Skip to main content
. Author manuscript; available in PMC: 2016 Apr 4.
Published in final edited form as: IEEE Access. 2015 Aug 26;3:1350–1366. doi: 10.1109/ACCESS.2015.2468213

TABLE VIII.

Discharge functional independence measure (FIM) motor score prediction results

Model Linear SVM Linear Regression Random Forest
RMSE NRMSE r RMSE NRMSE r RMSE NRMSE r
M1 M1 (w/o NAC) 4.66 11.65% 0.89** 6.07 15.19% 0.87** 8.14 20.36% 0.61**
M1 7.36 18.41% 0.82** 7.95 19.87% 0.80** 10.86 27.14% 0.73**

Separate M2 8.55 21.38% 0.60* 9.82 24.55% 0.55* 10.18 25.45% 0.25
M3 5.54 13.86% 0.85** 5.43 13.57% 0.86** 10.70 26.76% 0.07
Mavg 5.54 13.86% 0.87** 5.27 13.18% 0.89** 8.04 20.09% 0.69**
ME 5.50 13.74% 0.84** 5.69 14.22% 0.84** 9.38 23.46% 0.44

Cumulative M2 5.49 13.71% 0.85** 5.88 14.69% 0.85** 8.51 21.27% 0.59*
M3 2.32 5.80% 0.97** 2.60 6.50% 0.97** 9.78 24.46% 0.31
Mavg 4.00 10.01% 0.94** 4.05 10.12% 0.94** 7.38 18.46% 0.77**
ME 3.41 8.53% 0.95** 2.90 7.26% 0.96** 9.30 23.24% 0.45*

avg = average, E = ensemble, M = model, NAC = non-ambulatory circuit, NRMSE = normalized root mean square error, r = Pearson correlation coefficient, RMSE = root mean square error, SVM = support vector machine,

*

p < 0.05,

**

p < 0.01,

significantly (p < 0.05) improved results from M1.