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Abstract

Evaluating patient progress and making discharge decisions regarding inpatient medical 

rehabilitation rely upon standard clinical assessments administered by trained clinicians. Wearable 

inertial sensors can offer more objective measures of patient movement and progress. We 

undertook a study to investigate the contribution of wearable sensor data to predict discharge 

functional independence measure (FIM) scores for 20 patients at an inpatient rehabilitation 

facility. The FIM utilizes a 7-point ordinal scale to measure patient independence while 

performing several activities of daily living, such as walking, grooming, and bathing. Wearable 

inertial sensor data were collected from ecological ambulatory tasks at two time points mid-stay 

during inpatient rehabilitation. Machine learning algorithms were trained with sensor-derived 

features and clinical information obtained from medical records at admission to the inpatient 

facility. While models trained only with clinical features predicted discharge scores well, we were 

able to achieve an even higher level of prediction accuracy when also including the wearable 

sensor-derived features. Correlations as high as 0.97 for leave-one-out cross validation predicting 

discharge FIM motor scores are reported.

Index Terms

rehabilitation monitoring; prediction; wearable sensors; machine learning; signal processing

I. Introduction

Often when an individual suffers from an injury or illness, such as stroke, they undergo 

intense inpatient rehabilitation in order to regain everyday functioning. Monitoring of motor 

HHS Public Access
Author manuscript
IEEE Access. Author manuscript; available in PMC 2016 April 04.

Published in final edited form as:
IEEE Access. 2015 ; 3: 1350–1366. doi:10.1109/ACCESS.2015.2468213.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recovery is typically accomplished by human observation using standard clinical rating 

scales, such as the functional independence measure (FIM), to determine independence in 

activities of daily living (ADLs) [1]. The FIM is administered at admission and discharge 

from inpatient rehabilitation by clinical staff who are credentialed to administer the 

instrument. The FIM is a well-validated assessment measuring functional status on a 0–7 

rating scale for 18 items representing 6 domains: self-care, sphincter control, transfers, 

locomotion, communication, and social cognition. In addition to a total FIM score, separate 

scores are developed from the motor function items and cognitive function items.

Between the admission and discharge FIM assessments, clinical observations by therapists 

are typically used to characterize progress and make treatment decisions, including 

determining discharge dates. Because this approach relies on subjective judgment, it lacks 

detailed quantifiable information to characterize patient movement patterns. During this 

period, more precise quantitative measurement of patient performance can be collected via 

pervasive technology such as inertial measurement units (IMUs). IMUs are an ideal 

technology for tracking movement because they can easily be attached to the body. 

Computations based on data collected from wearable IMU sensors can provide therapists 

with measures that are not subject to the inter-observer bias that is possible with subjective 

clinical judgments. These supplementary measurements can identify subtle performance 

changes during rehabilitation that are difficult to directly observe, using metrics such as 

whole body or individual limb linear acceleration and angular velocity.

Sensor-based data, such as gait cycle parameters, can offer clinicians with insights on patient 

function and rehabilitation progress. We hypothesize that this data also provides power for 

predicting future patient performance on clinical rating scales. While data mining techniques 

have been applied to medical records to predict clinical performance, augmenting medical 

records with sensor data (such as IMU data) represents a new direction of research. To 

validate our hypothesis, we utilized patient medical record information, sensor data 

measured at mid-stay during inpatient rehabilitation, and a combination of the two data 

sources to predict FIM motor scores at discharge. Such a mapping of therapy-collected 

inertial sensor data into a standardized clinical assessment domain offers several benefits in 

comparison to human observation alone:

• More accurate tracking of the time course of recovery.

• Reduction in the subjectivity of therapist observations between admission and 

discharge.

• More ecologically valid assessment of patient ability by avoiding the “test” 

situation which is often not representative of everyday functioning [2].

In this paper, we propose a machine learning methodology to predict discharge FIM scores 

for patients at an inpatient rehabilitation hospital. Initially, we predict discharge scores using 

only patient medical record information available upon admission. We then improve 

prediction accuracy by utilizing wearable inertial sensor data collected during ambulatory 

tasks performed mid-stay during inpatient rehabilitation. Our approach provides insight into 

individual patient progress between admission and discharge by using movement data 

collected during therapy tasks, without the need to re-administer the entire FIM assessment.
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II. Related Work

Several studies have built models to predict clinical outcomes, such as assessments and 

hospital length of stay (LOS), from patients at inpatient rehabilitation facilities. These 

studies can be grouped into two categories based on the features that are used as predictors: 

non-technology-based clinical metrics and technology-based metrics.

A. Clinical Predictors

Sonoda et al. [3] used linear regression to predict discharge FIM motor scores for 131 first-

stroke patients at an inpatient rehabilitation hospital. Features used for prediction included 

admission data included age, days since onset of the stroke to admission, admission FIM 

cognitive and motor scores, and the reciprocal of the admission FIM motor score. The 

regression models yielded correlations of r = 0.89 for a training group and r = 0.93 for a 

validation group. Similar studies predicting FIM scores using only clinical predictors include 

Matsugi et al. [4], Jeremic et al. [5], Fujiwara et al. [6], Tsuji et al. [7], and Jeong et al. [8]. 

Jeong and colleagues predicted discharge FIM to investigate the differences between two 

stroke groups: 4,311 patients admitted to acute hospitals (R2 = 0.78) and 1,941 patients 

admitted to convalescent hospitals (R2 = 0.66).

Sakurai et al. [9] investigated the predictive ability of admission FIM scores of patients with 

stroke (N = 286) to determine functional independence. Independence was classified as 

either completely dependent/requiring maximal assistance, moderately dependent/requiring 

minimal assistance, or completely independent/requiring supervision. The study concluded 

the motor and cognitive scores of the FIM are valid predictors of functional independence, 

whereas the individual FIM tasks alone are not useful predictors.

In addition to predicting clinical assessments scores such as the FIM, a fair amount of 

research has been performed to predict individual patient length of stay [10]–[13]. Tan et al. 
[10] considered motor function on admission and the effects of patients’ socioeconomic 

status and family structure on LOS for patients with stroke. Franchignoni et al. [11] found 

individual FIM task scores on admission to be strong predictors of patients’ LOS, with the 

tasks related to transfers having the highest predictive ability. Brosseau et al. [12] discovered 

that age, functional status at one week after admission, perceptual status, and balance status 

accounted for 43.6% of the total variance in the rehabilitation LOS for stroke patients. 

Furthermore, functional status at admission, rehabilitation program, motor status, 

communication problems, and medical complications were indirect predictors of LOS.

B. Technology-based Predictors

In addition to utilizing clinical metrics, several studies have investigated mapping 

technology-based measurements onto clinical assessment scores. Zariffa et al. [14] 

considered the relationship between robot-collected kinematic data and the graded redefined 

assessment of strength, stability, and prehension, action research arm test (ARAT), and 

spinal cord independence measure. Olesh et al. [15] collected data from a Kinect sensor and 

mapped it to the Fugl-Meyer assessment (FMA) and ARAT. Similarly, Wang et al. [16] 

mapped accelerometer data from upper arm movements to the FMA for shoulder-elbow. 
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Finally, Simila et al. [17] analyzed lower-back accelerometer data to estimate Berg balance 

scale scores for identifying subjects with high or low risk of falling.

The aforementioned studies have primarily examined the relationships between technology-

based metrics and associated clinical rating scales. These studies do not utilize collected data 

to project into the future and predict discharge assessment scores. On the other hand, 

Mostafavi et al. [18] predicted several clinical scores using metrics collected from the 

kinensiological instrument for normal and altered reaching movements (KINARM) 

rehabilitation robotic device. Data were collected from two tasks: an upper limb reaching 

task and a positioning task. Using linear regression, robot-based measurements from these 

tasks for 126 stroke patients were mapped to predictions of FIM total score, FIM motor 

score, LOS, the Purdue pegboard test, and the modified Ashworth score with statistically 

significant accuracy (see [18], Table 1). This work differs from our study in the choice of 

technology (robotic device vs. wearable inertial sensors), the involved parts of the body 

(upper limb vs. whole body), and the timeline of participant data collection.

The study presented in this paper aims to further move the field forward in several aspects. 

First, we combine clinical metrics with movement data collected using IMU technology that 

is relatively inexpensive and unobtrusive. Furthermore, while wearing the inertial sensors, 

participants in our study perform a sequence of ambulatory tasks that are representative of 

the patient’s ecological environment. Potentially, our sensor platform will be able to collect 

movement profiles from various therapy tasks and map this information into clinical 

assessments. Finally, previous studies have focused on single, homogeneous populations, 

often only considering patients who do not have other medical complications [3], [9] or have 

a LOS greater than a certain duration [9]. While these restrictions are useful to narrow the 

scope of findings, we are investigating several rehabilitation populations with varying LOS 

and comorbidities. We do not distinguish between medical conditions because our proposed 

wearable sensor platform, algorithms, and machine learning methodologies are applicable to 

all individuals undergoing inpatient rehabilitation. In summary, we aim to lay the foundation 

for a monitoring system that uses movement data collected during therapy to predict 

discharge clinical scores at any point during rehabilitation for inpatient rehabilitation 

populations.

III. Methods

We undertook a study of subjects undergoing rehabilitation at an inpatient rehabilitation 

hospital following injuries and illnesses such as stroke, traumatic brain injury, and spinal 

cord injury. This study was approved by the Institutional Review Board of Spokane, WA. 

Our approach consists of three steps:

1. Collect patient data from two sources:

a. Patient wearable inertial sensor data as they ambulated throughout an 

ecological environment (see Section III-A2).

b. Medical records both from patients who participated in the wearable sensor 

study and from patients who were not involved in the wearable sensor study. 

The latter was collected to provide additional training instances for 
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comparison to a baseline FIM prediction model using only clinical features 

available upon admission (see Section III-A4).

2. Compute sensor-based metrics and analyze each metric’s predictive utility (see 

Sections III-C and IV-A).

3. Train and test machine learning models to predict discharge FIM scores (see 

Section IV-B).

The following sections provide details on each of these steps.

A. Data Collection

1) Functional Independence Measure—The FIM is a clinical assessment used to 

measure patient functioning at inpatient rehabilitation hospitals [1]. The FIM is measured at 

two distinct points in time: admission (FIMA) and discharge (FIMD). The FIM measures the 

level of assistance required to perform 18 ADL tasks (see Table I) [19]. The tasks are 

categorized as either motor (13 tasks) or cognitive (5 tasks). Each task is scored on a 7-point 

ordinal scale to measure independence as determined by the amount of assistance required to 

perform each ADL task. A score of 7 denotes a helper is not required for the patient to 

perform the task and a score of 1 denotes total assistance from a helper is required for the 

patient to perform the task [19].

The FIM motor aggregate score (FIMmotor) is the sum of all 13 individual motor task scores. 

The cognitive aggregate score (FIMcog) is the sum of all five individual cognitive task 

scores. Finally, the total FIM score is the sum of all individual task scores. The change in 

FIM from admission to discharge is important in the clinical setting, representing the 

improvement or regression exhibited by the patient during their stay at the rehabilitation 

hospital. The change in FIM is represented by:

(1)

Furthermore, the rehabilitation efficiency ratio (RER), also known as FIM efficiency, 

determines the average rate of FIM change per day:

(2)

where LOS is the length of stay at the rehabilitation facility, measured in number of days.

2) Ambulatory Circuit Sensor Data—Participants in a wearable sensor study were 

recruited as part of a single-arm prospective cohort study with repeated measures of 

participant performance on standardized gait tasks. Data were collected at two different 

testing sessions separated by seven days. The first test session (S1) occurred shortly after the 

participant became physically able to walk the distance required of the gait task. The second 

test session (S2) occurred one week later, a date that was typically close to their discharge. 

During each test session, participant performance was recorded two times, producing two 

separate trials (T1, T2) at S1 and two trials (T3, T4) at S2.
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A standardized ambulatory circuit (AC) [20] was designed to assess the mobility and 

physical ability of the participants during the test sessions. The AC is a continuous sequence 

of activities performed in a simulated community environment at the rehabilitation facility. 

This circuit represents a more complex version of the traditional timed up and go (TUG) test 

that is frequently used for gait assessment [21]. The circuit includes rising from a seated 

position, moving with both linear and curvilinear gait, surface transitions, a transfer into and 

out of a sport utility vehicle (SUV), and sitting down in the chair from which the participant 

began. Fig. 1 outlines the AC components. The AC also includes a stops walking when 

talking test [22] (in Fig. 1 the vertical gray dashed line between linear and curvilinear 

walking sections), which determines if an individual who is walking slows down or stops 

when asked a simple question like “when is your birthday?” AC researchers manually record 

whether the participant slowed down or stopped to answer a question, but this feature was 

not included in the current study because it is not yet automatically computed from the 

sensor data.

Three Shimmer3 wireless IMUs were used to record participant motion as they ambulated 

through the AC. The Shimmer3 platform contains a tri-axial accelerometer and a tri-axial 

gyroscope. One IMU was placed centrally on the lumbar spine at the level of the third 

vertebrae, near the individual’s center of mass (COM) [23]. Additionally, one sensor was 

placed on each shank, above the ankle and in line with the tibia. The accelerometer range 

was set to ± 2g for the COM sensor and ± 4g for the shanks. The gyroscope ranges for the 

shank and COM sensors were set at 500 °/s and 250 °/s, respectively. The data were 

collected at a sampling frequency of 51.2 Hz for all sensor platforms. Processing of the 

sensor data consisted of several steps (see Fig. 2). First, the timestamps were aligned from 

the three different sensor platforms. Next, to correct for the orientation of the shank sensors 

along the tibia, the sensor local coordinate system was transformed to the body coordinate 

system. Acceleration data were filtered with a 4th order band pass Butterworth filter using 

cutoff frequencies of 0.1 Hz and 3 Hz for the COM accelerometer [24] and 0.1 Hz and 10 

Hz for the shanks [25]. The gyroscope signals for all sensors were low passed filtered at 4 

Hz [26].

3) Participant Characteristics—AC data collection is ongoing, with 20 participants 

completing both testing sessions to date. Participants were in various rehabilitation 

impairment categories (RICs), such as stroke and non-traumatic brain injury. Table II 

describes the AC participant demographics and FIM scores. As can be seen, the mean age of 

the group is 71.55 ± 10.62 years. Of the AC participants, 70% (N = 14) were receiving 

therapy services to recover from a stroke and the average LOS was 20.75 ± 5.35 days. S2 

testing was near discharge, on average 2.65 ± 2.25 days from discharge.

4) Additional Medical Record Data—For training baseline admission models, 

additional data were collected from the in-patient rehabilitation hospital during October 

2010–December 2013. The dataset contains data for 4,936 patients of various RICs. These 

patients did not participate in the AC wearable sensor study. Consequently, this dataset is 

henceforth referred to as the non-AC (NAC) dataset. Table III provides patient demographics 
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and FIM performance summaries for the NAC patient data. As can be seen in Table III, NAC 

patients are primarily in the RICs of stroke and lower extremity joint replacement.

The information in this dataset represents traditional medical record data. Other projects 

have focused on mining medical records and predicting patient health from this information 

alone. In this paper, our goal is to show that prediction of rehabilitation outcomes can be 

enhanced by including sensor data in the predictive model alongside medical record data. As 

we will see, including both sources of information can present a challenge because the 

medical record is data rich (in number of patient records) while the sensor data is fairly 

sparse.

B. Clinical Outcome Prediction

Useful clinical outcomes to predict include discharge FIM motor and cognitive scores, 

which represent patient functioning at the end of inpatient rehabilitation. To see the 

distribution and changes of these scores between admission and discharge, Fig. 3 shows box-

and-whisker plots for AC and NAC participant motor and cognitive FIM scores. Since AC 

performance metrics primarily measured motor functioning, our models focused on 

predicting the FIM motor score. To further explore the predictive abilities of the AC, we also 

trained models to predict FIM cognitive and individual FIM item scores.

C. Predictor Variables

As AC participants underwent rehabilitation, data became available at four points displaced 

in time: admission, AC S1, AC S2, and discharge. Metrics computed from data collected 

from admission, AC S1, and AC S2 served as features to machine learning models, which 

were trained to predict FIM scores at discharge.

1) Admission Predictors—Data available at admission for both AC and NAC patients 

included patient characteristics such as age, gender, and RIC, as well as FIM task scores (see 

Table IV for all admission features). In addition, we included the reciprocal of the FIM 

motor score as suggested by Sonoda and colleagues [3]. Although additional data from 

medical records were available, we only included features that applied to all populations. For 

example, the number of days since stroke onset is only applicable to stroke populations and 

was not included as a predictor.

2) AC Predictors—Sensor-based metrics of AC performance were grouped into three 

categories: clinical assessments of progress (CAP), whole body movements (WBM), and 

gait features (GF). CAP metrics refer to commonly-used approaches for assessing mobility 

in a clinical setting, such as the duration of a task. WBM metrics are computed from the 

sensor placed on the COM. Finally, gait features refer to quantifications of steps and strides 

while walking. GFs are primarily computed from gait cycles derived from gait cycle event 

detection algorithms applied to the shank sensor angular velocity signals [27]. Table V 

summarizes the CAP, WBM, and GF metrics.

Often, motor skills on only one side of the body are affected, called the involved or paretic 

side. Since several metrics computed in Table V are based on the left or right shank (e.g., 
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shank peak angular velocity), we recast the left and right metrics as greater or lesser in 

value. For example, participant 001 exhibited average left shank peak angular velocity of 

208.61 °/s, while right shank was 222.07 °/s at S1 testing. For 001, the left side would be 

cast as the lesser peak angular velocity limb, and the right side as the greater. This 

classification aligns with the medical record data, which reports participant 001 experienced 

a stroke with the left side of the body as the involved side (see Table II).

3) AC Change Predictors—At AC S2, we computed additional metrics to quantify the 

changes exhibited over one week of therapy from S1 to S2. For example, the percentage 

change for any given metric x was computed as the difference between the S1 and S2 metric 

scores for x and was normalized by the S1 metric score:

(3)

Another metric used to quantify the changes between S1 and S2 was the standardized mean 

difference (SMD) effect size (ES) for repeated measures (RM) [32]:

(4)

where SD is the standard deviation of change [33]. The SMD ES was applied to gait cycle 

metrics. For example, gait cycle duration is the amount of time for the completion of one 

gait cycle (stride). For this study, a gait cycle corresponded to the time interval between one 

initial contact (heel strike) and the next initial contact of the same leg. If an individual took 

15 strides at S1, then we derived 15 gait cycle durations, from which we computed the 

average gait cycle duration at S1 (X̄
S1). Fig. 2 depicts the AC data processing pipeline from 

sensor signals to statistical scores.

D. Supervised Scoring Models

We expressed discharge FIM score prediction as a supervised learning task that mapped the 

admission and AC features to predicted discharge FIM scores. The machine learning 

algorithm we used was an epsilon support vector machine (ε-SVM). SVMs utilize a subset 

of the training data, called support vectors, to identify boundaries of maximal distance from 

the support vectors. In the case of regression, the SVM learns a function F (x) → w · x – b to 

approximate a target variable yi under ε precision for each feature vector xi. The vector w is 

the learned weights, or coefficients, representing the relative importance of each feature for 

the SVM. We compared the prediction results of the SVM with linear regression and random 

forest with 100 regression trees. The 100 trees criterion was chosen because of its success in 

a previous inertial sensor and clinical assessment study [34]. These three machine learning 

algorithms were chosen because of demonstrated accuracy found in previous technology-

based clinical assessment studies [18], [34], [35].

1) Model Construction—For AC participants, data from three different points in time 

were collected and the corresponding models were built. M1 is a model trained with data 
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available upon admission, M2 is a model trained with data available at AC S1, and M3 is a 

model trained with data available at AC S2. Fig. 4 depicts this timeline and its associated 

models. For NAC participants, only admission data were available for training M1. Each 

model M1, M2, and M3 produced a prediction (P1, P2, and P3) for the same clinical outcome. 

These predictions represented the change in model prediction accuracy over time as new 

data were collected. Next, an ensemble learner (ME) took P1, P2, and P3 as inputs and 

produced a fourth prediction (PE). An ensemble learner combines the predictions of multiple 

learning algorithms to produce a final prediction. Ensemble learners are usually applied as 

an effort to achieve higher performance than the individual algorithms achieve alone. For 

comparison with the ensemble result, predictions P1, P2, and P3 were also averaged to 

produce a fifth prediction (Pavg).

Predictive models were constructed from two different approaches, separate and cumulative, 

in order to explore the performance of M2 and M3 with different training features. Each 

approach builds three models (M1, M2, M3) representing the three different points during 

rehabilitation (admission, AC S1, AC S2); however, depending on the approach, different 

input features were utilized at M2 and M3. In the cumulative model construction approach, 

M2 and M3 were trained on all previous and current data available up to and including the 

corresponding point in time (see Fig. 5). In the separate model approach, M2 and M3 were 

not trained with previously collected data, only with the data collected at that point in time 

(see Fig. 6). The results of M1, M2, and M3 were then combined by an ensemble learner to 

produce the final prediction. We included the separate model construction approach to 

examine the predictive power of M2 and M3 without utilizing any admission features (or in 

the case of M3, without utilizing admission features or AC S1 features).

2) SMOTE Oversampling—As mentioned earlier, the relatively few AC values posed a 

challenge, particularly in comparison with the large number of NAC records that were 

available. With such a small AC population, the prediction algorithm was at risk of 

overfitting the training data. One method to compensate for a small number of samples is to 

oversample the data by replicating data points or adding synthetic data [36]. Resampled or 

synthetic data are only used during the training process and are designed to more thoroughly 

represent the space of possible data points.

To accommodate our low sample size, the oversampling technique of synthetic minority 

oversampling technique (SMOTE) was applied to the AC dataset [37]. SMOTE is an 

alternative to oversampling with replacement that creates synthetic data examples from the 

available training data. Synthetic examples are created by randomly interpolating features 

along the line segments joining any or all of the k nearest neighbors for each existing data 

point. The algorithm is typically applied to correct a class imbalance problem. Since our 

clinical outcomes are continuous target variables, we employed a version of SMOTE for 

regression (SMOTE-R) [38]. In SMOTE-R, the minority class is considered to be rare, 

extreme values in the target variable. By applying SMOTE to these instances, the 

distribution of the target variable becomes more uniform. SMOTE has shown success in a 

variety of applications that share characteristics with this data and was therefore used to 

boost the size and diversity of the training data for this prediction problem.
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To apply SMOTE-R, a function ϕ(yk) maps each value of the target variable yk (discharge 

FIM scores in our study) to a notion of relevance (in this case, rarity and extremeness) in the 

range [0,1]. For example, if the target variable is assumed normal, the relevance function can 

be approximated by the complement of the variable’s probability density function. In this 

case, highly relevant values will be near the tails of the distributions.

To build a relevance function for rare extreme values, three control points were used to fit a 

cubic interpolating piecewise polynomial representing target variable relevance. The three 

control points (CP) were estimated using quartiles (Q): CPH = Q3 + C × IQR with relevance 

1.0, CPL = Q1 – C × IQR with relevance 1.0, and the median, CPỸ with relevance 0.0, where 

IQR = Q3 – Q1 (the interquartile range). C is a parameter reflecting the extent to which a 

sample is considered an outlier, where lower values of C imply more samples will be 

considered outliers. We set C = 1.2 due to our small sample size. All data points above CPH 

or below CPL were tagged as outliers and comprised the rare high extreme outliers and the 

rare low extreme outliers, respectively. An example relevance function ϕ for discharge total 

motor score is shown in Fig. 7. The three points in the Fig. 7 correspond to the control points 

CPL = 41.7, CPỸ = 62.0, and CPH = 89.3. In this example, values less than 41.7 or greater 

than 89.3 are considered to be outliers with relevance 1.0. Finally, samples with relevance 

greater than a threshold tE are considered relevant sample points and used to generate new 

synthetic samples. For our dataset we used tE = 0.5 to obtain more relevant sample points on 

either tail of the discharge FIM score distributions. As the method suggests, the motivation 

behind this approach was to sample points around the outliers in order to give those points 

more representation in the training data.

We introduced a sampling variation that is a combination of existing methods. For nominal 

variables, we used a majority vote of k nearest neighbors [37]. Discharge FIM scores were 

assigned using the SMOTE-R approach. For this method, a weighted average of the two seed 

samples’ (x and its nearest neighbor nn) discharge FIM score was computed [38]:

(5)

where d1 and d2 are the distances of the generated point to each of the two seed examples. 

This weighted the sample with the smaller distance to the new synthetic data point higher. 

Usually SMOTE-based oversampling is coupled with under-sampling of the majority class, 

or in the case of regression problems, undersampling of the more frequent samples. Since we 

wanted to retain all of our real AC data points, we did not undersample our dataset. Instead 

we applied SMOTE-R to the entire training set and performed additional sampling of the 

relevant samples. On each LOOCV fold, N − 1 training points were sampled to create N − 1 

new synthetic data points that were added to the training set. SMOTE-R was applied in two 

configurations. The first configuration, extremes, only applied SMOTE to the outliers on the 

high and low tails of the training distribution [38]. The second configuration, all data, 

applied SMOTE to the entire training set.

3) Feature Selection—In order to understand the predictive utility of each feature and 

remove noisy or redundant features, feature selection techniques were applied [39]. First, 
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individual features were correlated with the target variable to investigate their individual 

predictive ability. Features with a Pearson correlation coefficient r < 0.1 were determined to 

be noisy and not considered useful. Next, a wrapper-based recursive feature elimination 

algorithm with cross validation (RFECV) was applied to identify the optimal set of features 

[40]. The model used in RFECV was a linear SVM trained with 10-fold cross validation 

with mean squared error scoring. Starting with all features, an SVM learned a vector of 

weights, or coefficients, representing the relative importance of the feature in learning the 

separating hyper plane. The feature with the smallest SVM weight was then removed from 

the feature set and the model was re-trained on the remaining features. This process was 

repeated until the set with the lowest mean squared error was identified. Additionally, the 

size of this set denoted the optimal number of features. The top ranked features were then 

selected as the inputs to the prediction models.

4) Evaluation Methods—To evaluate the quality of the predicted clinical outcomes, 

several evaluation metrics were used. The regression models were evaluated using the mean 

absolute error (MAE), root mean squared error (RMSE) and normalized RMSE (NRMSE). 

RMSE and NRMSE are defined in Equations (6) and (7):

(6)

(7)

where Y is the predicted clinical outcome and n is the number of predicted samples. Pearson 

correlation coefficients, r, and associated p-values are also reported, as defined in Equation 

(8):

(8)

IV. Results

All data were processed with the Python programming language and the Sci-kit Learn 

machine learning library. Prior to training, admission and AC data were standardized by 

subtracting the mean and scaling to unit variance. Unless otherwise stated, an SVM with a 

linear kernel was trained and evaluated using leave-one-out cross validation (LOOCV).

A. Feature Selection: FIM Motor Score

Features were correlated with the FIM motor score at discharge and noisy features were 

removed. Table VI lists the 10 most highly correlated predictors and their correlation 
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coefficients, grouped by the time points of admission, AC S1, and AC S2. Wrapper-based 

feature elimination results for discharge FIM motor score are shown in Table VII. This table 

contains the top 10 ranked features for each model, where M1 is trained with AC participant 

admission data only (not including NAC patient admission data).

B. Prediction Results

1) FIM Motor Score—Table VIII shows results for predicting discharge total motor score 

with LOOCV. Two admission models (M1) were trained, one with AC participant data only 

and a second model including NAC patient admission data. To visualize the FIM motor 

score predictions, each participant’s actual discharge score was plotted together with the 

predictions generated by M1, M2, and M3 (see Fig. 8).

2) FIM Motor with SMOTE—SMOTE-R (see Section III-D2) was applied to the discharge 

FIM motor distribution to generate additional training data. Table IX shows the results of 

training a linear SVM with synthetic data in both configurations. To illustrate the resulting 

synthetic data, Fig. 9 shows an example of how SMOTE-R in both configurations affected 

the distribution of the discharge FIM motor score in an example fold of LOOCV. Fig. 9a 

shows the histogram of the original training discharge FIM motor score, while Figs. 9b and 

9c show the target variable distribution of the all data and extremes approach, respectively. 

For the example fold, the original data had a discharge FIM motor score of 63.32 ± 9.83. 

SMOTE-R for all data generated 19 new sample points which changed the values to 63.87 

± 7.44. SMOTE-R for extreme data points yielded a mean and standard deviation of 62.06 

± 10.36.

3) FIM Cognitive Score—To explore the possible relationship between cognitive 

functioning and performance on the AC, additional models were trained to predict the FIM 

cognitive score at discharge. Table X shows discharge FIM cognitive prediction results for a 

SVM with a linear kernel, linear regression, and a random forest with 100 regression trees.

4) Individual FIM Tasks—Each discharge FIM task, in turn, was predicted for M1, M2, 

and M3. The correlation results for each task prediction are plotted in Fig. 10. The plot 

shows which tasks were more closely represented by the admission, AC S1, and AC S2 

metrics and corresponding models M1, M2, and M3.

V. Discussion

We investigated the prediction of discharge FIM scores using data collected from wearable 

inertial sensors. Participants in the study were receiving inpatient therapy services for a 

variety of medical conditions. Regression models were trained to predict the discharge FIM 

motor score, cognitive score, and individual FIM task scores for participants who performed 

two testing sessions of the ambulatory circuit.

A. Predictor Strength

Of the predictors available at admission, the reciprocal of admission FIM motor score was 

the most highly correlated with discharge FIM motor score (r = −0.68). Sonoda et al. [3] 

found this feature was also highly correlated (r = −0.896) with discharge FIM motor score 
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for first stroke survivors without the presence of other diseases. Other strong predictors at 

admission included admission bladder item scores, admission upper body dressing scores, 

and case mix group (CMG) relative weight. Highly uncorrelated predictors included 

admission walk/wheelchair scores and admission eating scores. Admission eating in 

particular was not an informative feature as it exhibited zero variance for our AC 

participants. For the AC metrics, vehicle challenge duration, shank peak angular velocity, 

shank range of motion, number of gait cycles, and COM RMS were all highly correlated 

with discharge FIM motor scores, whereas sit to stand duration, step symmetry, and walking 

speed percentage change were not strong predictors on their own. This finding is particularly 

interesting for walking speed percent change because walking speed is a common clinical 

measurement of gait functioning [41].

Often when considered on their own, strong individual predictors are outperformed by a 

linear combination of weaker predictors [39]. The prediction results using RFECV is such 

an example. For M1, admission tub/shower transfer and admission lower body dressing were 

highly ranked; however, these features were not as highly correlated with FIM motor scores 

when considered alone. Furthermore, reciprocal admission motor FIM and CMG relative 

weight were not top ranked by RFECV and therefore not used to train M1. Similar trends 

were seen in M2 and M3, which had 7 and 10 top ranked features, respectively.

B. Predictions

1) FIM Motor Score—When considering M1 with AC data only, M1 with NAC data, and 

M2 and M3 independently (the separate model construction approach), the correlations 

associated with discharge FIM motor score prediction were r = 0.89, 0.82, 0.60, and 0.85 

respectively (see Table VIII). Much higher accuracy was achieved when utilizing all features 

from previous points in time as well, as is the case with the cumulative approach, with M2 

and M3 correlations r = 0.85 and 0.97. As we expected, the correlations increased as 

additional AC features representing participants’ performance were included. Consequently, 

the strongest correlations were achieved with the cumulative M3 model (RMSE = 2.32 and 

r= 0.97). Even though M1 alone was already a high performing model, cumulative M3 

predictions produced a significantly higher correlation (p < 0.01) than M1 with NAC data 

(RMSE = 7.36, r = 0.82). These results indicated that wearable sensors enhanced prediction 

of clinical rehabilitation outcomes over medical records alone.

Our results for M1 are consistent with earlier literature for discharge FIM motor score 

prediction. Using only clinical information (no technology-based predictors) for stroke 

patients, Jeong et al. [8] reported a prediction correlation of r = 0.88 (R2 = 0.77), Fujiwara et 
al. [6] reported R2 between 0.66 and 0.75, and Tsuji et al. [7] reported R2 = 0.68. These 

studies utilized additional clinical rating scale scores as predictors that were unavailable in 

our study. Despite this difference, our results for predictions based only upon admission 

features were consistent with previously reported results. Using technology-based 

predictors, Mostafavi et al. [18] utilized metrics from robot-assistive KINARM devices 

during upper limb reaching and positioning tasks to predict FIM at discharge with accuracy 

of RMSE = 11.8 (NRMSE = 17.3%). There are differences between this study and ours, 

including the technology (robot device vs. wearable sensors) and monitored body parts 
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(upper limb vs. whole body). These differences make comparisons between the results of 

Mostafavi and colleagues and our results difficult; however, our lower error (RMSE = 2.32, 

NRMSE = 5.80%) does suggest the viability of wearable inertial sensors for work involving 

clinical outcome prediction of ambulatory tasks.

It is also worth noting that M1 with AC participant data only outperforms M1 with NAC 

participant data used for training (r = 0.89, 0.82 and RMSE = 4.66, 7.34 respectively). This 

difference suggests that our small sample size of 20 AC participants might result in overfit 

models. As this may be the case, there are also several differences between the two datasets 

to discuss. AC participants are patients who are able to physically perform the AC and have 

higher cognitive awareness on average than NAC patients (FIMA-cog = 23.10, 22.12 and 

FIMD-cog = 29.55, 28.46, respectively). This difference in cognition can be attributed to the 

requirement of passing the Mini-Cog exam in order to be a participant in the AC study. 

Furthermore, the variance in the NAC training data is higher, as there are additional RICs 

not represented by the AC participants. Several NAC patients also showed FIM regression, 

which is not evident in the AC participant dataset. The inclusion of the NAC patients 

suggests our results might be an overestimate of the accuracy that could be obtained for M2 

and M3 when considering AC data from any patient, ignoring the study recruitment 

strategies.

When comparing the linear SVM results to other machine learning techniques, linear 

regression performs similarly to the SVM, whereas the random forest does not perform as 

well (see Table VIII for results). The random forest still yields statistically significant 

correlations with r = 0.73 and 0.59 (p < 0.05) for M1 and cumulative M2 respectively. The 

regression trees would most likely perform better with additional training examples, as is the 

case for M1 AC only compared with M1 with NAC (r = 0.61, 0.73 respectively). Additional 

synthetic data were generated using SMOTE for regression and used for training a linear 

SVM (see Table IX for results). Cumulative M3 performance was not as high as without the 

synthetic data (original RMSE = 2.32, r = 0.97; extremes SMOTE RMSE = 2.88, r = 0.96; 

all data SMOTE RMSE = 3.13, r = 0.95), suggesting additional AC participant data might 

attenuate the prediction accuracy.

2) FIM Cognitive Score—Models based only on admission data were able to predict 

discharge FIM cognitive score fairly accurately (see Table X). M1 with AC data only 

achieved RMSE = 2.42, r = 0.70 and M1 with NAC data demonstrated slightly stronger 

results (RMSE = 2.34, r = 0.73). Highly ranked predictors by RFECV included admission 

memory task score, walk/wheelchair task score, and tub/shower transfer score. When adding 

features from AC data, the results were not as strong as M1 for separate M2, separate M3, 

and cumulative M2. Cumulative M3 performed as well as M1 without NAC data, while 

averaging cumulative M1, M2, and M3 predictions barely outperformed M1 without NAC 

data (RMSE = 2.40, r = 0.73). Considering the AC is primarily a motor task of physical 

functioning, it is not surprising that it was difficult to improve an initial prediction at M1 

with NAC data. On a related note, future work includes programmatically determining if the 

participant slowed down or stopped for the stops walking when talking test performed 

during the AC. This feature and others like it could provide cognitive information for the 

machine learning algorithms and improve discharge FIM cognitive score predictions.
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3) Individual FIM Tasks—Analyzing the relevance of the AC features for predicting 

individual FIM task scores at discharge provided interesting insight about what tasks the AC 

most closely represents. Fig. 10 shows correlations for predictions of all 18 tasks for 

separate and cumulative construction approaches. As reported for FIM motor score 

predictions, cumulative features together (see Fig. 10b) offered more predictive power than 

considering each time point separately (see Fig. 10a). M3 outperformed the other models on 

several tasks, most notably bathing, bladder management, all the transfers, and stairs. M2 did 

particularly well on grooming, toileting, and expression, but particularly poorly on 

comprehension. M1 performed consistently near r = 0.50 for all tasks, and better than M2 

and M3 for most cognitive tasks. This confirmed the cognitive score results for predicting 

total discharge FIM cognitive scores (see Table X). Finally, the improvement of M3 over M1 

for bladder and bowel control is especially interesting. Perhaps motor functioning on the AC 

exhibits a relationship between underlying mechanisms of sphincter control.

The FIM motor, cognitive, and individual task prediction results offer insight into the 

recovery process at the group level. The data can also be used to examine predictors and 

predictions made for individual patients. For example, participant 010 has the lowest FIM 

motor score at discharge (FIMD-motor = 40, see Table II). Predicting individual FIM tasks for 

participant 010 revealed the models did not generalize well to the profile of participant 010 

(see Fig. 11a). The models perform particularly poorly for the FIM tasks of upper body 

dressing, bladder sphincter control, and problem solving. On the contrary, participant 015 

has the highest FIM score of the group (FIMD-motor = 80, tied with participant 021). With 

the exception of the bladder control task (M2) and stairs (M1), scores for participant 015 

were well predicted by the models (see Fig. 11b). The juxtaposition between these two 

participants is interesting from a research perspective, but its usefulness for clinicians 

remains to be seen. Future work will include measuring the clinical utility of such fine-

grained predictions as individual patient scores on individual FIM tasks.

C. Limitations

The low number of available AC data points is an important limitation of this study. The 

study is ongoing and additional participants are being recruited; however, for the current 

investigation we applied SMOTE-R to increase the sample size with synthetic data to 

overcome this drawback. Another limitation is all data were collected from the same 

inpatient hospital. A wide variety of patients attending other rehabilitation facilities would 

be more representative of the population and potential clinical utility of the models. Finally, 

the AC participant population was primarily recovering from a stroke (70%). A wider 

variety of patient impairments would be more representative of all types of patients admitted 

to inpatient rehabilitation.

VI. Conclusion

We investigated the predictive abilities of features derived from wearable inertial sensor data 

to predict discharge clinical outcomes of the functional independence measure without re-

administering the FIM assessment battery. Participant data were collected from an ecological 

ambulation task at two time points during mid-stay for 20 patients at an inpatient 

rehabilitation hospital. While models trained only on admission data performed well, we 
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were able to achieve an even higher level of prediction accuracy when incorporating inertial 

sensor-based features. Correlations as high as r = 0.97 (RMSE = 2.32, NRMSE = 5.80%) for 

LOOCV predicting discharge FIM motor score were obtained.

This research adds unique findings over previous studies by mapping longitudinal sensor 

data collected during physical therapy into the prediction of clinical outcomes. Often, 

technology-based features do not correspond to what standard clinical assessments are 

evaluating [14], thus it is reassuring that the results presented in Section IV demonstrated 

strong correspondence and can be leveraged to improve upon the predictive power of 

standard clinical assessments at admission. There are several opportunities and directions for 

future work:

• Recruiting additional participants of various impairments. A large enough sample 

size could allow for training RIC-specific models that take into account the 

differences and similarities exhibited amongst RIC populations.

• Deepening the understanding of the processes underlying recovery. For example, 

investigating the effects of comorbidities and complications at the group and 

individual patient levels.

• Designing and implementing a mobile application to automate data collection, 

processing, and prediction to generate reports mid-stay of inpatient rehabilitation.

• Exploring other machine learning techniques and optimization methods to improve 

performance.

• Computing features from the AC sensor data that are more representative of 

cognitive functioning.

In summary, this research lays the foundation for a sensor-based system that collects data 

from ambulatory tasks of physical rehabilitation. Models similar to those presented in this 

research can map the sensor data into an appropriate clinical assessment to provide updates 

about patient progress in a more universal domain; however, it is not the intention of such a 

system to replace the expertise of a trained clinician, but instead to provide the therapist with 

additional, meaningful information. Viewed in this regard, a wearable sensor system and its 

associated algorithms are potentially a tool to inform therapists and help them better provide 

services to their patients during recovery.
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Fig. 1. 
The ambulatory circuit. The solid line represents the circuit path and the dashed line 

represents the mirrored return portion. Key circuit tasks are labeled with distances in meters.
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Fig. 2. 
Sensor data processing. Wearable inertial sensor data were timestamp aligned, oriented, and 

filtered before metrics were computed and statistical analyses were performed.
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Fig. 3. 
Admission and discharge functional independence measure (FIM) scores for motor and 

cognitive FIM. AC represents the participants in the ambulatory circuit study and NAC 

represents the non-AC patients used for training baseline admission models.
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Fig. 4. 
The wearable sensor study timeline.
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Fig. 5. 
Cumulative model construction approach.
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Fig. 6. 
Separate model construction approach.
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Fig. 7. 
Example relevance function ϕ for discharge functional independence measure (FIM) motor 

score. The three scatter points denote the control points used to fit a cubic polynomial.
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Fig. 8. 
Discharge functional independence measure (FIM) motor score prediction results. For all 

figures, M1 is trained with non-ambulatory circuit admission data.

Sprint et al. Page 28

IEEE Access. Author manuscript; available in PMC 2016 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Histograms for discharge functional independence measure (FIM) motor score for an 

example fold of cross validation before and after applying SMOTE.
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Fig. 10. 
Correlations for all functional independence measure (FIM) tasks. M1 is trained with non-

ambulatory data.
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Fig. 11. 
AC participant mean absolute error (MAE) for each functional independence measure (FIM) 

task. M1 is trained with non-ambulatory circuit data.
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TABLE I

Functional independence measure (FIM) tasks and associated categories

Category Task Type # Task

Motor

Self-care

1 Eating

2 Grooming

3 Bathing

4 Upper body dressing

5 Lower body dressing

6 Toileting

Sphincter control
7 Bladder management

8 Bowel management

Transfers

9 Bed to chair transfer

10 Toilet transfer

11 Tub/shower transfer

Locomotion
12 Walk/wheelchair

13 Stairs

Cognitive

Communication
14 Comprehension

15 Expression

Social cognition

16 Social interaction

17 Problem solving

18 Memory
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TABLE IV

Features extracted from medical records available at admission

Category Feature Description

Patient characteristics

Age Age in years

Gender Male or female

RIC Risk impairment category. Table III lists RICs in the NAC dataset

Comorbidity tier No relevant comorbidities, tier 1 (most severe/expensive), tier 2 (medium 
severe/expensive), tier 3 (least severe/expensive)

Case mix group (CMG) relative weight LOS modifier determined by presence of comorbidities and complications

Aggregated FIM

FIMA motor score Sum of the 13 FIM motor task scores

FIMA cognitive score Sum of the 5 FIM cognitive task scores

Reciprocal FIMA motor score Reciprocal of admission FIM score [4]

Individual FIM tasks 17 FIMA task scores 17 total scores, one score for each FIM task

A = admission, D = discharge, FIM = functional independence measure, NAC = non-ambulatory circuit, RIC = rehabilitation impairment category, 
SD = standard deviation.
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TABLE V

Features computed from wearable inertial sensor data

Category Feature Units Description Reference

CAP

Duration s Total time to complete the ambulatory circuit or an individual task of 
the ambulatory circuit.

Floor surface speed ratio Measures the effect of walking speed on two different floor surfaces.

Walking speed m/s Walking speed as determined by distance divided by time 
(normalized by leg length).

WBM

COM peak angular velocity Maximum rotational velocity of the COM around the Z-axis.

Root mean square (RMS) m/s2/s Square root of the mean of the squares of each COM acceleration 
signal (normalized by time). Represents acceleration magnitude. 
Synonymous with movement intensity (MI).

[28]

Smoothness index (harmonic 
ratio)

Ratio of even to odd harmonics of the vertical Y-axis COM 
acceleration signal. A higher harmonic ratio represents a smoother 
walking pattern.

[29]

Smoothness of RMS m/s3/s Square root of the mean of the squares of each COM acceleration 
signal derivative (normalized by time). Synonymous with RMS of 
jerk and smoothness of MI.

[28]

GF

Cadence steps/min The average number of steps taken per minute.

Double support percent % Percentage of the gait cycle that both feet are on the ground. 
Computed as the sum of the initial double support time and the 
terminal double support time.

[30]

Gait cycle time s Duration to complete one stride (time between two consecutive initial 
contacts of the same foot).

[30]

Number of gait cycles Total number of complete gait cycles (strides) that occurred.

Shank peak angular velocity °/s Maximum rotational velocity of the shank around the Z-axis during 
the gait cycle. This occurs during the swing phase.

Shank range of motion (ROM) ° Range of integrated Z-axis angular velocity for each gait cycle. 
Provides an estimate of the degrees of shank movement.

[30]

Step length m Distance between initial contacts of opposite feet (normalized by leg 
length).

[31]

Step regularity % Regularity of the acceleration of sequential steps. Computed using 
the autocorrelation of the vertical Y-axis of the COM acceleration.

[23]

Stride regularity % Regularity of the acceleration of sequential strides (see step 
regularity).

[23]

Step symmetry % Ratio of step regularity to stride regularity. [23]

CAP = clinical assessments of progress, COM = center of mass, GF = gait features, m = meters, MI = movement intensity, min = minute, RMS = 
root mean square, ROM = range of motion, s = seconds, WBM = whole body movement, ° = degrees.
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