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Abstract Graph theory was used to analyze the anatom-

ical network of the rat hippocampal formation and the

parahippocampal region (van Strien et al., Nat Rev Neu-

rosci 10(4):272–282, 2009). For this analysis, the full net-

work was decomposed along the three anatomical axes,

resulting in three networks that describe the connectivity

within the rostrocaudal, dorsoventral and laminar dimen-

sions. The rostrocaudal network had a connection density of

12 % and a path length of 2.4. The dorsoventral network

had a high cluster coefficient (0.53), a relatively high path

length (1.62) and a rich club was identified. The modularity

analysis revealed three modules in the dorsoventral net-

work. The laminar network contained most information.

The laminar dimension revealed a network with high clus-

tering coefficient (0.47), a relatively high path length (2.11)

and four significantly increased characteristic network

building blocks (structural motifs). Thirteen rich club nodes

were identified, almost all of them situated in the parahip-

pocampal region. Six connector hubs were detected and all

of them were located in the entorhinal cortex. Three large

modules were revealed, indicating a close relationship

between the perirhinal and postrhinal cortex as well as

between the lateral and medial entorhinal cortex. These

results confirmed the central position of the entorhinal

cortex in the (para)hippocampal network and this possibly

explains why pathology in this region has such profound

impact on cognitive function, as seen in several brain dis-

eases. The results also have implications for the idea of

strict separation of the ‘‘spatial’’ and the ‘‘non-spatial’’

information stream into the hippocampus. This two-stream

memory model suggests that the information influx from,

respectively, the postrhinal–medial entorhinal cortex and

the perirhinal–lateral entorhinal cortex is separate, but the

current analysis shows that this apparent separation is not

determined by anatomical constraints.

Keywords Graph analysis � Hippocampus � Neural

network � Parahippocampal region � Rat

Introduction

The anatomical tract-tracing studies performed in the last

century have yielded a massive amount of brain connec-

tivity data (Jones 2007). These data aid the characterization

of neuroanatomical building blocks that constrain the

functional limitations of brain networks (Sporns et al.

2000). However, the extent of the available brain connec-

tivity data is so large, that it is challenging to analyze it

without general statistical tools. To facilitate the analysis of

neural networks, neuroscientist started to collate these data
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into so-called connectomes. Structural connectomes exist

for different species like the nematode, the pigeon, the

monkey, the rat and the mouse. Except for the nematode

connectome, all connectomes existing today are partial

connectomes in the sense that they do not contain complete

connectivity information of the entire brain (Felleman and

Van Essen 1991; White et al. 1986; Scannell et al. 1995;

Dyhrfjeld-Johnsen et al. 2005; Shanahan et al. 2013; Bota

et al. 2012; Schmitt et al. 2012; Oh et al. 2014; Burns and

Young 2000; Sugar et al. 2011; van Strien et al. 2009).

Such connectomes can then be mathematically dissected

using graph analysis, which will elucidate objectively the

specific organizational patterns and topological properties

within the structural network that constrains its functional

properties (Sporns et al. 2000; Shanahan et al. 2013; Sch-

mitt et al. 2012; Bullmore and Sporns 2009; van den

Heuvel and Sporns 2013; Fornito et al. 2012; Buckner and

Krienen 2013).

In this study, we used graph analysis to examine the

networks of the hippocampal formation and parahippo-

campal region (HF–PHR). The HF–PHR is engaged in

spatial navigation and memory (Squire et al. 2007; Buzsaki

and Moser 2013). A dominant view on hippocampus-

dependent information processing suggests that informa-

tion from the neocortex is relayed towards the hippocam-

pus by two separate information-processing streams—A

‘what’ and a ‘where’ stream, concerning the perirhinal

cortex–lateral entorhinal area and postrhinal cortex–medial

entorhinal area, respectively (Burwell and Amaral 1998;

Eichenbaum et al. 2012; Burwell 2000). Previously, we

constructed an interactive wiring diagram of the rat HF–

PHR (Sugar et al. 2011; van Strien et al. 2009) (http://

www.temporal-lobe.com). The collated structural HF–PHR

network is unique because we aimed to describe both the

origin and termination position of connections at a high

level of spatial detail. Whereas other cortical connectomes

described connections at a macroscopic level, i.e. at the

level of brain regions (i.e. CA1 or entorhinal cortex), the

HF–PHR network divides each brain region along its three-

dimensional axes such that a more specific volume of tissue

can be designated as the site of origin or termination of a

brain connection. Our approach at a more mesoscopic level

provides an important next level of detail, since it is now

known that a brain region can consist of functionally dif-

ferent parts that are found to be related to position along its

three-dimensional axes (Brun et al. 2008; Henriksen et al.

2010; Jarrard et al. 2012; Oh et al. 2014). For instance, the

projection from the entorhinal cortex to the hippocampus is

topographically organized along the dorsoventral axis

(Dolorfo and Amaral 1998). This topology affects the

functioning of spatially tuned entorhinal grid cells. Grid

cells found in the ventromedial part of the medial entorh-

inal area have much larger grid fields compared to their

dorsolateral counterparts (Brun et al. 2008), which implies

that distinct parts along the long axis of the hippocampus

receive distinct information.

Here, we used graph analysis to determine the structural

network properties of the HF–PHR of the rat. We classified

the type of network and the significant network motifs. In

addition, we identified hubs, distinct brain areas with a

central position in the network, and modules, sets of brain

regions cooperating in functional information processing.

Our analysis indicated the presence of a rich club organi-

zation, in which highly connected brain areas are con-

nected with other highly connected brain areas.

Materials and methods

Structural database of the rat HF and PHR

Our HF–PHR database is used to create the adjacency

matrices for this study. The data entry procedure used to

populate this database is described in detail in van Strien

et al. (2009) and Sugar et al. (2011). In short, the HF–PHR

connectivity database contains information about the exis-

tence of brain connections that were reported in peer-

reviewed papers that describe results from anterograde and

retrograde tract-tracing experiments as well as in intracel-

lular filling studies. The focus of the database is limited to

the HF and PHR in healthy, genetically un-altered,

untreated adult rats (all strains) of both sexes. The tract-

tracing method visualizes the course of axonal fibers and it

distinguishes the direction of fibers (Lanciego and Wou-

terlood 2011; Otzas 2003). Unfortunately, in most cases it is

neither possible to differentiate the excitatory or inhibitory

nature of the projections, nor to objectively characterize the

strength of the connections. The sites of origin and termi-

nation of HF–PHR connections were stored in the database.

For this graph analysis study, only ipsilateral connections

with clearly defined small injections sites confined within in

a single brain area were selected from the database. In total,

117 studies that matched these criteria are included for the

database, comprising almost 3,400 connections of the HF–

PHR network (Sugar et al. 2011; van Strien et al. 2009)—

see Suppl Data for references. The number of papers and

reports that describe the existence of a connection varies

(Suppl. Figure 3), which may partly reflect popularity of a

certain sub area as a topic of study, rather than have

meaningful value as a measure to estimate the confidence

one may have in that a connection actually exists.

Subdivision of the HF and PHR brain areas

The HF and PHR are commonly subdivided into smaller

brain areas. The database follows the nomenclatures as
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explained by Cappaert et al. (2014). The HF brain areas

(Suppl. Figure 1a, b) included in the database are the

dentate gyrus (DG), Cornu Ammonis area 3 and 1 (CA3

and CA1, respectively), and the subiculum (Sub). Since the

database was created, CA2 has received increased scientific

attention, yet very little connectivity data exist today and,

therefore, it was left out from the initial database. The PHR

brain areas (Suppl. Figure 1 a, b) included in the database

are the presubiculum (PrS), parasubiculum (PaS), the en-

torhinal cortex, which has a lateral (LEA) and a medial

(MEA) subdivision, the perirhinal cortex (consisting of

Brodmann areas A35 and A36) and the postrhinal cortex

(POR).

An important feature of the HF–PHR database is that

connections are described in terms that go beyond the

subdivision of brain areas which allows greater accuracy in

describing the origin and termination point of brain con-

nections. To this end, for each brain region the position of

origin and termination of a connection was described along

each of its three anatomical axes (Suppl. Figure 1).

Orthogonal to the surface of the cortex, we described a

laminar dimension, representing each of the layers of a

brain area according to the nomenclatures used in Cappaert

et al. (2014). In the rostrocaudal dimension, either the ro-

strocaudal axis (for PER and POR) or proximodistal axis

(for the HF brain areas, PrS and PaS) was defined and

subdivided into three segments. Finally, in the dorsoventral

dimension a septotemporal (for the HF brain areas, PrS and

PaS), dorsoventral (PER and POR) or dorsolateral–ven-

tromedial (dl–vm; for MEA and LEA) axis was defined and

subdivided into three segments. A connection in the data-

base is considered to have the highest level of spatial res-

olution if the position of the origin or termination of a

projection is known along the subdivision of all three

dimensions. For example, the origin or termination of a

connection could be stored in the database as ‘‘the pyra-

midal cell layer (laminar dimension) of the proximal (ro-

strocaudal dimension), septal part (dorsoventral dimension)

of area CA1’’. Unfortunately, only a minority of the con-

nections are reported at this high level of detail.

Dataset preparation

After selecting connections from the database, the knowl-

edge from matching, independent retro- and anterograde

experiments was combined to determine the origin and

termination of a connection more accurately. The resulting

dataset with maximum spatial detail, i.e. with a breakdown

of the brain areas into subregions along all three dimen-

sions, resulted in a very sparsely populated connectivity

matrix (see ‘‘Results’’; Suppl. Figure 2). This issue was

compromised by creating three separate sub-networks in

which the connection matrix was shown for a single

dimension, whereby the other two dimensions were col-

lapsed (Suppl. Figure 2c). The first sub-network, called

‘rostrocaudal network’, consisted of connections within the

rostrocaudal dimension. In the second sub-network, called

‘dorsoventral network’, we included all projections in

which information in the dorsoventral dimension was

available for the origin and termination of the connection.

The dorsoventral axis in A35, A36 and POR was discarded,

because there were too few reports on the origin or ter-

mination in this dimension of these anatomical regions,

probably because this dimension is quite small. The third

sub-network, called ‘laminar network’, comprised all pro-

jections in which layer information was available for the

origin as well as the termination location, regardless of the

presence or absence of information in the dorsoventral and/

or rostrocaudal dimension.

Graph analysis

Definition of nodes and edges

The nodes of the connectivity matrix consisted of subareas

within an anatomically defined region which represented

the origin or termination of projections. More specifically,

nodes in the rostrocaudal network indicated the subregions

of a brain area in the rostrocaudal dimension, for example,

the rostral CA1 (Fig. 1a). In the dorsoventral network

(Fig. 1b), the nodes represented subregions of a brain area

in the dorsoventral dimension, for instance the septal part

of DG (DG sept) or the dorsolateral part of the MEA (MEA

dl). Nodes in the laminar network stood for a specific

cortical layer (Fig. 1c), e.g. PrS layer I (PrS I) or the

molecular layer of the CA1 (CA1 ml). Neuronal dendrites

of cell bodies extend across layers, such that axonal inputs

into different layers can synapse onto the same neurons.

The axons or axon bundles connecting pairs of nodes

were the edges of the matrix. For example, the intermediate

septotemporal part of the dentate gyrus (DG int) projected

to the septal CA3 (CA3 sept; Fig. 1b). The connectivity

matrices were binary and if a connection between a pair of

nodes was reported in at least one tract-tracing paper, this

was assigned 1. If no connection is reported or it was

explicitly mentioned that there was no connection between

two nodes, the value was set at 0. Projection strength and

the excitatory or inhibitory nature of the connections were

not incorporated in the network. The networks were

directed graphs, resulting in asymmetric connectivity

matrices. POR layer IV could not be included in the lam-

inar network for a lack of incoming and outgoing projec-

tions. Self connections, represented on the diagonal of the

connectivity diagram, were removed (Rubinov and Sporns

2010). Finally, this resulted in three matrices used for the

graph analyses (Fig. 1a–c; Suppl. Data 1).
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Fig. 1 The directed, binary adjacency matrix of the rostrocaudal (a),

dorsoventral (b) and laminar (c) network. The connections (or edges),

presenting the axons or axon bundles, are indicated by black squares.

The white areas represent projections that do not exist or are not

documented yet. The self connections on the main diagonal (indicated

with a red line) are excluded. The nodes represent the subareas of

brain regions in the rostrocaudal dimension (a) or the dorsoventral

dimension (b) and the layers of the brain regions (c). The nodes

depicted on the left side represent the origin of a projection and the

nodes on top represent the termination of a projection. The brain areas

are color coded as follows: dentate gyrus (DG; dark brown), CA3

(medium brown), CA1 (orange) and subiculum (Sub; yellow),

presubiculum (PrS; medium blue), parasubiculum (PaS; dark blue),

entorhinal cortex (MEA; light green and LEA; dark green), perirhinal

cortex [Brodmann areas (A) 35 (pink) and 36 (purple)] and the

postrhinal cortex (POR; blue green). The Roman numerals indicate

cortical layers. caud caudal, dist distal, dl dorsolateral part of the

entorhinal cortex, gran granule cell layer, im intermediate dorsolat-

eral–ventromedial part of the entorhinal cortex, luc stratum lucidum,

ml molecular layer, or stratum oriens, prox proximal, pyr pyramidal

cell layer, rad stratum radiatum, rost rostral, sept septal, slm stratum

lacunosum-moleculare, temp temporal, vm ventromedial part of the

entorhinal cortex
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Graph theoretical measures

Graph measures for binary, directed graphs were computed

using the Brain Connectivity Toolbox ((Rubinov and

Sporns 2010) (http://www.brain-connectivity-toolbox.net/).

A brief description of the computed metrics includes:

Degree and density The degree quantifies the number of

all connections (edges) from one node to the remainder of

the network. The degree of a node reflects the importance

of this node in the network. Brain regions with a high

degree are interacting with a high number of other brain

regions. The node degree was separated into indegree,

including the incoming (afferent) connections and outde-

gree, including the outgoing (efferent) connections of a

region. Topological neighbors were defined as nodes that

have a direct connection with a particular node. The den-

sity is the proportion of edges that exist relative to the

number of potential edges of a network. The density gives

an impression of how well connected a network is (Kaiser

2011).

Distance, characteristic path length and diameter The

distance between two nodes is the minimal number of

edges that have to be crossed to connect two nodes. Note

that the measure ‘distance’ does not reflect the physical

distance between nodes. The characteristic path length of a

network is the mean distance for all node pairs. The path

length is a measure of connectivity in the network—a high

characteristic path length implies low global network

connectivity, whereas a low path length indicates high

connectivity. The diameter of the network is the maximum

of the shortest path between two nodes (‘‘the longest

shortest path’’).

Clustering coefficient The clustering coefficient quanti-

fies the mean fraction of the actual connections between the

neighbor’s nodes and the maximum possible number of

connections between these neighbors (Watts and Strogatz

1998). The cluster coefficient depicts the ability of the

neighbors of a node to connect with each other. The mean

clustering coefficient over all nodes characterizes the

prevalence of clustering in the network.

Small-world organization

Watts and Strogatz (1998) described small-world network

models as networks with high clustering and a small char-

acteristic path length compared with the same parameters

defined in 100 random null models (see below). Such a

network organization provides a balance between functional

integration and segregation (Sporns and Honey 2006). Val-

ues of path length and clustering coefficient were considered

significantly different when they differed more than one

standard deviation (SD) from the mean of the respective

values of the 100 random null models. Regular networks

have high path length and high clustering coefficient and

random networks are characterized by short path length and

almost no clustering (Watts and Strogatz 1998).

Motifs Structural motif analysis divides the network into

characteristic small, unique anatomical building blocks of a

certain number of nodes (Milo et al. 2002; Sporns and

Kotter 2004). Motifs of M = 3 nodes can be classified into

13 distinct structural motif classes and the motif count

represents the number of times a certain motif class occurs

in the investigated network. As a reference, the motif fre-

quency spectra were computed for random null models. A

motif count was considered significantly higher when the

z score for a certain motif was [5.0, p\ 0.0001 (Sporns

and Kotter 2004). Next, the motif participation number, the

number of instances a node participates in a specific motif

class, is determined and compared with the motif partici-

pation number found in the random null model (Sporns and

Kotter 2004).

Modules Modules are groups of nodes with a high

connection density within the module and low connection

density with other modules. A spectral modularity opti-

mization algorithm that defines sets of nodes which have a

maximized number of within-group edges and a minimized

number of between-group edges was used for the decom-

position of the network into non-overlapping, non-hierar-

chical modules (Leicht and Newman 2008). The

modularity Q score, which represents the fraction of con-

nections in a module relative to the expected fraction of

connections in a module based on chance, is optimized to

obtain the modules of the current network. The modules

were constructed at least 50 times and the module set with

the highest modularity Q score was selected.

Participation index The participation index (Pi) quan-

tifies how the connections of a node are distributed across

all modules. A Pi close to 1 is perceived when all con-

nections of a node are uniformly distributed to all modules;

Pi is close to 0 if all the connections stay within the module

to which this node belongs.

Network hubs Hubs are brain regions that occupy a

central position in the network and hubs are defined as

nodes that interact highly with other nodes. In this study,

hubs were classified into three groups, based on degree and

the value of Pi (van den Heuvel and Sporns 2011, 2013).

The degree is classified into two categories—high and low

degree. High degree nodes have a degree which is at least

one standard deviation above the mean total degree, while

low degree nodes are the remaining nodes, i.e. those that

were not classified as high degree nodes. The first group

contained the non-hub connectors, based on their low

degree. The second group included the provincial hubs.

These provincial hubs are connecting nodes within their

own modules and are defined as nodes with a high degree

and Pi B 0.3. The third group encompassed the connector
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hubs, which link different modules. Connector hubs were

defined as a high degree and a Pi[ 0.3.

Rich club A group of high degree nodes which are

densely connected among themselves, is called a rich club

phenomenon (Colizza et al. 2006). A rich club was

detected by systematically removing nodes from the net-

work according to their total node degree, starting from the

lowest degree to the (second) highest degree. First, the

degree of each node was calculated and subsequently all

nodes with a degree Bk are removed, resulting in a sub-

graph with a degree [k. The rich club coefficient for this

subgraph, u(k), was the connection density of the sub-

graph. The u(k) was defined for all k’s and this resulted in

the rich club curve (Suppl. Figure 5). As a reference,

u(k) was also calculated for 1,000 random null models (see

below), resulting in urandom(k)—the mean of this model.

The normalized rich club coefficient (unorm) was derived

by the ratio of u(k) over urandom(k). A rich club is poten-

tially present if unorm is significantly[1 over a range of k’s

(van den Heuvel et al. 2012; van den Heuvel and Sporns

2011), and we checked if the u(k) is outside the 95 %

interval of the urandom(k). All tests used a Bonferroni-

correction.

Intermediate node Two nodes that are directly con-

nected (distance = 1) can exchange information directly

(Fig. 5a, black squares). However, nodes that are not

directly connected may influence each other via an inter-

mediate node (Fig. 5b, inset). For instance, PrS layer II was

not directly projecting to the DG granular cell layer

(Figs. 1c, 5a), but via intermediate node MEA layer II, PrS

layer II can influence the DG granular cell layer. To

examine which nodes facilitate the connection between

not-directly connected pair of nodes, we modified the ‘flow

coefficient’ measure of Honey et al. (2007) into a measure

called ‘intermediate node’. The intermediate node quanti-

fies the number of times a specific node is the middleman

between a pair of nodes with distance 2, in the configura-

tion of Motif 2 (M = 3, Fig. 5b, inset).

First, node pairs with distance 2 were identified in the

distance matrix (Fig. 2a) and subsequently all possible

nodes were identified that can connect the node pairs with

distance 2 to form a unidirectional sequence of nodes the

top node in Motif 2 (Fig. 5). These interlinking nodes were

named the intermediate nodes. For visualization purposes,

the nodes at the start and the end of the chain were lumped

into four predefined anatomical sets: set (1) all four areas of

the HF, set (2) PrS and Pas set (3) the LEA and MEA, and

set (4) PE R and POR.

Random null model A random null model was used for

statistical reference. The edges of the original connection

matrix were randomly rewired 100 times using a Markov

random switching algorithm (Maslov and Sneppen 2002).

This randomization algorithm preserves the network’s size,

density and in- and outdegree distribution. Each random

null model was generated 100 or 1,000 times and then our

HF–PHR network was statistically compared with the

random null model.

Results

Global description of HF–PHR network

A network at macroscale was created with 11 nodes rep-

resenting the main brain regions of the HF–PHR (Suppl.

Figure 3D), revealing a very densely connected network

(density = 96 %). To obtain a network with a lower den-

sity, a network at a more mesoscopic level was created.

The volume of each of the 11 HF–PHR brain areas was

subdivided along their three-dimensional axes and this

resulted in a network with a total number of 327 nodes

(Suppl. Figure 2). The nodes of the brain areas PrS, PaS,

A35, A36 and POR were completely devoid of in- and

outgoing connections. This sparsity is caused by an

absence of detailed reports in the literature, i.e. the exact

origin and termination location in all three dimensions is

not described. Even after removing the 70 isolated nodes,

the matrix showed a connection density of just 0.75 %. To

reduce the number of leave nodes and at the same time

preserving all HF and PHR brain areas for the analysis, we

decomposed the total network into three sub-networks—(1)

the rostrocaudal network, (2) the dorsoventral network and

(3) the laminar network (Suppl. Figure 1).

Rostrocaudal network

The rostrocaudal network (Fig. 1a) consisted of 22 nodes,

58 edges and a connection density of 12 %. The mean

degree was 5.2 in a range from 1 to 16. The network had a

diameter of 5 and a path length of 2.4. The number of times

each edge reported in the literature for the rostrocaudal

network was high, a mean of 15.9 reports per edge was

observed (Suppl. Figure 3a).

Dorsolateral network

The HF–PHR dorsoventral network (Fig. 1b) consisted of

25 nodes and 225 edges, ensuing in a connection density of

36 %. The mean degree, sum of the in- and outdegree, of

the dorsoventral network (Fig. 2a) was 18.0 in a range from

2 to 27. The POR was discerned as a brain area with a high

total degree of 27. The dorsoventral network had a path

length of 1.62 and a diameter of 4. The mean number of

reports per edge was 6.1 (Suppl. Figure 3b).

To categorize the global network properties, we calcu-

lated the cluster coefficient (Fig. 2c) and the characteristic
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path length of the HF–PHR network. The mean cluster

coefficient of the dorsoventral network was 0.53, which

was higher compared with the random null model of the

dorsoventral network (0.49 ± 0.02—mean ± SD). The

path length of the dorsoventral network (1.62) was larger

than that of the random network (1.58 ± 0.01). The M = 3

motif types 4, 9, 11 and 13 occurred significantly more

often in the dorsoventral network than in the random null

model (Fig. 3a). The motif participation number revealed

that certain nodes participated more strongly in certain

motif classes. The intermediate dorsolateral–ventromedial

MEA, the ventromedial MEA and the intermediate septo-

temporal CA1 contributed strongly to Motif 4. The tem-

poral Sub was highly involved in Motif 9 and 13, the

intermediate dorsolateral–ventromedial MEA and LEA

were considerably involved in Motif 11 and the POR

participated substantially in Motif 13 (data not shown).

Three distinct modules were detected in the dorsoventral

network with a modularity Q score of 0.15 (Fig. 4a; Suppl.

Figure 4a). The largest module, ‘ventral HF–PHR’, com-

prised a total of twelve temporal areas, including the

temporal areas of the hippocampal formation, PrS and PaS,

the ventromedial LEA and MEA, the intermediate LEA

and PER and POR. The second largest module, ‘dorsal

HF’, consisted of eight nodes, incorporating the septal and

intermediate septotemporal areas of DG, CA3 and CA1,

the intermediate septotemporal Sub and septal PrS. The

smallest module, ‘dorsal PHR’, included the remaining five

nodes—the dorsolateral MEA and LEA, the intermediate

dorsolateral–ventromedial MEA, the septal PrS and Sub.

Fig. 2 The in- and outdegree specified per node for the dorsoventral

(a bottom) and laminar network (b bottom). The blue lines mark the

mean degree, the red dotted lines mark the mean plus or minus the

standard deviation (SD), revealing the nodes with a significantly high

or low node degree. The figures in the top represent the distribution of

the node degree. The cluster coefficient specified per node for the

laminar network (c bottom) and the dorsoventral network (d bottom).

The blue lines mark the mean cluster coefficient; the red dotted lines

mark the mean plus or minus the SD, revealing the nodes with a

significantly high or low cluster coefficient. The figures in the top

represent the distribution of the cluster coefficient. For abbreviations,

see legend of Fig. 1
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The POR was the only node in the dorsoventral network

that had a high node degree and based on its intermediate

participation coefficient of 0.54, POR was distinguished as

a connector hub (Fig. 4a).

A rich club community of thirteen nodes was discerned in

the dorsoventral network (Suppl. Figure 5a; Fig. 4a). A

significant increasing normalized rich club coefficient was

detected for node degree k\ 16\ 21 and the u(k) was

significantly outside the 95 % interval of the urandom(k). The

septal parts of the HF areas and the dorsolateral parts of the

MEA and LEA were detected as rich club nodes. Moreover,

the temporal Sub and the ventromedial part of the LEA, the

intermediate dorsolateral–ventromedial band of the EC, and

the A35, A36 and POR were rich club members.

Laminar network

The laminar network consisted of 55 nodes and 573 edges

(Fig. 1c; Suppl. Figure 3e—the Connectome Viewer;

Gerhard et al. 2011), resulting in a connection density of

19 %. On average, 3.4 occurrences were reported per edge

(Suppl. Figure 3c). Relatively high reporting rates were

found for the entorhinal–hippocampal connections (around

750 reports for the ingoing and outgoing connections). The

PrS connections were most frequently reported on in the rat

connectivity literature describing the laminar topology.

This is based on the outstanding single cell filling study of

Honda and colleagues (Honda et al. 2011). The mean

degree, the sum of the in- and the outdegree (Fig. 2b) of the

laminar network was 20.8 and the degree ranged substan-

tially from 1 to 59. PrS layers III and V and entorhinal

layers MEA II, III, VI and LEA layers II, III and V were

high degree nodes. The laminar network had a path length

of 2.11 and a diameter of 5.

Fig. 3 Structural motif analysis of the dorsoventral (a) and laminar

network (b). The frequency of the M = 3 directed motifs is indicated

with a black circle and the motif counts of the random null models are

represented by the mean ± standard deviation (grey lines). Asterisk

indicate motifs with significantly increased occurrence over random

networks

Fig. 4 Overview of the nodes

of the dorsoventral (a) and

laminar network (b). The

modules are represented in

color, the members of the rich

club are represented in red and

the connector and provincial

hubs are outlined with a black

box. For abbreviations, see

legend of Fig. 1
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The mean cluster coefficient (Fig. 2d) of the laminar

network (0.47) was higher compared with the mean cluster

coefficient of the random null model (0.42 ± 0.01). Also,

the path length of the laminar network (2.11) was higher

than the path length of the random null model

(1.89 ± 0.02).

The local connectivity analysis for directed M = 3

motifs of the laminar network revealed four significant

motifs (motif type 8, 11, 12 and 13) with z score [5.0 in

comparison with the random null model (Fig. 3b). The

hippocampal pyramidal cell layer of CA1 and Sub partic-

ipated particularly in Motif 8 while the PHR regions con-

tributed more strongly in motifs 11, 12 and 13.

Five modules, with a modularity Q score of 0.23, were

detected in the laminar network (Suppl. Figure 4b;

Fig. 4b). The largest module, consisting of 24 nodes, was

labeled ‘HFml/PrS/PaS/EC’. This module contained the

molecular layers of the hippocampal fields, all PrS and PaS

layers, all layers of the MEA—except layer IV and LEA

layers II, IV and VI. The second module, ‘EC/PER/POR’,

consisted of 19 layers: all layers of PER and POR and three

EC layers—MEA IV, LEA III and V. The third module,

‘HF’, confined the layers of the hippocampal formation,

except for the molecular layers of HF. The small fourth and

fifth module consisted of LEA layer I and POR layer III,

and CA3 stratum lucidum, respectively.

The participation index of the eight high degree nodes in

the laminar network was calculated to define if these nodes

could be characterized as provincial or connector hubs

(Fig. 4b). MEA layers II, III and VI and LEA layers II, III

and V were classified as connector hubs in the laminar

network, based on their high degree and Pi[ 0.3. PrS

layers III and V were categorized as provincial hubs, with a

high degree node and Pi B 0.3.

The laminar network displayed a rich club organization

(Suppl. Figure 5b; Fig. 4b). For the node degrees 7–30,

there was a normalized rich club coefficient[1 and the rich

club coefficient of the random network was significantly

below the rich club coefficient of the laminar network. A

total of thirteen rich club nodes were distinguished and the

majority of these nodes were situated in the parahippo-

campal region. The rich club is dominated by nine nodes

located in the layers of the LEA and MEA. The only HF

rich club node was the molecular layer of the Sub.

The intermediate node was determined for the laminar

network (Fig. 5). No direct projections from PrS and PaS to

PER and POR were found (Fig. 5a), but information

transfer between these areas could still occur via the LEA

layers (Fig. 5b, red bar). If information flow from PER/

POR to the other HF–PHR areas would use two steps, the

MEA and LEA would serve as intermediate nodes. More-

over, LEA might also play an important role in the infor-

mation flow from PER/POR via LEA back to PER/POR.

PER/POR were not directly projecting to the HF and PrS/

PaS region (Fig. 5a). For information to flow to these areas,

the route via the superficial layers of MEA and LEA is

most likely (Fig. 5b). Based on the frequency the superfi-

cial layers of the MEA and LEA were positioned as

intermediate nodes, suggested that these nodes play a

dominant role in the information transfer between several

HF–PHR areas.

Discussion

The rat HF–PHR structural connections were investigated

with graph analysis to reveal principles of the network

organization. In contrast to other brain networks, which all

showed a small-world organization with high clustering

and low path length (Sporns and Zwi 2004; Oh et al. 2014;

Schmitt et al. 2012; Shanahan et al. 2013; Watts and

Strogatz 1998), the HF–PHR network revealed a high

cluster coefficient and a relatively high path length, sug-

gesting a more regularly organized network. Nevertheless,

some small-world features, like modularity, rich club and

hub nodes, were present in the HF–PHR network. Regular

networks with high clustering and high path length have a

highly ordered structure. Anatomically, this means that

local connections prevail and that distant brain areas can

only be reached via a high number of intermediate areas. In

contrast, in a small-world network, with high clustering

and low path length, distant brain areas can be reached

within a small number of steps. A possible explanation for

such a network architecture with a high clustering and path

length might be found in the fact that the HF–PHR belongs

to a phylogenetic older part of the brain—the limbic sys-

tem—which could be differently organized compared with

newer parts, as the neocortex. However, the reticular for-

mation in the brain stem, the phylogenetically oldest part of

the mammalian brain, also showed a small-world network

structure (Humphries et al. 2006; Coolidge and Wynn

2009). A more plausible explanation points in the direc-

tions of the anatomical scale considered in the HF–PHR

network. Compared with other mammalian connectomes of

the cat and the macaque cortex (Felleman and Van Essen

1991; Scannell et al. 1995) the nodes in our HF–PHR

network represent smaller anatomical elements. Therefore,

the number of nodes in our network is much higher than the

five or six nodes used to represent the same anatomical

areas in the cat or macaque connectome. Furthermore, the

different subregions of the HF–PHR are probably all

involved with functionally similar memory processes. In

all, our finding of a high clustering and relatively high path

length appears to be consistent with the idea of Bullmore

and Sporns (2009, 2012) that specialized processes are

performed within a small number of anatomically adjacent
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brain regions with a high clustering, while distributed

processes tend to use a more widespread network of brain

areas.

Structural motifs may tell something about the particular

information-processing function that a part of the network

fulfils. In the rat HF–PHR network, we found four motif

types with increased occurrence over random networks in

the laminar and dorsoventral network. This is unique

compared with other brain networks, which showed pre-

dominantly an increase in one specific motif class in

mammalian network (Shanahan et al. 2013; Sporns and

Kotter 2004; Schmitt et al. 2012) and two motifs in the

Fig. 5 a Distance matrix of the

laminar network. The color

scale indicates the smallest

number of steps between pairs

of nodes. b The percentage

times each node of the laminar

network are located in the

intermediate position of two

not-directly connected nodes

(see inset). The origin and

termination of the not-directly

connected node pairs are

clustered into four groups—the

node of the subregions of the

hippocampal formation (HF),

the PrS and PaS (PrSPaS), the

medial and lateral entorhinal

cortex (EC) and the perirhinal

and postrhinal cortex

(PERPOR). For abbreviations,

see legend of Fig. 1
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nervous system of the invertebrate nematode C. elegans

(Sporns and Kotter 2004). A commonly reported motif

class is type 9, which is a chain of reciprocal connections,

but no connection between start and end of the chain.

When we compared this commonly occurring motif with

our increased motif types, we saw that all discovered HF–

PHR motifs had at least one reciprocal connection, which

may serve feedback loops, and most motifs were con-

verging onto one node, suggesting feed-forward loops.

Challenges and possible refinements

The network was mainly based on published tract-tracing

data and this leads to certain limitations in the analysis that

occur specifically due to limitations of this experimental

technique. Graph analysis of this network included two

notable challenges. The first challenge was how to estimate

the reliability of the existing and absent connections. For

instance, the absence of projections between two areas can

occur because—(1) the projection does not exist in the

brain, (2) the projection does exist, but is not yet docu-

mented or (3) the combination of the connectional infor-

mation into sub-networks led to a loss of data. This leads to

some surprising voids in the adjacency matrices. For

instance, no intrinsic connections within the Sub and PaS

were represented in the laminar network, although, based

on the literature, they exist (Cappaert et al. 2014; see also

Suppl. Figure 3d). Moreover, there are connections repor-

ted between POR and the hippocampal areas DG, CA3,

CA1 and Sub in the literature (Suppl. Figure 3d). These

connections were discernible in the dorsoventral network

(Fig. 1b), while the projections were absent in the laminar

network (Fig. 1c). Based on the tract-tracing literature,

connections exist between almost all brain areas (Suppl.

Figure 3d). Unfortunately, many reports of brain connec-

tivity describe the location regarding the origin and ter-

mination of the connections in too limited amount of detail.

This indicates that scientists underestimate the (importance

of the) extensiveness of the network, which limits the

interpretation of the network using graph analysis. A

measure of reliability that indicates if projections actually

exist could partly be based on the frequency with which a

connection was reported in the literature. However, since

this frequency also depends on the scientific attention that a

certain brain area or its connections have received, this

reliability value can only be used in combination with other

evidence and has limited value on its own.

Second, it was not feasible to analyze the undivided

database in all three dimensions within one complete

dataset. The nodes of four out of the eleven HF–PHR brain

regions were not connected to the network, because the

origin and termination of most connections are only

described in one or two dimensions in the literature. This

gave rise to loss of data and the total three-dimensional

dataset turned out to be too sparse. This was compromised

by creating three separate sub-networks, in which the

connections were presented for one dimension and while

the other two dimensions were collapsed. Combining

information into three complementary sub-networks gave

the opportunity to study the network in one plane inde-

pendently. Although in this case, the exact interplay of the

connections within the three-dimensional space simulta-

neously remained unexamined.

A possible refinement will be the classification of the

connections into excitatory, inhibitory, or modulatory. The

tract-tracing technique disregards the type of neurotrans-

mitter and its effect on the postsynaptic element. Com-

bining tract-tracing data with immunohistochemistry and/

or electrophysiology would make it possible to functionally

interpret the connections (van Haeften et al. 1997; Jinno

2009; Somogyi and Klausberger 2005). Unfortunately,

most anatomical papers do not provide such information.

Therefore, the current HF–PHR network did not differen-

tiate between excitatory or inhibitory projections. The

network just scored the presence of an anatomical con-

nection, indicating possible pathways for information

exchange. Another refinement concerns the connection

strength of the projections. Some anatomical literature does

report subjective descriptions of connectional density, but

such subjective reports are difficult to compare and quan-

tify without extensive re-analysis of the original data

(Kennedy et al. 2013). Besides, the strength of neuronal

projections can be altered according to experience and

learning as well (Fu and Zuo 2011). We decided to rep-

resent the connections of the HF–PHR network in binary

adjacency matrices, presuming that all connections have

the same influence. Finally, increasing the number of areas

involved in the network could change the measures, as

additional connections may change degree, path length and

other measures.

All in all, these challenges and potential refinements

indicate that translating anatomical connections into func-

tional properties is complicated; the anatomical network

only provides a framework for possible functional

dynamics to occur and one has to be careful with the

interpretation of the ‘no connection’ data, because ‘no

data’ do not necessarily mean ‘no connection’.

HF–PHR modules and the two-stream memory model

The modularity analysis partitioned the nodes of the lam-

inar and dorsoventral network into three modules with a

substantial number of nodes. The modular organization of

the HF–PHR network differed slightly from the clusters

Burns and Young (2000) discovered in their limbic net-

work, using non-parametric clustering analysis. They found
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that, amongst other limbic areas, the HF areas and the

entorhinal cortex were closely associated within one clus-

ter; the PrS, PaS and POR were clustered into a second

group. The PER was positioned in a third cluster, which

also included anatomical areas outside the HF or PHR. This

slightly different arrangement of the modules could be

produced by the difference of the initial data in the con-

nectome of Burns and Young which included connections

to all areas of the limbic system, but with much less detail.

The HF and the PHR are components of the medial

temporal lobe and play an important role in declarative

memory and all the brain areas have their own role in the

encoding, retrieval and consolidation of memory (Squire

et al. 2004; Eichenbaum et al. 2012). Commonly, two

information-processing streams through the PHR to the HF

are distinguished—the POR and MEA are clustered in the

spatial or ‘where’ stream, while the PER and LEA are

collaborating in the non-spatial or ‘what’ stream. These

two streams are supposed to have little or no functional

connections between them. Finally, the information from

the two PHR streams enters the HF, where it is further

processed (Burwell and Amaral 1998; Eichenbaum and

Lipton 2008; Eichenbaum et al. 2012; Deshmukh and

Knierim 2011; Hargreaves et al. 2005; Bannerman et al.

2002; Knierim et al. 2006; Eichenbaum and Fortin 2005;

Ranganath and Ritchey 2012). In the discussion below, we

will consider if the modularity analysis of the HF–PHR

network supported the current state of the art view of

memory processing, as nodes assigned to one module are

thought to contribute to a common function (Sporns and

Zwi 2004).

The HF module of the laminar network contained all HF

areas and their layers, except the molecular layer, sug-

gesting that most HF connections were intrinsic and the

molecular layers of the HF were grouped in the same

module as the EC, PrS and PaS. Both findings support the

view that the HF is functioning as a separated structure in

the HF–PHR network, receiving converging spatial and

non-spatial related information from the MEA/PrS/PaS and

LEA, respectively (Eichenbaum et al. 2012). The grouping

of the MEA, PrS and PaS into one module fits the two-

stream model as well, since these brain areas are all three

associated with spatial functioning (Boccara et al. 2010;

Solstad et al. 2008; Taube et al. 1990). The presence of

POR (‘where stream’) together with LEA and PER (‘what’

stream) in the same module and the clustering of LEA and

MEA in one module, suggest at least possible anatomical

connections between the ‘where’ and ‘what’ streams.

Although several physiological findings in the literature

support the two-stream model (Sargolini et al. 2006;

Solstad et al. 2008) other reports are inconsistent. More and

more reports claim that the LEA is also involved in spatial

information processing (Van Cauter et al. 2013; Deshmukh

and Knierim 2011; Tsao et al. 2013) and MEA contributes

to item recognition memory as well (Hunsaker et al. 2013).

This may request a refinement of the two-steam memory

model, including interconnectivity between PER and POR

and interaction between PER and MEA, and POR and

LEA. However, care has to be taken; since our laminar

network is probably incomplete due to lack of data and

functional connections may be different from anatomical

ones.

The modularity analysis of the dorsoventral network

resulted in a module representing all the ventral parts of the

HF and the PHR areas. The dorsal parts were split into two

modules—a module with dorsal HF areas and one with the

dorsolateral areas of the EC. The composition of these

dorsoventral modules might imply different functions for

the ventral and dorsal parts of the HF–PHR network. A

dorsal–ventral separation was already proposed in 1998 by

Moser and Moser as the dorsal HF is engaged in spatial

functioning, whereas the ventral HF is involved in item

recognition (Moser and Moser 1998). Furthermore, the

place-field size of the place cells is increasing from the

dorsal to the ventral pole of the HF (Jung et al. 1994;

Maurer et al. 2005; Kjelstrup et al. 2008) and this dorso-

ventral gradient is reported for the grid size of the MEA

grid cells as well (Brun et al. 2008). These findings lead to

the idea of a double dissociation between two parallel

information streams, a dorsal and a ventral one. The

composition of the modules of the dorsoventral network

supported in some way the idea of parallel systems, but

mainly for the ventral brain areas. This discrepancy could

be caused by the relatively low Q modularity value of the

dorsoventral network, indicating high connectivity between

modules which indicates an incomplete dissociation

between the parallel streams.

The role of the entorhinal cortex

Most of the nodes discerned with hub and rich club anal-

yses in the laminar network were situated in the EC, pre-

dicting an important role of this brain region within the

HF–PHR. The anatomical subdivisions of the EC were

remarkably clustered together with both HF areas and PER/

POR within the laminar and dorsoventral modules, taking a

central position within the network and indicating a bridge

function between the HF and the PER and POR. The

intermediate node analysis implied that the connector hubs

of the superficial layers of LEA facilitate the indirect

connection between PER/POR and the PHR network,

probably integrating information between modules. MEA

layer II, also identified as a connector hub, showed the

highest percentage of intermediate node positions, mainly

between the HF, PrS/PaS and LEA/MEA subcategories,

but not from and to the PER and POR.
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It has been suggested that brain disorders affect high-cost

hub nodes of the network (Bullmore and Sporns 2012;

Crossley et al. 2013; van den Heuvel and Sporns 2013).

This was corroborated by our study. The EC is a brain

structure involved in several pathological conditions. The

EC has been noted to show neuron and volume loss in

patients with Parkinson’s disease, schizophrenia, early

Alzheimer’s disease and aging (de Leon et al. 2001; de

Toledo-Morrell et al. 2000; Braak and Braak 1985, 1991).

Although the emphasis is generally put on the deterioration

of the HF, the EC is affected in MTL epilepsy as well.

Neuroimaging and neuroanatomical human studies have

suggested that the volume of the EC is significantly reduced

(Bartolomei et al. 2005; Bernasconi et al. 2001) and that

damage can mainly be attributed to cell loss in superficial

layers of the MEA (Du et al. 1993). These superficial EC

layers are essential in the network, since they were assigned

as connector hubs and important intermediate nodes. This

suggests that loss of these cell layers seriously deteriorates

the information exchange between other HF–PHR areas and

proving the theory that high-cost hub nodes are first

attacked during brain disorders.

Graph theoretical analysis of the HF–PHR network

showed that this network had a high clustering and rela-

tively high path length and several modules and hub nodes

were present. It is suggested to reconsider the strict seg-

regated of the ‘where’ and ‘what’ streams in the two-

stream memory model, as anatomical interconnections

between POR and PER, and MEA and LEA are present.

Moreover, our findings implied that the entorhinal cortex

occupies a central position in the HF–PHR network.
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