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Abstract

The scientific literature teems with clique-centric clustering strategies. In this paper we analyze 

one such method, the paraclique algorithm. Paraclique has found practical utility in a variety of 

application domains, and has been successfully employed to reduce the effects of noise. 

Nevertheless, its formal analysis and worst-case guarantees have remained elusive. We address this 

issue by deriving a series of lower bounds on paraclique densities.
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1. Introduction

Clique-centric methods have long played an important role in data science and engineering. 

Classic techniques include algorithms for -hard problems such as maximal clique [1] 

and maximum clique [2]. The availability of high-throughput data has prompted interest in 

noise-abatement relaxations, most notably k-clique communities [3] (more recently also 

called clique percolation) and paraclique [4]. These algorithms have been used for biological 

data clustering, and been found superior to traditional methods [5]. Although similar in 

objective, k-clique communities is hampered in practice by its bottom up approach relying 

on an exhaustive enumeration of maximal cliques. Paraclique, in contrast, applies top down 

design principles and employs maximum clique, for which there are highly efficient and 

reasonably scalable algorithms [6], plus viable alternatives based on duality and 

parameterized complexity [7].

Paraclique can be formulated in a variety of ways. The general idea is to expand a maximum 

clique by augmenting it with non-clique vertices adjacent to most, but not all, members of 

the clique. The motivation for deriving dense subgraphs in this fashion is based on the fact 

that so-called “missing” edges, while relevant, are often lost due to noise, improper 
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thresholding, weak experimental design, and numerous other causes. A classic example of 

this phenomenon can be found in the use of DNA microarrays for transcriptomic data 

analysis. In this setting, vertices represent genes, edges signify co-expression, and 

paracliques denote molecular response networks differentially (in)activated by stimulus [4]. 

Depending on a variety of factors, most but not all network elements may be highly 

intercorrelated at any particular time.

Previous paraclique studies have focused mainly on practical results. Representative 

examples include [8, 9, 10]. Instead, our primary goal in this paper is to investigate 

paraclique’s theoretical basis. In so doing, we seek to derive bounds on its worst-case 

behavior, applying density as the classic clustering metric (we compute a subgraph’s density 

in the traditional way, as the number of edges present divided by the maximum number 

possible). In the original paraclique formulation, the total number of missing edges was left 

unchecked. Density could, therefore, in principle be driven to zero. By limiting paraclique 

size to at most twice the maximum clique size, however, and by requiring that a new non-

clique vertex be adjacent to all but one vertex in the growing paraclique, it is known that 

density is maintained at no less than 50% [4]. Here, we greatly expand upon such density 

results.

In the next section, we formalize definitions, describe relevant background, and establish 

several helpful preliminary results. In Sections 3 and 4, we derive bounds on general and 

special cases, respectively. In a final section we draw conclusions and discuss directions for 

future research.

2. Preliminaries

Let G denote a finite, simple, undirected graph. A clique is a subgraph of G in which every 

pair of vertices is connected by an edge. A paraclique, P, is constructed by first finding a 

clique C of maximum size, then glomming onto non-clique vertices in a controlled fashion. 

An integer glom term, g, is used to accomplish this. In the original algorithmic formulation 

[4], a non-clique vertex was chosen if and only if it was adjacent to g or more vertices in P. 

The number of required adjacencies does not scale with the size of P using this approach, 

however, so we generally invert this comparison. Thus, we glom onto a non-clique vertex if 

and only if it is adjacent to all but at most g vertices in P. In applications, g is usually some 

small value. In any case we insist that 0 < g < k, where k denotes the number of vertices in 

C.

Pseudocode for the paraclique procedure is displayed in Algorithm 1. A sample paraclique 

construction is illustrated in Figure 1. For the reader’s convenience, definitions employed in 

the sequel are summarized in Table 1.

Algorithm 1

The Paraclique Algorithm

input : graph G, glom term g

output: paraclique P, a subgraph of G
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C ← maximum clique of G

V ← vertex set of C

while V̅ contains a vertex v adjacent to all but at most g vertices

  in V do

  | V ← V ∪ {v}

end

P ← subgraph induced by V

return P

We start by establishing lower and upper bounds on maximum paraclique size.

Lemma 1

A paraclique may contain as many as (g + 1)k vertices.

Proof—To construct a paraclique P that satisfies this bound, we begin with g+1 disjoint 

cliques of size k, denoting them C0, C1, …, Cg, and labeling the vertices of each Ci as υik, 

υik+1, …, υ(i+1)k−1. To this we add edges connecting vertices υr and υs provided they are in 

different cliques and r ≢ s modulo k. The maximum clique size has not changed, since any 

set of k+1 vertices will contain at least two whose indices are in the same equivalance class 

modulo k (and are thus non-adjacent). Given a graph containing this structure, the paraclique 

algorithm may return P because υi is adjacent to all but at most g lower-indexed vertices for 

any 0 < i ≤ (g + 1)k − 1.

Lemma 2

A paraclique cannot contain more than 2gk vertices.

Proof—Let P denote a paraclique of size p > k. By construction, the number of edges in P 
is at least

Since P has no clique of size k +1, we know by Turán’s Theorem [11] that it contains at 

most  edges. Combining the two edge counts produces
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Because p > k, we conclude that p ≤ 2gk.

3. General Case

Let us suppose that C has been isolated, and that g has been chosen. By comparing g and p, 

we will now prove that as P grows its density approaches 1.0. On the other hand, by 

comparing g and k, we will also prove that no matter how P changes its density never falls 

below 0.5.

Theorem 3

A paraclique’s density is at least .

Proof—As we have previously shown, the number of edges in P is at least

Combining that with Lemma 2 ensures

Theorem 4

A paraclique’s density is at least .

Proof—P is missing at most g(p−k) edges. From this it follows that d(P) is bounded below 

by
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Using basic calculus plus the fact that p ≥ k, we see that this function takes its minimum on 

the interval [k, 2gk] at . Because  for all k ≥ 2, d(P) is 

minimized when p is either 2k − 1 or 2k. We know from Lemma 1 that both values are 

possible, and in either case we find that d(P) is at least

Sometimes Theorem 3 provides the better guarantee. This happens, for example, when k = 6, 

g = 2 and p = 20. At other times, say when k = 5, g = 4 and p = 10, Theorem 4 provides the 

tighter result. In any event, the following overall lower bound on density is obtained from 

Theorem 4 coupled with the fact that 1 ≤ g < k.

Corollary 5

A paraclique’s density always exceeds 1/2.

4. Special Case

The glom term setting g = 1 is frequently used in practice. Paraclique structure is 

considerably more scrutable in this special case. See Figure 2. In what follows, we say that P 
is nontrivial if it does not equal C.

Theorem 6

When g = 1, a nontrivial paraclique’s density lies between  and , 

inclusive.

Proof—Suppose P is such a paraclique. From Lemma 2 and the nontriviality of P we know 

. P must be missing exactly (p − k) edges, else G would have a clique of 

size k + 1. The number of edges in P is thus , and so

Given p, this is just a linear function of k with a positive slope. It’s minimum therefore 

occurs when , ensuring

and its maximum occurs when k = p − 1, ensuring
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Theorem 7

When g = 1, a nontrivial paraclique’s density lies between  and , 

inclusive.

Proof—From Lemma 2 and the nontriviality of P we know k + 1 ≤ p ≤ 2k. Again we note 

that P must be missing exactly (p − k) edges, and so . As in the proof of 

Theorem 4, we find from basic calculus that this function is minimized at , which 

occurs at both p = 2k − 1 and p = 2k. It is maximized at  when p = k + 1.

Theorem 6 tends to provide a better lower bound when p is at the lower end of its range 

relative to k, while Theorem 7 tends to produce a better upper bound when p is at the upper 

end of its range. In any event, the following overall lower bound on density is obtained from 

Theorem 7 coupled with the fact that C must contain at least one edge.

Corollary 8

When g = 1, a paraclique’s density is always at least 2/3.

5. Conclusions and Directions for Further Research

We have derived density bounds for the paraclique algorithm, a noise-resilient clique-centric 

technique designed for dense subgraph extraction. To the best of our knowledge, other than 

the elementary result from [4], these are the first formal density limits for what have come to 

be popularly known as network community methods. This gives paraclique another potential 

practical endorsement, in addition to those due to biological enrichment as discussed in [5].

Although we remain primarily concerned with lower bounds, we were able to prove 

asymptotically tight lower and upper bounds for the special case g = 1. Proving better 

bounds for the general case remains an elusive open problem. Our lower bounds are not tight 

for arbitrary g > 1; our only upper bounds are weak because they are inherited from the 

special case. If formal analysis proves too difficult, and it may well might, then an alternate 

approach could center on empirical testing. Both real and synthetic data might be employed 

to estimate average densities and their expected deviations from our worst-case guarantees.
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Figure 1. 
An example paraclique grown with glom term g = 2 from an initial maximum clique of size 

four {1,2,3,4} (a) and successively adding vertices 5 (b), 6 (c) and 7 (d).
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Figure 2. 
An example of a paraclique with g=1, starting from maximum clique {0,1,2} (a), and 

successively adding vertices 3 (b), 4 (c), 5 (d).
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Table 1

Definitions used in this paper

term meaning

G a finite, simple, undirected graph

C a maximum clique in G

k the number of vertices in C

P a paraclique as produced by Algorithm 1

p the number of vertices in P

g the glom term used in Algorithm 1

d(P) the density of P
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