumours with high expression and tumours with low expres-
sion (Fig. 4), and in ex vivo immunohistochemistry stainings
(Fig. 5).

As expected, '*F-FDG PET was not able to reveal the dif-
ference in receptor expression of HSP90 client proteins after
HSP90 inhibition (Figs. 3 and 4). This is in line with the find-
ings of previous studies, in which, for example, administration
of the HSP90 inhibitor NVP-AUY922 to multicellular breast

500

H-score

UMSCC74B d
EGFR CD44v6
IR e
Em HSP90
500 mm EGFR
400 Bm CD44v6

300

H-score

200

100

cancer spheroids did not cause significant changes in '*F-FDG
uptake [22]. Also, '"®F-FDG PET can give false-positive results
in areas of inflammation and brown fat, demonstrating the im-
portance of specific targets and tracers for molecular imaging to
assess the effects of HSP90 inhibitors. Thus, our results suggest
that the use of EGFR-specific PET for AT13387 treatment re-
sponse assessment could be a promising approach.

Besides external radiotherapy, combination treatment with
AT13387 and radioimmunotherapy could benefit patients due
to the radiosensitizing effects of the drug, and may overcome
resistance mechanisms. Given that HSP90 has more than 200
client proteins [14], it is of great importance to find bio-
markers that are not affected by HSP90 downregulation. To
investigate possible new targets for radioimmunotherapy in
combination with HSP90 inhibition we studied the cell sur-
face protein CD44v6, an oncogenic isoform of the hyaluronan
binding molecule CD44 frequently overexpressed in HNSCC
[15,23]. In vivo, small-animal PET/CT scans of xenografts in
mice using '**I-AbD19384 gave high-quality high-contrast
images of high CD44v6-expressing tumours. No significant
difference in '**I-AbD19384 uptake between control and
treatment groups was detected with small-animal PET/CT
(Fig. 3). In vitro studies with '**I-labelled AbD19384 con-
firmed that CD44v6 was not significantly affected by
AT13387 (Fig. 2). These results were further confirmed by
biodistribution (Fig. 4) and ex vivo immunohistochemistry
(Fig. 5) where CD44v6 expression was similar in treated and
untreated animals. Thus, our results demonstrate that CD44v6
could be a suitable target for radioimmunotherapy in combi-
nation with HSP90 inhibition.
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In conclusion, the novel HSP90 inhibitor AT 13387 showed
radiosensitizing and cytotoxic activity and caused a significant
decrease in EGFR expression both in vivo and in vitro while
CD44v6 expression was unchanged. Our results demonstrate
that EGFR imaging using PET could be a useful tool for mon-
itoring treatment response and that CD44v6 could be a suit-

able target for radioimmunotherapy in combination with
HSPI0 inhibition.
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