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Modulatory Effects of Gut Microbiota on the 
Central Nervous System: How Gut Could Play a 
Role in Neuropsychiatric Health and Diseases 
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Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy 
and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state 
and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between 
gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially 
lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds 
and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. 
Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological 
functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within 
the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating 
neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms. 
(J Neurogastroenterol Motil 2016;22:201-212)
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Introduction 	

Over the past decade, experimental data has suggested a com-
plex and bidirectional interaction between the gastrointestinal (GI) 
tract and the central nervous system (CNS), the so-called “Gut-
Brain axis.”1 Derangements of this axis (typically in the brain-to-gut 
direction) have been implicated in the pathogenesis of symptoms 

of many functional bowel disorders such as the irritable bowel 
syndrome (IBS).2,3 In recent years, however, emerging knowledge 
about gut microbiota has compelled us to re-examine the direction-
ality of this process.4-11 The presence of a healthy and diverse gut 
microbiota appears to be imperative not only for normal gastrointes-
tinal function, but may also influence a variety of systemic and men-
tal processes. Our understanding of the interaction between gut mi-
crobiota and the CNS is incomplete and only at its starting point. In 
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this article, we will review the current evidence in the literature that 
points towards a role for gut microbiota in various developmental 
and psychiatric disorders such as anxiety, depression, schizophrenia 
and autism. We will also review the possible mechanisms through 
which gut microbiota might be involved in the pathogenesis of these 
disorders. 

The gut microbiota at infancy is usually diverse and highly vari-
able, trending towards its final composition between 6-12 months 
of age,12 reflecting a combination of genetic factors, maternal health, 
method of delivery, subsequent nutrition, and maternal and postna-
tal exposure to antibiotics.13-16 Germ-free mice show developmental 
abnormality in the GI tract that can be reversed by reconstructing 
the gut microbiota, suggesting a role for gut microbiota in postnatal 
development of the enteric nervous system (ENS).17,18 This period 
is also critical for the development of the CNS leading to the sug-
gestion, based on experimental models, that gut microbiota may 
be an important factor participating in the development of cogni-
tive, emotional, and behavioral processes shortly after birth.19,20 For 
example, germ free mice show significant alteration in the concen-
tration of the key neurotransmitters such as serotonin in the hypo-
thalamus.21 Alterations in serotonin concentration can in turn affect 
several aspects of the development of central nervous system, in-
cluding synapse formation and connectivity between various regions 
in the central nervous system and their plasticity.22 The picture be-
comes more complicated because serotonin is also a key factor in the 
development of the ENS, and alteration of its concentration in the 
blood may modulate ENS structure and function23; in turn this can 
affect the composition of gut microbiota, thus potentially providing 
a closed loop system for mutual regulation of the 2 nervous systems. 

Microbiota and Modulation of the Central 
Nervous System—General Mechanisms 	

A central issue in any discussion on this topic relates to the 
question of how microbes that live in the colon can influence a re-
mote organ such as the brain. We are just beginning to scratch the 
surface of this problem, but theoretically there are multiple, possible 
overlapping mechanisms, that amplify each other in short as well as 
long loops (Figure). With the exception of the microbe-epithelial in-
terface, all these mechanisms imply some degree of access of either 
the microorganism itself or its products to the deeper layers of the 
gut, in turn activating a myriad of factors. Thus, as is being increas-
ingly recognized, gut permeability is perhaps the most important 
factor in initiating microbial interactions with the rest of the body. 
These factors will now be briefly described. 

Effect of Gut Microbiota on Intestinal Permeability
The normal intestinal barrier consists of multiple layers that 

includes gut flora and external mucus layer, epithelial layer, and 
lamina propria, to name them from outside to inside.24 Mucus is 
secreted by goblet cells and acts as a mechanical protective layer that 
also contains digestive and antibacterial enzymes and antibodies, 
and will hydrate the epithelial layer and helps it regenerate.25 The 
epithelial layer, in addition to playing an important part in absorp-
tion of the nutrients, also serves as a physical barrier due to the tight 
junctions between the epithelial cells. Furthermore, enteroendocrine 
cells are distributed through the epithelial layer.26 This layer along 
with lamina propria is also the host of the largest repository of im-

Figure. Bidirectional interactions between gut microbiota, gut permeability and central nervous system (CNS). Increased gut permeability can lead 
to translocation of gut microbiota or metabolic products such as lipopolysaccharides through the intestinal barrier. Exposure of epithelial cells or 
mucosal immune cells to bacterial or metabolic products can lead to activation of an immune response and release of pro-inflammatory cytokines. 
Additionally, metabolic products can directly affect the function of enteric neurons, spinal sensory neurons and vagus nerve through activation to 
Toll-like receptors or translocation and release of neuroactive peptides and hormones. On the other hand, stress can lead to activation of the hypo-
thalamus-pituitary axis and excessive release of the corticotropin-releasing factor. This hormone along with altered vagal activity can modulate the 
local activation of mast cells in the intestinal wall and release of cytokines, causing increased gut permeability. ENS, enteric nervous system.
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mune cells in the body which is known as mucosa-associated im-
mune cells. The population of immune cells in the epithelial layer is 
mostly CD8+ lymphocytes, while the immune cells in the lamina 
propria are more diverse and consisted of macrophages, plasma 
cells, antigen presenting cells, and mast cells in addition to lympho-
cytes.27 

Normal gut microbiota is essential in preventing colonization 
of the harmful bacteria by competing with them for vital resources 
such as food and growth factors. If the population of normal gut 
microbiota is reduced, for example due to antibiotic therapy, patho-
genic organisms find the opportunity to colonize the gut epithelium. 
Toxins produced by pathogenic microorganisms and the focal in-
flammation created by immune responses to them can increase gut 
permeability.28 For example, Clostridium difficile that can colonize 
the gut in the absence of normal gut flora produces an enterotoxin 
that increase the gut permeability by impairing epithelial tight junc-
tions through damaging aggregation of actin filaments.29 Another 
way that gut microbiota can enhance the function of the intestinal 
barrier is through protecting and improving epithelial tight junc-
tions. Most of the evidence that supports this role of microbiota in 
the normal function of the intestinal barrier comes from studies that 
have shown that probiotic treatment can reduced gut permeability 
in models of GI tract disorders. For example, in experimental mod-
els of colitis, several species of probiotics including Lactobacillus, 
Escherichia coli, and Bifidobacterium can reduce gut permeability 
by upregulating trans-membrane proteins that are important in 
preserving tight junctions between epithelial cells.30-33 It has also 
been shown that treatment with these probiotics can enhance mucus 
production and consequently improve the physical barrier protect-
ing the epithelial layer.34,35 Products of bacterial fermentation can 
also play an important role in maintaining the intestinal barrier. It 
has been shown that short-chain fatty acids can act as trophic factors 
for mucosal and epithelial layers. Also, normal bacteria can produce 
trophic peptides such as glucagon-like peptide-2 (GLP-2) that can 
enhance the proliferation of crypt cells and villi.36,37

Impaired intestinal barrier function and consequent increased 
gut permeability can lead to increased translocation of gut bacteria 
across the intestinal wall and into the mesenteric lymphoid tissue.34 
Increased exposure of the ENS or mucosal immune cells to bacteria 
can provoke an immune response that can lead to release of inflam-
matory cytokines and activation of the vagus nerve and spinal affer-
ent neurons. Inflammatory cytokines and the vagal system in turn 
can modulate the activity of the CNS and ENS.38,39 Furthermore, 
increased permeability of the gut can also increase the translocation 
of metabolic products such as lipopolysaccharide (LPS) or neuro-

active peptides created by the bacteria that can alter the activity of 
the ENS and CNS.40 For example, LPS can activate Toll-Like 
receptors that are present on epithelial cells, enteric neurons, sensory 
afferent neurons in the spine, and various cells in the brain, modu-
lating their activity and affecting the function of both ENS and 
CNS.41-44 

As mentioned above, the interaction between the gut and brain 
is bidirectional- the CNS can affect gut permeability and increased 
gut permeability in turn can alter CNS function. In both animal 
models of stress and human subjects who were exposed to stress, 
the intestinal barrier is impaired. It has been shown that both acute 
and chronic stress can reduce water secretion and increase ion secre-
tion in the intestine, and therefore impair the physical protection of 
the epithelial layer and lamina propria against adhesion of harmful 
bacteria and nociceptive chemicals.45-47 Activation of the hypotha-
lamic-pituitary-adrenal (HPA) axis and increased production of 
corticotropin-releasing factor (CRF), altered activation of the vagal 
system, mast cell activation, and release of certain cytokines such as 
IFN-γ, TNF-α, and IL-4 are suggested culprits in this interac-
tion.48-54 Additionally, stress can change the function of mucosal-
associated immune cells and cause increased antigenic and bacterial 
uptake.55,56 Multiple studies have been published that have shown 
that the composition of gut microbiota is changed in the face of 
acute or chronic stress, and this in turn can subsequently change the 
function of intestinal barrier as explained above.57-60 There is limited 
data regarding the changes in intestinal barrier or GI physiology 
and the underlying mechanisms of it in neuropsychiatric disorders. 
It has been reported that the frequency of GI symptoms is increased 
in children with autism but the mechanism is not known.61 In pa-
tients with schizophrenia, there are increased intestinal permeability 
and change in intestinal function.62 Emotional stress and depression 
have been shown to increase prevalence of disorders of the digestive 
system.63 

Effect of Bacterial Metabolites on the Central  
Nervous System

Theoretically, bacterial products like other luminal contents, 
can be absorbed into the blood stream and affect remote sites in the 
brain. Alternatively, or in addition, bacteria can interact with local 
elements in the gut such as nerves or endocrine cells that then in 
turn signal to the brain. Experimental data suggest that a variety 
of biologically active products derived from gut microbiota can 
directly or indirectly influence the brain. These include well known, 
although non-specific, factors such as LPS, which can influence the 
CNS directly by activating Toll-like receptor 4 on microglial cells 
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causing release of inflammatory cytokines by them within the CNS, 
or indirectly by inducing release of inflammatory cytokines from the 
GI tract.64,65 LPS can cause behavioral changes during an acute ill-
ness or cause a delayed change in mood after sickness.66,67 IgA and 
IgM against LPS of gut bacteria are found in the blood of patients 
with depression or chronic fatigue syndrome, suggesting a potential 
role for LPS in the pathogenesis of these diseases.66 Other bacterial 
products reflect the role of colonic microbiota in the fermentation of 
undigested carbohydrates to short chain fatty acids (SCFA).68 SC-
FAs can act as signaling molecules by binding to G protein-coupled 
receptors, Gpr41, and Gpr43.69-71 It has been shown that Gpr41 
and Gpr43 receptors are abundantly present on the surface of gut 
epithelial and immune cells and are activated by SCFAs. This ac-
tivation can provoke an inflammatory and immune response that 
can be helpful in the setting of an acute infection, but dysregulation 
can produce an exaggerated response leading to increased gut per-
meability and increased absorption of neuro-active metabolites.72,73 
SCFAs can also directly activate the sympathetic nervous system 
through Gpr41 receptors that are found on sympathetic ganglionic 
neurons.74 Furthermore, it has been shown that SCFAc can pass 
through the blood-brain barrier and influence behavior, neural sig-
naling, the production of neurotransmitters and, ultimately, behav-
ior.75-77 

Change in Central Nervous System Neurotransmitters
Studies have reported on CNS neurotransmitter changes in 

response to more specific biological factors that may be restricted 
to certain types of bacteria, thus providing a mechanistic link to 
changes in microbial metabolism. Germ free mice have elevated 
levels of dopamine and tryptophan in striatum, but not serotonin or 
gama-amino butyric acid (GABA).78 Another study has reported 
increased levels of serotonin in the hippocampus of germ free 
mice.79 It has been recently shown that indigenous bacteria from gut 
of mice and humans can induce serotonin production in entrochro-
maffin cells and increase the level of serotonin in blood.80 Histamin-
ergic pathways are found in areas of the limbic system and also areas 
in the brain heavily involved in cognitive functions.81 Lactobacillus 
reuteri, a commensal in the human gut, expresses histidine decar-
boxylase that converts histidine to histamine. Therefore, a change 
in the population of this gut microbe can potentially modulate the 
levels of circulating histidine and histamine,82 which in turn can 
affect the concentration of CNS histamine.83 In another example, 
rats that are given Bifidobacterium infantis for 14 days showed 
increased concentrations of the serotonin precursor tryptophan in 
plasma, an effect that may be mediated by the altered expression of 

indoleamine-2,3-dioxygenase, a key enzyme in the kynurenine path-
way of tryptophan degradation.84,85 In addition to pathogen-specific 
alterations in neurotransmitters within the CNS, specific structural 
microbial molecules that are often referred to as microbe-associated 
molecular patterns (MAMPs) are found in the brain. The profile 
of MAMPs has been shown to be significantly influenced by the 
composition of gut microbiota.21,86,87

Vagus Nerve as a Mediator of the Effect of Gut  
Microbiota on the Central Nervous System

One potential unifying mechanism through which these various 
processes can influence the activity of CNS is via vagal nerve activity. 
In animal models, administration of Campylobacter jejuni into the 
gut can induce anxiety like behavior. These animals show increased 
fos activity in vagal sensory nucleus and other areas in brain stem 
related to this nucleus.88 Furthermore, intraduodenal administration 
of a non-pathogenic bacterium, Bifidobacterium longum, is anxio-
lytic but also requires an intact vagus.89 Another anxiolytic probiotic, 
Lactobacillus rhamnosus, results in region specific change in the 
expression of GABA receptor subunits. GABA type B subunit 1 
isoform b (GABAB1b) mRNA was decreased in the amygdala and 
hippocampus, while increased in cortical areas. On the other hand, 
GABAAα 2 receptor mRNA showed the opposite changes.90 These 
effects were abolished by subdiaphragmatic vagotomy.90 The vagus 
nerve might also be involved in behavioral effects of microbial LPS. 
It is known that LPS can induce depressive-like and anxious behav-
ior in animal models.91 Studies have shown that rat or mice that un-
dergo vagotomy before exposure to LPS, do not show the expected 
cytokine profile changes in the CNS92 or the same depressive or anx-
ious behavior.93,94 However, the role of the vagus may be restricted 
to specific models or pathogenic processes. Thus, mice infected with 
the noninvasive parasite Trichuris muris exhibit anxiety-like behav-
ior, associated with colitis and decreased hippocampal brain derived 
neurotrophic factor (BDNF) expression, along with increases in 
circulating TNF-α and IFN-γ, as well as the kynurenine and kyn-
urenine/tryptophan ratio. Although anxiety behavior was normalized 
by both anti-inflammatory agents and the probiotic B. longum, it 
persisted in infected animals after a vagotomy.95

Gut Microbiota and Specific Neuropsycho-
logical Processes and Phenotypes 	

Stress Response and Anxiety
It has been shown that stress can alter gut permeability as well 
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as the composition of gut microbiota.46,57 In a mice model of stress 
due to social disruption, Bacteroids are reduced while Clostridia 
are increased, resulting in a pro-inflammatory change in the pro-
file of cytokines produced by gut microbiota.58 More recently, the 
interaction between stress and gut microbiome has been shown 
to be bidirectional, and that gut microbes can modulate the stress 
response and the activity of the corticosterone pathway orchestrated 
by the HPA, a key stress regulatory system in the CNS. Germ-free 
mice show an exaggerated HPA response to stress and the amount 
of CRF released in response to stress.96 Introduction of B. infantis 
corrects the abnormal response of the HPA to stress in this model, 
but only if administered within the first 6 weeks of age in this mod-
el.96 This finding is in line with the idea that the effect of microbes 
on the host is confined to a window of opportunity during neonatal 
life, and the presence or absence of any specific microbe during 
that window might have a durable and long-life effect.97 Germ-free 
mice also show reduced anxiety in behavioral tasks78 which can be 
reversed by re-introduction of gut microbiota.98 An anxiety prone 
behavioral phenotype is also seen in germ-free rats, along with 
elevated CRF expression in the hypothalamus and reduced glu-
cocorticoid receptor (GR) expression in the hippocampus, (GR in 
this region regulates the CRF response in a negative feedback loop) 
and along with a lower dopaminergic turnover rate in specific CNS 
regions.99

Exposing rats in the early postnatal period to stress by maternal 
separation also leads to a change in composition of gut microbiota, 
which is linked to a long-term increase in anxiety-like behavior.100-102 
Introducing probiotics containing Lactobacillus in early stages of 
separation can ameliorate the effects of separation on HPA and re-
duce the corticosterone release.60 Other events that lead to a change 
in the composition of gut microbiota such as infection or use of pro-
biotics can also change the level of anxiety.89,103-105 

Further, it is shown that the behavioral phenotype of anxiety-
prone strains of mice is also dependent on their existing microbiota. 
For example, BALB/c mice exhibit a highly anxious phenotype that 
does not show much exploratory locomotion in a new environment, 
while NIH Swiss mice show less anxiety and more exploratory mo-
tions in the same environment. Transferring gut microbiota from 
one of the species to another can change their behavior to the one 
typical of the donor.106 In another study, described above, infecting 
mice with Trichuris led to anxiety related behavior in mice, an effect 
that was reversed by administration of B. longum but not lacto-
bacillus showing a species specific effect for gut microbiota.95 The 
underlying mechanisms, however, remain unclear as this was not 
vagally mediated. Further, anti-inflammatory agents normalized be-

havior and reduced cytokine and kynurenine levels without an effect 
on BDNF expression, whereas B. longum normalized behavior and 
BDNF mRNA but did not affect cytokine or kynurenine levels. 

It has also been suggested that the modulatory effects of gut 
microbiota on the level of anxiety are exerted through alterations in 
serotonin signaling.84 This idea is in part based on the finding that 
reduced anxiety-like behavior in germ free mice is associated with 
increased expression of serotonin receptor 1A in the hippocampus.78 
However, experimental data from mice showed that while rein-
troduction of gut microbiota to germ free mice can normalize the 
anxious behavior, it fails to reverse the changes in serotonin levels 
in the hypothalamic-pituitary pathway.79 Another mechanism that 
has been described is increased release of the adreno-corticotropin 
hormone from the HPA axis in response to stress.96 A link between 
hypersensitivity of the HPA axis and reduced BDNF expression 
in the prefrontal cortex and hippocampus, and subsequently re-
duced N-methyl-d-aspartate receptor expression in germ-free mice 
is observed and was thought to play a role in regulation of HPA 
activity.78 Alteration of BDNF expression in the hippocampus was 
seen in mice that were treated with non-absorbable antibiotics such 
as neomycin, but not in mice treated with systemic intraperitoneal 
injection of antibiotics, suggesting that this effect is a result of elimi-
nation of gut microbiota, not the antibiotic treatment itself.106 

Gut Microbiota and Depression
In animal models of depression, it has been reported that the 

composition of gut microbiota has been changed.107,108 These data 
however, have not been validated in patients with depression. In one 
study on human subjects with depression, no significant difference 
in the composition of gut microbiota was found between depressed 
patients and a control group.109 However, another recent study 
examined the composition of fecal microbiota in 46 patients with 
depression and 30 healthy controls, and reported significant differ-
ences with increased population of Bacteroidetes, Proteobacteria, 
and Actinobacteria, and decreased population of Frimicutes in pa-
tients with depression.110 Other evidence that might suggest a role 
for gut microbiota in the pathogenesis of depression is from studies 
that have shown certain probiotics can alleviate depressive symp-
toms in rodent models. Rats that are exposed to stress in early stages 
of life show behavior traits that are consistent with mood disorder 
that persists through their adulthood. Treatment of these rats with 
probiotics containing B. infantis can reduce the mood disturbance 
and correct the abnormalities in the concentration of norepinephrine 
in the brain.111 L. rhamnosus and L. helveticus strains have also 
been reported to ameliorate maternal separation-induced depression 
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through a corticosterone and GABA mediated mechanism.60,90 In 
a model of depression post myocardial infarction, treatment with 
probiotics including L. helveticus and B. longum has been reported 
to reduce the depression, presumably by reducing the pro-inflam-
matory cytokines and gut permeability.112,113 Some antibiotics such 
as minocycline have been shown to be effective in treatment of de-
pression. Their mechanism of action is not exactly understood, and 
a potential role for changes in gut microbiota has been proposed, 
although not studied in detail.114,115 

Gut Microbiota and Cognition
In mice, elimination of gut microbiota can alter performance 

in tasks that require intact spatial memory, hippocampal function 
or working memory.116 Similarly, altering the composition of gut 
microbiota in mice by infection or dietary modifications also can 
change the performance of the animal in memory tasks.117 For ex-
ample, adding lean beef to the mice diet will alter composition of gut 
microbiota and will improve their performance in cognitive tasks. 
In this experiment, a temporal relationship with dietary induced 
changes in gut microbiota and working memory performance was 
reported.118 Mice infected with Citrobacter rodentium show impair-
ment of cognitive function that can be reversed with probiotics.117 
Diabetic rats are known to have impaired memory and learning 
due to impaired long-term potentiation and long-term depression 
in hippocampal synapses.119 It has been reported that treating the 
diabetic rats with a mixture of Lactobacillus acidophilus, Bifido-
bacterium lacti, and Lactobacillus fermentum, can ameliorate this 
effect of diabetes on memory and behavior, as well as electrophysi-
ological changes.120 Evidence of similar effects in humans is limited 
but it has been shown that in normal human subjects, consumption 
of probiotics can alter the functional activity of the areas in the brain 
that are involved in cognitive functions.121 

Emerging Areas
Given the explosion of interest in the microbiota and the gut-

brain axis, it is not surprising that investigators are moving beyond 
more traditional phenotypes such as anxiety/depression to other 
neuropsychological syndromes including schizophrenia and autism. 
Increased gut permeability and translocation of gut bacteria has 
been shown in schizophrenic patients.122 The fundamental cause of 
this is unknown and could include both the controversial associa-
tion with gluten sensitivity and celiac disease123 as well as primary 
changes in gut microbiota.62,124 These theories may not be mutually 
exclusive as it is possible that certain compositions of gut microbiota 
can lead to changed metabolism of certain food products such as 

gluten, and subsequent production of neuroactive peptides, in-
creased absorption of these products due to local inflammation, and 
alteration of dopaminergic and serotonergic pathways in individuals 
who are genetically susceptible to schizophrenia.62 Germ-free mice 
tend to show a schizoid type behavior, not spending more time in a 
chamber with another mice in it when put in a 3-chamber sociability 
test.125 In a mice model that shows behavioral changes that resemble 
schizophrenia, treatment with Bacteroides fragilis can ameliorate 
the symptoms.126 However, a randomized clinical trial of a probiotic 
regimen containing Lactobacillus and Bifidobacterium strains failed 
to show any significant change in the psychiatric outcome measures 
was observed.127 

Another area in which information is rapidly evolving is that of 
autism spectrum disorders (ASD). In a study in rodent model, it 
was found that the composition of gut microbiota in animals with 
ASD-like behavior is significantly changed compared with control 
animals. These changes were similar to those found in human pa-
tients with most changes observed in Clostridia and Bacterioidia 
species (see below). Treatment of these animals with B. fragilis 
restored the altered composition of gut microbiota and significantly 
reduced the stereotypical behavior.128 It has been hypothesized that 
these effects are mediated by specific chemical metabolites produced 
by gut microbes. For example, in the same rodent model of autism, 
elevated circulating levels of 4-ethylphenylsulfate normalized after 
probiotic treatment. However, systemic administration of this me-
tabolite did not cause autistic behavior and only created anxiety-
related behavior. Other mechanisms involve changes in the avail-
ability of tryptophan and histidine, and consequent alterations in 
serotonin and histamine in the CNS.129 Propionic acid, a SFCA that 
is produced by gut microbiota can also induce significant changes 
in social development and behavior and create a similar picture to 
ASD.130,131 Intraventricular administration of propionic acids to rats 
can cause structural abnormalities similar to those found in patients 
with ASD.132,133 

Some of these findings have parallels in humans. Children with 
ASD also show altered composition of gut microbiota with a re-
duced population of Bacteroides and increased levels of Clostridium 
species.134-136 It has been postulated that altered gut microbiota in 
children with ASD can lead to potential imbalances in metabolism 
of carbohydrates and amino acids in the gut, and altered levels of 
metabolites in the blood and urine. To test this hypothesis, a few 
studies of metabolic products have been performed in patients with 
ASD. For example, studies using metabolomics techniques have 
reported a different urinary amino acid profile in patients with ASD 
compared to healthy subjects with lower anti-oxidant levels in the 
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urine, and abnormal levels of hippurate and N-methyl nicotinic 
acid in children with ASD.137,138 Hippurate is an end-product of the 
metabolism of dietary proteins and phenolic acids, and is formed by 
the liver from benzoic acid.139 Benzoic acid is a product of protein 
metabolism by gut microbiota, and altered hippurate level points 
towards altered metabolism in protein, potentially caused by altered 
gut microbiota.140 Another study has reported significant difference 
in children with autism and normal children in the fatty acid com-
position of phospholipids, with autistic children having an increased 
level of most of the saturated fatty acids, except for propionic acid, 
and a decreased level of polyunsaturated fatty acids.141 This change 
in composition of fatty acids can lead to abnormalities in oxidative 
stress, or cause mitochondrial dysfunction that might play a role in 
pathogenesis of ASD.142 

Another bacterial genus that has been linked to autism is De-
sulfovibrio. This microbe is found with significantly higher preva-
lence in children with autism compared to developmentally normal 
children, and has sulfur-reducing properties that can explain the 
known sulfur deficiency in children with autism.143 Sulfate deficien-
cy can potentially lead to inefficient detoxification through sulfation, 
leading to accumulation of neurotoxins. Increased gut permeability 
and elevated level of bacterial metabolic products such as LPS lead-
ing to increased proinflammatory cytokines such as IL-6 have also 
been shown in children with ASD.144 

A few small clinical trials have shown beneficial effects for 
gluten free and casein free diets on symptoms of children with 
ASD145,146 that could potentially be attributed to the change in gut 
microbiota.4,8,19,61,128,147 Furthermore, in children with autism, the 
frequency of GI symptoms is increased148,149 and has been attrib-
uted to a low-grade chronic inflammation in the GI tract caused by 
altered gut microbiota. In a clinical study, oral vancomycin was used 
as a minimally absorbed antibiotic to treat the GI problems, based 
on this theory. Interestingly, in addition to improvement in GI 
symptoms, autistic behavior was also improved in these children.150 

Conclusions 	

The influence of gut microbiota on several aspects of CNS 
function is increasingly supported by a growing body of experimen-
tal data. The mechanism of this influence is complex and involves 
multiple direct and indirect pathways. Increased gut permeability 
appears to be the cornerstone of the microbiome-gut-brain interac-
tion. This provides a pathway for gut bacteria and their metabolic 
products to access the immune system, ENS, the blood stream, and 
centripetal neural pathways. Much of this evidence comes from ro-

dent studies, and considerable work has to be done to validate these 
findings in humans before we can understand how best, if at all, to 
modulate the gut microbiota for clinical benefit. 
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