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Summary

Several parameters of brain integrity can be

derived from diffusion tensor imaging. These

include fractional anisotropy (FA) and mean diffu-

sivity (MD). Combination of these variables using

multivariate analysis might result in a predictive

model able to detect the structural changes of

human brain aging. 

Our aim was to discriminate between young and

older healthy brains by combining structural and

volumetric variables from brain MRI: FA, MD, and

white matter (WM), gray matter (GM) and cere-

brospinal fluid (CSF) volumes. 

This was a cross-sectional study in 21 young

(mean age, 25.71±3.04 years; range, 21-34 years)

and 10 elderly (mean age, 70.20±4.02 years; range,

66-80 years) healthy volunteers. Multivariate dis-

criminant analysis, with age as the dependent

variable and WM, GM and CSF volumes, global FA

and MD, and gender as the independent variables,

was used to assemble a predictive model.

The resulting model was able to differentiate

between young and older brains: Wilks’ l = 0.235,

c2 (6) = 37.603, p = .000001. Only global FA, WM

volume and CSF volume significantly discriminat-

ed between groups. The total accuracy was 93.5%;

the sensitivity, specificity and positive and nega-

tive predictive values were 91.30%, 100%, 100%

and 80%, respectively.

Global FA, WM volume and CSF volume are

parameters that, when combined, reliably discrim-

Global fractional anisotropy and mean diffusivity
together with segmented brain volumes assemble
a predictive discriminant model for young and
elderly healthy brains: a pilot study at 3T

inate between young and older brains. A decrease

in FA is the strongest predictor of membership of

the older brain group, followed by an increase in

WM and CSF volumes. Brain assessment using a

predictive model might allow the follow-up of

selected cases that deviate from normal aging.

KEY WORDS: aging, brain, diffusion tensor imaging, discriminant

analysis, volume, white matter.

Introduction

An approach that integrates structural and volumetric
biomarkers could be adopted in an attempt to explain
some of the discrepancies in the current literature on
the aging process of the human brain (Abe et al.,
2008); for example, it is known that white matter (WM)
changes exceed gray matter (GM) changes during
aging (Allen et al., 2005), meaning that human WM is
more vulnerable than GM, especially in late-myelinat-
ing regions such as the frontal and temporal lobes.
Gender has also been associated with the brain aging
process: cortical GM declined more steeply with age
in men than women, but cortical WM volumes
remained stable across the adult age span in both
genders (Sullivan et al., 2004). Knowledge of the
parameters of brain aging is essential in order to
understand what underlies the cognitive declines
associated with normal aging and how these deficits
differ from those related to pathological conditions
such as mild cognitive impairment (MCI) or
Alzheimer’s disease (AD).
Diffusion tensor imaging (DTI) allows the calculation
of several biomarkers of structural integrity of brain tis-
sue (Vernooij et al., 2008). These include fractional
anisotropy (FA) and mean diffusivity (MD) (Abe et al.,
2008; Hsu et al. 2008). Previous studies have proved
the usefulness of a global (whole-brain) approach
when using DTI-derived biomarkers in the detection of
GM and WM changes (Kochunov et al., 2011). A lower
FA value represents a decrease in diffusion direction-
ality due to a loss of microstructural integrity (Vernooij
et al., 2008); this is thought to correspond to ade-
crease in water movement along (the same) axonal
tracts. Age-related changes in FA and MD should be
presented using a global rather than a regional
approach, as a global approach allows a comprehen-
sive quantitation of a tract or group of tracts and not
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only a partial measurement of fibers (as is the case
when using a regional, or structure-based, approach).
Previous studies using a regional approach showed:
that FA in the temporal and occipital regions was not
correlated with age (Hsu et al., 2008); that FA was
negatively correlated in the frontal and temporal WM
regions (Abe et al., 2008); that FA measurements did
not reveal significant differences, with aging, between
the temporal and posterior WM regions (Salat et al.,
2005). They also showed the existence of significant
differences in FA between cross-sectional normal WM
tracts (Nusbaum et al., 2001; Roldan-Valadez et al.,
2012). Furthermo re, correlations between FA and MD
reportedly change depending on the brain region con-
sidered: lower FA and higher MD values have been
found in the WM of older versus younger subjects,
while basal ganglia FA and MD measurements were
higher in older than in younger subjects (Pfefferbaum et
al., 2010). These variations might be due to method-
ological differences in image analyses or acquisition,
selection and placement of regions of interest, and/or
study populations (Jenkinson et al., 2012).
The primary aim of this study was to evaluate global
measures of diffusion (i.e. global FA and MD), select-
ed volumes of WM, GM and cerebrospinal fluid (CSF),
and gender, assembling a model that allows us,
through a multivariate analysis, to discriminate
between normal younger and normal older brains.
This global approach offers an integrative model that
allows quantitative depiction of normal aging using a
series of biomarkers that have previously been used sep-
arately in the diagnosis of other neurological diseases,
but not as an integrative model of normal brain aging.

Materials and methods

Subjects

A cross-sectional study was performed in right-hand-
ed healthy volunteers, divided into young adults and
elderly persons. The young subjects were consecu-
tively recruited from a group of medical residents; the
elderly subjects were recruited from the Geriatric Unit
at Medica Sur Clinic & Foundation, in the period from
July 2011 to August 2012. The young adults under-
went detailed health examinations performed by a
general practitioner; the elderly subjects underwent
complete physical and geriatric examinations per-
formed by a board certified geriatrician. Participants
were excluded if they had a history of major neurolog-
ical, psychiatric or cardiovascular disease. The local
institutional review board approved the study (protocol
#2011.043), and all the participants gave their written
informed consent.
MRI scans showing structural abnormalities, such as
tumors or stroke, anatomical variations (e.g., mega
cisterna magna, cavum septum pellucidum), or techni-
cal artifacts, were excluded. WM hyperintensities, as
observed on T2-weighted or fluid-attenuated inversion
recovery (FLAIR) images, were rated by a radiologist

using the age-related WM changes (ARWMC) score
(Wahlund et al., 2001). We excluded elderly subjects
with regional ARWMC scores higher than 1. For all
participants a preliminary neuropsychological evalua-
tion included the Wechsler Adult Intelligence Scale-III
intelligence quotient (IQ) test validated for Mexican
patients (considering an average IQ of 100 and a
standard deviation of 15) (Wechsler, 1997), and  a val-
idated, modified version of the Mini-Mental State
Examination (MMSE) in Spanish, adjusted for age and
level of education (a score of 25 points or more was
taken as normal) (Reyes-de-Beaman et al., 2004).
Elderly participants with MCI or AD were excluded on
the basis of diagnostic criteria established in accor-
dance with the diagnostic guidelines of the National
Institute on Aging-Alzheimer’s Association work
groups (Albert et al., 2011; McKhann et al., 2011).

Brain image acquisition 

MRI evaluations of the brain were performed using a
3.0T Signa HDxt scanner (GE Healthcare, Waukesha,
WI) and a high-resolution eight-channel head coil
(Invivo, Gainesville, FL). Contraindications to MRI
were the presence of a pacemaker or metallic implant
and claustrophobia. All participants were included.
The examination included standard clinical se quences:
sagittal T1-weighted FLAIR (TE/TR = 9.9/2500 ms) with
a 5/3-mm slice thickness/gap and 24 x 24 cm field of
view (FOV); axial fast spoiled gradient-echo (FSPGR)
(TE/TR = 3.9/9.4 ms) with a 1.3/0-mm slice thickness/
gap and FOV of 24 x 18 cm; coronal T2-weighted fast
spin-echo (TE/TR = 164.1/2617 ms) with a 3/0-mm slice
thickness/gap and FOV of 22 x 16 cm; and axial FLAIR
(TE/TR = 115.8/11002 ms) with a 5/1-mm slice thick-
ness/gap and FOV of 22 x 22 cm. The DTI sequence
resulted in 50 axial slices covering the entire brain and
brainstem with 1.7 x 1.7 x 3.0 mm3 voxel size, acquired
with 25 non-collinear diffusion directions with a b-value
of 1,000 s/mm2, and one with a b-value of 0 s/mm2.

Volumetric data analysis

MRI data of the T1-weighted FSPGR sequence were
transferred to a Linux-based workstation. Individual
brain atlas-based volumetry was performed using the
IBASPM software version 1.0 (Alemán-Gomez et al.,
2006), a toolbox for structure segmentation of struc-
tural MRI images implemented in MATLAB 7.0
(MathWorks, Natick, MA). This software uses the spa-
tial normalization and segmentation routines of the
Statistical Parametric Mapping software version 2
(SPM2) (Roldan-Valadez et al., 2012). A description of
the method for volume measurement was recently
published elsewhere (Roldan-Valadez et al., 2013). 

DTI analysis and global MD and FA measurements

We used the dcm2nii software (Rorden et al., 2011)
(http://www.mccauslandcenter.sc.edu/mricro/mri
cron/dcm2nii.html) and tools from the FMRIB Software
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Library (FSL, www.fmrib.ox.ac.uk/fsl) version 4.1.9
(Smith et al., 2004), as follows. DTI images were
extracted using the Brain Extraction Tool (BET) version
2.1 (Smith, 2002). Eddy currents were corrected using
the Diffusion Toolbox version 2.0; the Reconstruct
Diffusion Tensor (DTIFIT) and the fslmaths tool generat-
ed the eigenvector and eigenvalue maps for each tensor
metric. The fslstats tool calculated the scalar measures
(mean values) of global FA and MD. Evidence of the
clinical application of global DTI-derived tensor metrics
for brain imaging has recently been published (Roldan-
Valadez et al., 2014).

Statistical analysis

Sample size

Considering that this was a pilot/feasibility study, in
accordance with the considerations and recommenda-
tions of others we chose to include at least 10 subjects
per group (Hertzog, 2008), and to have a minimum over-
all sample size of 30 (Lancaster et al., 2004). The statis-
tical analysis was focused on the calculation of 95%
confidence intervals (CIs) according to contemporary
definitions (Pfister and Janczyk, 2013); a boot strapping
method with bias corrected and accelerated confidence
estimates was performed with 1000 bootstrap resam-
ples (Henderson, 2005). Differences between groups
(normal young and normal older brains) for each vari-
able were tested using the Mann-Whitney U test; the
value of z was used to calculate an approximate value
of r as a measure of effect size (r = z/square root of N
where N = total number of cases); effect sizes of 0.1, 0.3
and 0.5 were termed small, medium and large, respec-
tively (Cohen, 1988).

Multivariate discriminant analysis

Multivariate discriminant analysis (DA) (Tabachnik and
Fidell, 2013) included continuous and categorical vari-
ables to identify specific volumetric and structural
attributes in young and older brains. The dependent
variable (DV) was age group, with subjects classified
as young adults or healthy elders. The independent
variables (IVs) comprised: three volumes (cm3): GM,
WM and CSF; two DTI-derived measurements: MD
(mm2s-1) and FA (dimensionless number), and one cat-
egorical variable (gender: male or female). The effect-
size measure for DA was calculated using the squared
canonical correlation as the equivalent of the R2 in
regression. By convention, effect sizes of 0.02, 0.15
and 0.35 were termed small, medium and large,
respectively (Cohen, 1988).

Diagnostic model evaluation 

The cross-validated contingency table generated by
the DA was used to evaluate the diagnostic perform-
ance of the DA model; we reported values of sensitiv-
ity and specificity, positive and negative likelihood
ratios, and positive and negative predictive values,

with their corresponding CIs. Statistical significance
was indicated by a p-value < 0.05.

Software

DA analyses were carried out using the IBM® SPSS®
Statistics software (version 22.0.0.0, IBM Corporation,
Armonk, NY, USA). Diagnostic performance was
assessed using MedCalc® (version 14.8.1 MedCalc
Software bvba, Mariakerke, Belgium). Reporting of
diagnostic performance tests followed the STARD ini-
tiative (Bossuyt et al., 2003). 

Results

Subjects

The study was conducted in 31 subjects: 23 females
and eight males, distributed in two age groups: 21
young adults (mean age, 25.71 ± 3.04 years; range,
21–34 years) and 10 healthy elders (mean age, 70.20
± 4.02 years; range, 66–80 years). Table I shows the
gender distribution in each age group.
FA values were higher in younger than in older brains,
with a significant difference and a large effect size: 
U = 17.0, z = -3.719, p < .001, r = .66. Significantly
lower volumes of CSF were found in young versus
older brains, this finding also showed a large effect
size: U = 136.0, z = -32.916, p = .004, r = .52. No sig-
nificant differences between the groups were found for
MD (p = .186), GM volume (p = .087) and WM volume
(p = .072). Table II presents the mean values, SD and
CI for each age group.

Discriminant analysis

The DA was performed by entering the measurements
of the six IVs for each of the 31 brains — five contin-
uous (WM, GM and CSF volumes; FA and MD) and
one categorical (gender) — for a total of 186 measure-
ments. DA revealed one discriminant function. The
assumption of homogeneity of variance-covariance
matrices was interpreted as non-significant (Box’s M
value = 62.335, p = 0.002), assuming the covariance
matrices between the groups were equal (Huberty and
Petroskey, 2000). This discriminant function signifi-
cantly differentiated the young and older brains: Wilks’

Quantifiable biomarkers of normal brain aging
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Table I - Gender distribution between the young and older
brains.

Group Gender n %

Young brain Male 5 16.13

Female 16 51.61

Older brain Male 3 9.68

Female 7 22.58

Total 31 100.00
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l = 0.235, c2 (6) = 37.603, p = .000001. By indicating
the significance of the discriminant function, Wilks’ l
explained a low proportion (only 23.55%) of the total
variability not explained by the model. A canonical cor-
relation of .8743 suggested that the model explains
76.45% of the variance in the final model.

Summary of discriminant functions

The tests of equality of group means provided statisti-
cal evidence of significant differences between means
of the groups (young adult and elderly) for only three
of the IVs (FA, WM and CSF volumes) with FA produc-
ing the highest F-test variance ratio value (Table III).
Standardized canonical discriminant function coeffi-
cients provided an index of the importance of each pre-
dictor of diagnosis with the sign indicating the direction
of the relationship. A significant decreased value for FA
was the strongest diagnostic predictor of older brains,
while a significant increase in CSF volume was next in
importance. The variables with large coefficients stand
out (for these data) as those that strongly predict alloca-
tion to the young or elderly group. On the basis of these
coefficient scores the rest of the variables were decreas-
ingly strong as diagnostic predictors (Table IV A).
The structure matrix table provides another way of
indicating the relative importance of the diagnostic
predictors by showing the correlations (Pearson’s
coefficients) of each variable with each discriminate
function. Many researchers consider structure matrix
correlations more accurate than standardized canoni-

cal discriminant function coefficients (Field, 2009). By
identifying the largest loadings for each discriminate
function it is possible to see a different pattern of vari-
ables. Here we have FA (a unitless structural meas-
urement) and CSF (measured in cm3), which account
for the largest loadings for the functions that discrimi-
nate between the young and elderly groups. A value of
0.30 is taken as the cut-off between important and
less important variables (Field, 2009) (Table IV B).
The canonical discriminant function coefficients table
shows the unstandardized coefficients (b) that are
used to create the discriminant function (equation),
operating just like a regression equation. In this study
we observed:

D = 17.601(Constant) – (8,842.143 x MD) – (70.806
x FA) + (0.000281 x GM) + (0.012860 WM) +
(0.015526 x CSF) + (1.262 x Gender)

The categorical variable gender was classified as:
male = 1 and female = 2. The discriminant function
coefficients (b) indicate the partial contribution of each
variable to the discriminate function controlling for all
other variables in the equation (Table IV C).
Group centroids table: we also described each group in
terms of its profile, using the group means of the predic-
tor variables called centroids. The mean of the two cen-
troids is considered the cut-off value; if the discriminant
score of the function is less than or equal to the cut-off,
the case is classed as 1 (young brain), whereas if it is
above, it is classed as 2 (older brain). In our study,
young brains had a mean of −1.203 while elder brains
produced a mean of 2.526 (Table V).
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Table II - Mean values, standard deviations and confidence intervals of the structural and volumetric biomarkers in each
age group.

Young brains (20-35 years) Older brains (60-85 years)

Variable 95% CI 95% CI

Mean SD Mean SD

Lower Upper Lower Upper

GM volume (cm3) 638.166 69.102 606.377 666.678 591.725 62.345 549.884 628.896

WM volume (cm3) 382.034 33.501 367.440 395.757 414.978 49.903 386.179 447.963

CSF volume (cm3) 359.397 68.103 331.930 389.319 477.271 105.053 414.772 543.323

MD (mm2/s) 0.001224 0.000082 0.001191 0.001262 0.001272 0.00014 0.001183 0.001360

FA (dimensionless) 0.294860 0.012442 0.289698 0.299928 0.266776 0.015586 0.257207 0.276734

Abbreviations: GM=gray matter; WM=white matter; CSF=cerebrospinal fluid; MD=mean diffusivity; FA=fractional anisotropy; SD=standard deviation;

95% CI=bootstrap 95% confidence intervals.

Table III - Multivariate analysis showing the statistical effect ofeach independent variable included in the analysis.

Variable Wilks’ Lambda F ratio p-value

Fractional anisotropy .497 29.330 < .001

Cerebrospinal fluid volume .671 14.210 .001

White matter volume .859 4.753 .038

Gray matter volume .899 3.247 .082

Mean diffusivity .953 1.437 .240

Gender .996 .127 .724
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We finished the DA by performing a classification phase,
using the cross-validated set of data to present the pow-
er of the discriminant function. The classification results
revealed that 93.5% of the patients were classified cor-
rectly in the “young adult brain” or “older brain” groups, this
value corresponded to the overall predictive accuracy of
the discriminant function; additional results of diagnostic

tests are presented in table VI. The average D scores for
each group and the group centroids help us to see the ef-
fectiveness of the discriminant function. Histograms and
box plots of the average D scores for each group were
used as visual demonstrations of the power of the discrim-
inant function, the absence of overlap of the plots re-
vealed an excellent discriminant function (Fig.1).

Quantifiable biomarkers of normal brain aging
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Table IV - Independent variables included in the discriminant analysis. 

A B C
Standardized canonical Structure matrix Canonical discriminant function

discriminant function coefficients coefficients

Variable Function Function Function
1 Variable 1 Variable 1
MD -918 FA -558 MD -8842.143
FA -956 CSF volume .388 FA -70.806
GM volume .019 WM volume .225 GM volume .000281
WM volume .506 GM volume -186 WM volume .012860
CSF volume 1.264 MD .124 CSF volume .015526
Gender .570 Gender -037 Gender 1.262

Table V – Means of the predictor variables (centroids)
used to describe each group in terms of its profile. 

Age group Functions at group 
centroids

Young adults (20-35 years) -1.203
Elders (> 60 years) 2.526

Cut-off value .060

The cut-off value is considered the mean of the two centroids; if the dis-

criminant score of the function is less than or equal to the cut-off a new

case can be classed as 1 (young adult), whereas if it is above, it is

classed as 2 (elderly). 

Table VI – Results of diagnostic tests of the discriminant
model.

Test Value (%) 95% CI

Sensitivity 91.30 71.96–98.93

Specificity 100.00 63.06–100.00

+ likelihood ratio - -

− likelihood ratio 0.09 0.02-0.33

+ predictive value 100.00 83.89–100.00

− predictive value 80.00 44.39-97.48

Fig. 1 - Visual demonstration of the effectiveness of the discri-
minant function.  
a) histograms showing the distribution of discriminant scores for
young and older brains. b) box plots of the average D scores. Both
illustrate the distribution of the discriminant function scores for each
group. The absence of overlap between groups constitutes a visual
demonstration of excellent discrimination. 

Abbreviations: MD=mean diffusivity; FA=fractional anisotropy; GM=gray

matter; WM=white matter; CSF=cerebrospinal fluid 

A) ordered by their standardized canonical discriminant function coeffi-

cients (variables with larger coefficients stand out as those that strongly

predict allocation to each diagnosis). B) Within-groups correlation matrix

depicts the participant variables ordered by absolute size of correlation

(Pearson coefficients) within function. A value of 0.30 is considered the

cut-off between important and less important variables. C) Unstandar -

dized coefficients used to create a discriminant function operating just like

a regression equation. Coefficients indicate the partial contribution of

each variable to the discriminate function controlling for all other variables

in the equation.
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Discussion

There is cumulative evidence showing that brain aging
is a complex and heterogeneous process character-
ized by a pattern of age-related preservation and
selective loss and associated with a high degree of
inter-individual variability (Gunning-Dixon et al.,
2009). In this study we investigated whether global
(whole-brain) measures of MD and FA, together with
segmented WM, GM and CSF volumes and gender,
are able to document microstructural brain changes
during normal aging.
Our assembled model showed 93.5% accuracy for
discrimination between young and elderly brains, with
FA topping the ranking of significant discriminant vari-
ables, followed by CSF volume and WM volume; such
a ranking of MRI global parameters as part of a pre-
dictive model has not previously been reported in clin-
ical settings to the best of our knowledge.
Surprisingly, MD, GM volume and gender were not
significant parameters for classifying between groups
even though they have been reported in the literature
as biomarkers of the brain aging process.
In our view the clinical importance of this study lies in
the assembling of a multivariate predictive model,
which combines global (whole-brain) measures of MD
and FA (which are easier to calculate and understand)
with segmented WM, GM and CSF volumes and gen-
der, and allows the building of a profile of the healthy
elderly brain in normal aging. The adoption of a pre-
dictive model might supplement the assessment of
brain structure and function in different circumstances:
when brain measures in a new patient deviate from
the expected parameters of normal aging, as well as
in the follow-up of selected cases. Although radiolo-
gists and researchers have previously used and
reported these parameters separately, the literature
lacks a model that integrates them and is able to doc-
ument microstructural brain changes during normal
aging on a day-to-day basis.
Our evidence pointing to decreased FA as the best
biomarker for classification of young vs older brains is
in agreement with the findings of a previous study in
normal aging (Michielse et al., 2010). FA values for
WM continue to increase until the third to fourth
decade of life, but they start to decline during aging
(after 40 years of age) (Kochunov et al., 2011). These
findings further support the idea that decreased FA
might be interpreted as an expression of degeneration
of the axonal myelin sheath (demyelination) and/or
replacement of axonal fibers with other cells (gliosis)
(Smith et al., 2006), and that it may precede atrophy
in many regions of the brain (Hugenschmidt et al.,
2008).  
On the other hand, MD reflects the physicochemical
properties of the nervous system (e.g., viscosity and
temperature) as well as its structural components
(macromolecules, membranes, and intracellular
organelles) (Di Paola et al., 2010). In our study, MD
depicted the smallest correlation and its values were
not significant for discriminating between groups. 

A possible explanation for this apparent difference
with previous findings is that in our study we used a
global measure of MD instead of a local or regional
measure, and it seems that MD changes remarkably
depending on the brain region considered. This may
suggest that MD is a weak global biomarker of normal
aging. Further research on aging and its related bio-
markers should focus on FA rather MD, however we
acknowledge that MD might still have important appli-
cations outside of the aging process.
Gender had a non-significant influence as a biomark-
er in our study, a finding that agrees with the equiva-
lent disruption of regional WM microstructure between
men and women found by Sullivan et al. (2001). It is
possible, therefore, that the pattern of transition from
the young to the older brain in men and women is
equivalent.
An additional interesting finding in this study was that
increased WM volume significantly predicted member-
ship of the older brain group; this finding is in line with
the continued production of ‘redundant myelin’ that
has been observed in human adults (Allen et al.,
2005; Salat et al., 2009) and suggested to be a com-
pensatory mechanism for myelin degeneration. 
The observed decrease in GM volume in elderly
brains was non-significant, in contrast to earlier find-
ings of a gradual linear decrease of GM, 5% per
decade of age, from early adulthood (Smith et al.,
2007). These findings suggest that GM loss progress-
es gradually, whereas WM loss starts later and pro-
gresses more precipitously (Raz et al., 2005); these
findings might indirectly explain the significant
increase in CSF volume in the older brains in our
study and its key role in the model. This interplay
between segmented WM, GM and CSF volumes
remains unclear and could be investigated in further
studies including ratios of WM, GM and CSF instead
of absolute values. Our model follows the recommen-
dation of Abe et al. (2008) to assess FA and brain vol-
umes together, as complementary indices of brain
aging. Despite the non-significant participation of MD
and GM volume in our model, we recommend keeping
track of their changes during follow-up studies, and
also of changes in the other structural and volumetric
biomarkers (FA, CSF and WM volumes), until more
evidence helps validate their role in integrative
models. 
Several limitations in our study need to be addressed:
our DA model, represented by an equation, behaves
like a regression model and is strictly valid only within
the range of the observed data on the explanatory
variables. Our sample size, although small, was statis-
tically valid for evaluating the diagnostic performance
of the predictive model (Cortez-Conradis et al., 2013);
this study is a starting point for a research line focu-
sed on MRI biomarkers of aging in the normal brain
and in degenerative brain diseases. Further studies
could increase the homogeneity of the sample in
terms of gender, as well as the number of subjects,
thus increasing the  statistical power for generalizing
the findings.
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Segmentation algorithms and intensity thresholds of
GM, WM and CSF may differ across laboratories, pro-
ducing variable results. We acknowledge that alterna-
tive software like Freesurfer (Han et al., 2006) allows
the calculation of surface-based cortical thickness
measures. We did not use that software because our
aim was to limit the computational costs of our study;
also, we aimed to choose variables (brain volumes)
which we could compare with previous studies. We
believe it is necessary to reach a consensus of stan-
dardized software algorithms and measurements able
to guarantee that all measurements are conducted
within the same algorithms in all patients; in this way,
variations in the results would be a reflection only of
the distribution of the selected biomarkers. For exam-
ple, a recent study has proposed the use of machine
learning, albeit in a younger age group (8-22 years)
(Erus et al., 2015). Despite the initially steep learning
curve of the open-source software packages used in
this study, they are suitable for use on a day-to-day
basis in MRI units, for example those supporting geri-
atric or family medicine studies, and not only in clini-
cal research. We acknowledge that further studies
examining the changes, with age, in the biophysical
properties of the DTI signal are necessary, as well as
the inclusion of additional brain volume correlates;
both groups of variables could supplement the study
of neurodevelopment, healthy aging and brain disor-
ders (Roldan-Valadez et al. 2014, 2015). 
The increased availability of open source software in
MRI units around the world would allow these meas-
urements to become low-cost and commonly used
biomarkers. By calculating multivariate discriminant
models, further studies will help to rank the influence
of these parameters in physiological brain aging.
Eventually, similar reports would lead to the general-
ization and acceptance of multivariate-integrative
models by clinicians (geriatricians, neurologists, psy-
chiatrist, neuroscientists, etc.).
In summary our study shows that FA, CSF volume and
WM volume are reliable imaging parameters that can
depict microstructural changes during normal brain
aging by using a global and integrative approach. 
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