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Abstract

Using a generalized random recurrent neural network model, and by extending our recently 

developed mean-field approach, we study the relationship between the network connectivity 

structure and its low dimensional dynamics. Each connection in the network is a random number 

with mean 0 and variance that depends on pre- and post-synaptic neurons through a sufficiently 

smooth function g of their identities. We find that these networks undergo a phase transition from 

a silent to a chaotic state at a critical point we derive as a function of g. Above the critical point, 

although unit activation levels are chaotic, their autocorrelation functions are restricted to a low-

dimensional subspace. This provides a direct link between the network's structure and some of its 

functional characteristics. We discuss example applications of the general results to neuroscience 

where we derive the support of the spectrum of connectivity matrices with heterogeneous and 

possibly correlated degree distributions, and to ecology where we study the stability of the cascade 

model for food web structure.

I. INTRODUCTION

Advances in measurement techniques and statistical inference methods allow us to 

characterize the connectivity properties of large biological systems such as neural and gene 

regulatory networks [1–4]. In many cases connectivity is shown to be well modeled by a 

combination of random and deterministic components. For example, in neural networks, the 

location of neurons in anatomical or functional space, as well as their cell-type identity 

influences the likelihood that two neurons are connected [2, 5, 6].

For these reasons it has become increasingly popular to study the spectral properties of 

structured but random connectivity matrices using a range of techniques from mathematics 

and physics [7–14]. In most cases, the spectrum of the random matrix of interest is studied 

independently of the dynamics of the biological network it implies. Therefore, these results 
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can be used only to make statements about the dynamics of a linear system where knowing 

the eigenvalues and eigenvectors is sufficient to characterize the dynamics.

Here we study the dynamics of nonlinear random recurrent networks with a continuous 

synapse-specific gain function that can depend on the pre- and post-synaptic neurons’ 

locations in an anatomical or functional space. These networks become spontaneously active 

at a critical point that is derived here, directly related to the boundary of the spectrum of a 

new random matrix model. Given the gain function we predict analytically the network's 

leading principal components in the space of individual neurons’ autocorrelation functions.

In the context of analysis of single and multi-unit recordings our results offer a mechanism 

for relating structured recurrent connectivity to functional properties of individual neurons in 

the network; and suggest a natural reduced space where the system's trajectories can be fit 

by a simple state-space model. This approach has been used to explain the dynamics of 

neurons in motor cortex by comparing the results of training recurrent artificial neural 

networks (“reservoir computing”) to neural data [15, 16]. These applications have thus far 

assumed the initial condition (i.e. the network before training) is a completely unstructured 

neural substrate.

Recently we showed how a certain type of mesoscopic structure can be introduced into the 

class of random recurrent network models by drawing synaptic weights from a finite number 

of cell-type-dependent probability distributions [13]. In contrast to networks with a single 

cell-type [17], these networks can sustain multiple “modes,” characterized in terms of the 

individual neuron autocorrelation functions.

Here these results are further generalized to networks where the synaptic weight between 

neurons i, j is drawn from a distribution with mean 0 and variance , where N is the 

size of the network. The smoothness conditions satisfied by the gain function g are stated 

below. This allows us to treat, for example, networks with continuous spatial modulation of 

the synaptic gain. The solution to the network's system of mean-field equations that we 

derive offers a new viewpoint on how functional properties of single neurons can in fact be a 

network phenomenon.

A. Model and main results

Consider a general synapse-specific gain function g(zi, zj) that depends on normalized 

neuron indices zi = i/N, where i = 1, . . . , N. We assume that there is some length scale s0 > 

0 below which g has no discontinuities. That is, we let  be a uniformly 

bounded, continuous function everywhere on the unit square except possibly on a measure 

zero set S0. The function g may depend on N in such a way that its Lipschitz constant 

, with  and 1 > β ≥ 0. Every point where g does not satisfy the above 

smoothness conditions must be on the boundary between squares of side s0 where it does.

The network connectivity matrix is then  with elements 2

(1)
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where  is a random matrix with elements drawn at random from a distribution with mean 

0, variance 1/N and finite fourth moment. In the simulations we use a Gaussian distribution 

unless noted otherwise.

In this paper we analyze the eigenvalue spectrum of the connectivity matrix J and the 

corresponding dynamics of the neural network. Note that by requiring that g is bounded and 

differentiable on the unit square outside of S0 we allow the synaptic gain function to be a 

combination of discrete modulation (e.g., cell-type dependent connectivity for distinct cell 

types, as in [13]) and of continuous modulation (e.g., networks with heterogeneous and 

possibly correlated in- and out-degree distributions, as in [18, 19]).

When g can be written as an outer product of two vectors [i.e. g(zi, zj) = g1(zi)g2(zj)], the 

model discussed here overlaps with that studied by Wei and by Ahmadian et al. [9, 12], but 

those works also consider matrix models that are not studied here.

The connectivity matrix J must not represent an all-to-all connected network, as the 

distribution of elements of J0 can have a finite mass at 0 (see Sec. V). However, in the 

current work we do not consider sparse models where the number of non-zero elements is 

finite or scales sublinearly with N. Studies of such matrices exist in the literature (for 

example, [20, 21]), but are limited to models with no structure.

In Sec. II we show that the spectral density of J is circularly symmetric in the complex 

plane, and is supported by a disk centered at the origin with radius  with

(2)

where  is a deterministic matrix with elements . Note that 

Λ1 is the Perron-Frobenious eigenvalue of a non-negative matrix, so indeed . For 

general synapse-specific gain function g it has not been possible so far to obtain an explicit 

formula for Λ1. However, we have been able to derive explicit analytic formulas in three 

cases of biological significance. First, in Sec. IV we discuss the case where  is a 

circulant matrix such that g(zi, zj) = g(zij) with

(3)

and show that . This special case is important for large neural networks 

where connectivity often varies smoothly as a function of neuron's index. Moreover, for this 

parametrization all the eigenvalues and corresponding eigenvectors can be computed 

analytically, which will make it possible to make stronger statements about the dynamics as 

is explained in Secs. III and IV.

For two additional parametrizations of g, the current mean-field approach is insufficient to 

fully characterize the dynamics, but we can use the general result [Eq. (2)] to analytically 

characterize the spectrum of the connectivity matrix. In Sec. V we derive the support of the 

bulk spectrum and the outliers of a random connectivity matrix with heterogeneous joint in- 
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and out-degree distribution. Finally, in Sec. VI we discuss a third example pertinent to large 

scale models of ecosystems. These systems are often modeled using g that has a triangular 

structure and in this case we also derive an analytic formula for Λ1.

Given the connectivity matrix J defined in Eq. (1), the dynamics of neural network model 

with N neurons is described by

(4)

where ϕj(t) = tanh[xj(t)]. The x variables can be thought of as the membrane potential of 

each neuron, and the ϕ variables as the deviation of the firing rates from their average 

values.

Using a modified version of dynamic mean field theory we show that in the limit N → ∞ 

this system undergoes a phase transition, where r is the coordinate that describes this 

transition and r = 1 is the critical point. Below the critical point (r < 1), the neural network 

has a single stable fixed point at x = 0. Above the critical point the system is chaotic.

We analyze the dynamics above the critical point in more detail and find a direct link 

between the network structure (g) and its functional properties. To that end we define N 
dimensional autocorrelation vectors

(5)

where 〈·〉 denotes average over the ensemble of matrices J and time. Note that because the 

average of each element of J is zero and the nonlinearity is an odd function, autocorrelations 

are computed about the fixed point xi = ϕi = 0. These vectors are restricted to the potentially 

low-dimensional subspace spanned by the right eigenvectors of  with corresponding 

eigenvalues that have a real part greater than 1. Thus, although the network dynamics are 

chaotic, they are confined to a low-dimensional space, which has been suggested as a 

mechanism that could make computation in the network more robust [22].

B. Separate excitation and inhibition

There are some limitations to the interpretation of the dynamics in Eq. (4) with connectivity 

described by Eq. (1) as a neuronal network. Most importantly, every column of J has both 

positive and negative elements corresponding to the unrealistic assumption that every neuron 

is both excitatory and inhibitory, and the hyperbolic tangent nonlinearity implies that firing 

rates can be both positive and negative. The usual justification of these assumptions is that 

every degree of freedom xi is in fact an average over a small number of neurons some of 

which are inhibitory and some are excitatory, and that ϕi represents the deviation of the 

firing rate from the steady state.

A more satisfying treatment to this problem is the recent work of Kadmon and Sompolinsky 

[23] extending our previous work [13]. They studied a network with block structure, where 

the distribution of elements in each block has a non-zero mean such that, if appropriately 
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defined, the elements in each column can have the same sign. They also considered non-

negative transfer functions in addition to the hyperbolic tangent. Their analysis showed that 

in addition to the stable fixed point and chaotic regimes, there is an additional regime of 

saturated firing rates. For the general case it was not possible to determine whether the 

transition to chaotic or saturated regime is seen first upon variation of the connectivity 

parameters, or what the dynamics look like if conditions for both instabilities hold (i.e., what 

the saturated and chaotic dynamics look like). We anticipate that for cases where the first 

transition is to the chaotic regime, the analysis presented here for synaptic weight 

distributions with mean 0 will apply (with the appropriate modifications similar to those in 

[23]) when the mean is nonzero.

Here we also treat networks with separate excitatory and inhibitory populations (Sec. V), by 

deriving the support of the bulk spectrum and outliers of connectivity matrices with 

heterogeneous degree distributions.

II. DERIVATION OF THE CRITICAL POINT

A. Finite number of partitions

We begin by recalling our recent results for a function g that has block structure. We defined 

a D × D matrix with elements gcd and partitioned the indices 1, . . . , N into D groups, where 

the cth partition has a fraction αc neurons. The synaptic gain function was then defined by 

g(zi, zj) = gcicj, where ci is the partition index of the ith neuron (c = 1, . . . , D).

Defining  allows us to write formally . With these 

definitions, we rewrite Eq. (4):

(6)

In [13] we used the dynamic mean field approach [17, 24, 25] to study the network behavior 

in the N → ∞ limit. Averaging Eq. (6) over the ensemble from which J is drawn implies that 

neurons that belong to the same group are statistically identical. Thus, the behavior of the 

full network can be summarized by D representative neurons ξd(t) and their inputs ηd(t), 
provided that (a) they satisfy

(7)

and (b) that ηd(t) is drawn from a Gaussian distribution with moments satisfying

(8)

(9)
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Here 〈·〉 denotes averages over i = nc–1 + 1, . . . , nc and k = nd–1 + 1, . . . , nd in addition to 

average over realizations of J. The average firing rate correlation vector is denoted by C (τ). 

Its components using the mean field variables are

(10)

The cross-covariance matrix 〈ηc (t) ηd (t + τ)〉 is diagonal so we define the vector H(τ) to be 

the diagonal. Now we can rewrite Eq. (9) as

(11)

where  is a constant matrix reflecting the network connectivity structure: 

.

A trivial solution to this equation is H(τ) = C(τ) = 0 which corresponds to the silent network 

state: xi(t) = 0. Recall that in the network with a Girko matrix as its connectivity matrix (D = 

1), the matrix M = g2 is a scalar and Eq. (11) reduces to H(τ) = g2C(τ). In this case the silent 

solution is stable only when g < 1. For g > 1 the autocorrelations of η are non-zero which 

leads to chaotic dynamics in the N dimensional system [17].

When D > 1, Eq. (11) can be projected on the eigenvectors of M leading to D consistency 

conditions, each equivalent to the single group case. Each projection has an effective scalar 

given by the eigenvalue in place of g2 in the D = 1 case. Hence, the trivial solution will be 

stable if all eigenvalues of M have real part < 1. This is guaranteed if Λ1, the largest 

eigenvalue of M, is < 1. If Λ1 > 1 the projection of Eq. (11) on the leading eigenvector of M 
gives a scalar self-consistency equation analogous to the D = 1 case for which the trivial 

solution is unstable. As we know from the analysis of the D = 1 case, this leads to chaotic 

dynamics in the full network. Therefore Λ1 = 1 is the critical point of the D > 1 network. 

Furthermore, the fact that in the D = 1 case the presence of the destabilized fixed point at x = 

0 corresponds to a finite mass of the spectral density of J with real part > 1 [17, 26] allowed 

us to read the radius of the support of the connectivity matrix with D > 1 and identify it as 

 [13].

B. Continuous case

The vector dynamic mean field theory we developed in [13] relies on having an infinite 

number of neurons in each partition with the same statistics. The natural choice is therefore 

to have the size of each group of neurons be linear in the system size: Nc = αcN.

This scaling imposes two limitations for comparing the results to the dynamics of more 

realistic networks. First, it requires knowledge of the cell-type identity of each neuron in the 

recording, which often is not available. Second, it limits the analysis of the dynamics to 

quantities that are averaged over neurons that belong to the same cell type.

To lift the requirement of block structured variances [i.e., now g = g(zi, zj)], we can do the 

following. Let  be a weakly monotonic function of N such that
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(12)

Recall that we allow the Lipschitz constant of g to grow as Nβ with 1 > β ≥ 0, implying that 

limN→∞ K(N) = ∞. A natural choice is  with , but as long as 

the specific scaling behavior will not matter in our analysis. For convenience we will 

suppress the N dependence when possible.

Let μ = 1, . . . , K and let

(13)

Furthermore, define  with elements

(14)

In other words, g̃ is an N × N matrix with K2 equally sized square blocks. The value of 

elements in each block is the value of the function g in the middle of that block. These 

definitions allow us to bridge the gap between the block and the continuous cases. Indeed, 

consider the random connectivity matrix with elements  and the network that has J̃ 

as its connectivity.

First, since N/K → ∞ as N → ∞, the number of neurons in each group goes to infinity, and 

we may use the vector dynamic mean field theory as before, but in a K dimensional space 

[rather than D which was O(1)]. The critical point is now given in terms of the largest 

eigenvalue of an N × N matrix M̃ with elements

(15)

where rank .

Second, recall that the function g is assumed to be smooth outside of a set with measure zero 

S0. These properties will allow us to show (see Appendix A) that as N → ∞ we have

(16)

meaning that by studying the system with connectivity structure g̃ in the limit N → ∞ we 

are in fact obtaining results for the generalized connectivity matrix with a smooth synaptic 

gain function g.
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C. Circular symmetry of spectrum

In [11] we used random matrix theory techniques to derive, for the case of block-structured 

J, an implicit equation that the full spectral density of J satisfies. The circular symmetry of 

the spectrum for that case is obvious because the equations [see Eq. (3.6) in [11]] depend on 

the complex variable z only through |z|2. Similar implicit equations, with integrals instead of 

sums, can be written for the continuous case. Rigorous mathematical analysis of the spectral 

density implied by such equations is beyond the scope of this paper and will be presented 

elsewhere. Nevertheless, the integral equations still depend on |z|2, supporting the circular 

symmetry of the spectrum.

III. DYNAMICS ABOVE THE CRITICAL POINT

A. Finite number of partitions

To study the spontaneous dynamics above the critical point we recall again the analogous 

result for a matrix with block structure. The D dimensional average autocorrelation vectors 

C(τ), Δ(τ) (see definition below) are restricted to a D★ dimensional subspace, where D★ is 

the number of eigenvalues of M with real part > 1 (i.e., the algebraic multiplicity of these 

eigenvalues). This result is obtained by projecting Eq. (11) on the right eigenvectors of M 
[13].

The definitions of the d = 1, . . . , D component of these vectors are

(17)

(18)

and the D★ dimensional subspace is

(19)

where  are the right eigenvectors of M in descending order of the real part of their 

corresponding eigenvalue (see examples in Fig. 1). An equivalent statement is that, 

independent of the lag τ, projections of the vectors C(τ), Δ(τ) on any vector in the 

orthogonal complement subspace  are approximately 0. Note that for asymmetric (but 

diagonalizable) M, Δ(τ) on any vector in the orthogonal complement subspace  are 

approximately 0. Note that for asymmetric (but diagonalizable) M,  is spanned by the left 

rather than the right eigenvectors of M:

(20)
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B. Autocorrelation modes in the generalized model

We can repeat the analysis of [13] for a network with connectivity  that has K2 

blocks, and for each N, K(N) obtain the subspace UM̃ that the K dimensional autocorrelation 

vectors C̃(τ),  are restricted to. These vectors have components

(21)

(22)

Now when we take the limit N → ∞ the dimensionality of the autocorrelation vectors C̃(τ), 

 becomes infinite as well, but the subspace UM̃ may be of finite dimension K★, where 

K★ is the algebraic multiplicity of eigenvalues of M̃with real part greater than 1 (see Sec. IV 

for an example).

We have shown that for g that satisfies the smoothness conditions, studying the network with 

connectivity  is equivalent to studying the network with connectivity J̃ in the 

limit N → ∞. Therefore, in that limit, the individual neuron autocorrelation functions Ci(τ), 

Δi(τ) [Eq. 5] are restricted to the subspace spanned by the right eigenvectors of 

corresponding to eigenvalues with real part > 1.

This in fact is equivalent to, given the network structure g, predicting analytically the leading 

principal components in the N dimensional space of individual neuron autocorrelation 

functions (see Fig. 2). Note that traditionally principal component analysis is performed in 

the N dimensional space of neuron firing rates rather than autocorrelation functions. 

Numerical analysis performed in [27] suggests that the system's trajectories, when 

considered in the space spanned by the vectors x or ϕ(x) (individual neuron activations or 

firing rates), occupy a space of dimension that is extensive in the system size N. However, 

when considered in the space of individual neuron autocorrelation functions, the dimension 

of trajectories is intensive in N and usually finite. In the subspace we derive here the 

information about the relative phases between neurons is lost, but the amplitude and 

frequency information is preserved. Section VII includes further discussion of the 

consequences of our predictions and how they may be applied.

C. Finite N behavior

For a finite system it is evident from numerical simulations that the N dimensional vector of 

autocorrelation functions has nonzero projections on inactive modes – eigenvectors of 

with corresponding eigenvalue which is < 1 (see Fig. 2). Here we study the magnitude of 

this effect, and specifically its dependence on N and on the model's structure function g. For 

simplicity, we will study the projections of the autocorrelation vector C(τ) at lag τ = 0. Let
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(23)

where  matrix with columns equal to orthogonalized eigenvectors of  with 

corresponding eigenvalue less than 1 [see Eqs. (19) and (20)]. Here 〈·〉 denotes averaging 

over an ensemble of connectivity matrices (with the same structure g and same size N).

Consider the homogeneous network [i.e., constant g(zi, zj) = g0 > 1]. Now 

contains all the vectors in  perpendicular to the dc mode  and the squared 

norm ∥C(0)∥2 = O(N) because on average all neurons have the same autocorrelation function 

[Eq. (10)]. Thus,  is simply the variance over the neural population of the 

individual neuron autocorrelation functions at lag τ = 0.

We can now use the mean-field approximation to determine the N dependence of . 

For N >> 1, the elements of the vector C(0) follow a scaled χ2 distribution

(24)

where  and χ2(N) is the standard χ2 distribution N degrees of 

freedom. Thus, in this limit,

(25)

The autocorrelation function is in general a single neuron property. Therefore, their variation 

about the mean is uncorrelated across neurons independent of the network's structure: 

〈Ci(0)Cj(0)〉 – 〈Ci(0)〉〈Cj(0)〉 ∝ δij. Thus, we can use the notation 〈(δCi(0))2〉 = 〈Ci(0)Ci(0)〉 

– 〈Ci(0)〉〈Ci(0)〉.

In the case with D partitions the vectors that span UG
(2) are no longer parallel to the dc 

mode. We assume that the projections on  can still be estimated using the χ2 

distribution, but here with αcN degrees of freedom for the c partition [instead of N, see Eq. 

(24)]. Thus, for a network with D partitions,

(26)

Finally, for K(N) partitions,

(27)
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At this stage, Eq. (27) remains ambiguous because the function K(N) is not a property of the 

neural network model. Rather, it is a construction we use to show that in the limit N → ∞ 

we are able to characterize the dynamics using the vector dynamic mean field approach. 

Therefore, for finite N we now wish to estimate an appropriate value of K = K[g].

This can be done by noting that the network with block structured connectivity is a special 

case of the one with a continuous structure function. For that special case we know that K[g] 

= D. Since g is smooth, for sufficiently large N, we can assume that in each block g is linear 

in both variables zi and zj:

(28)

Here  is the first derivative of g with respect to the first variable, evaluated in 

the middle of the μi, μj block.

The only expression for K[g] that depends on first derivatives of g and agrees with the 

homogeneous and block cases is

(29)

We are unable to test this prediction quantitatively, because we do not know the dependence 

of the function q on the structure g. We are able to show however that the dependence on N 
is the same as for the block models, which is confirmed by numerical simulations [compare 

solid purple, orange and red lines in Fig. 2(f)]. In the cases where g depends on N, the value 

of K[g] will also depend on N, such that the scaling of the “leak” may no longer be ∝ N−1.

IV. AN EXAMPLE WHERE g IS CIRCULANT

When the matrix g(zi, zj) is circulant such that g(zi, zj) = g(zij) with

(30)

the eigenvalues and eigenvectors of  are given in closed form by integrals of the function 

g2(zij) and the Fourier modes with increasing frequency. In particular, the largest eigenvalue 

of  corresponds to the zero frequency eigenvector ∝[1, . . . ,1]. To show 

this, consider the k+1 eigenvalue of the circulant matrix :

(31)

So in the limit N → ∞,
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(32)

as desired.

A. A ring network

As an example we study a network with ring structure that will be defined by g(zi, zj) = g0 + 

g1(1–2zij), such that neurons that are closer are more strongly connected.

This definition leads to the following form for the critical coordinate along which the 

network undergoes a transition to chaotic behavior

(33)

Interestingly, as g1 increases continuously, additional discrete modes with increasing 

frequency over the network's spatial coordinate become active by crossing the critical point 

Λk = 1. When modes with sufficiently high spatial frequency have been introduced, nearby 

neurons may have distinct firing properties.

B. A toroidal network

In contrast to the ring network discussed above, the connectivity in real networks often 

depends on multiple factors. These could be the spatial coordinates of the cell body or the 

location in a functional space (e.g., the frequency that each particular neuron is sensitive to). 

Therefore we would like to consider a network where the function g depends on the distance 

between neurons embedded in a multidimensional space.

This problem was recently addressed by Muir and Mrsic-Flogel [14] by studying the 

spectrum of a specific type of Euclidean random matrix. In their model, neurons were 

randomly and uniformly distributed in a space of arbitrary dimension, and the connectivity 

was a deterministic function of their distance. While their approach resolves the issue of the 

spectral properties of the random matrix when connectivity depends on distance in more 

than one dimension, the dynamics these matrices imply remain unknown.

To study the spectrum and the dynamics jointly, we define a network where neurons’ 

positions form a square K × K grid (with ) on the [0, 1] × [0, 1] torus [see Fig. 

3(a)]:

(34)

The positions of the neurons on the torus are schematized in Fig. 3(a).

An analogous parametrization for g to the one we used in the ring example which respects 

the toroidal geometry reads
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(35)

Note that now g depends on N, but it is bounded and its Lipschitz constant scales as , so 

it satisfies the smoothness conditions.

Figure 3(b) shows the spectrum of G(2) and the corresponding eigenvectors, plotted on a 

torus. Because there are non-uniform modes that are active (2 through 5), then each neuron 

has a different participation in the vector of autocorrelation functions. In Figs. 3(c) and 3(d) 

we show for a network with a range of N values that indeed the vector of autocorrelation 

functions is restricted to the predicted subspace in contrast to the firing rate vector.

The gain function analyzed here depends on a Euclidean distance on the torus. Other 

metrics, for example a city-block norm, can be treated similarly.

Overall these results provide a mechanism whereby continuous and non-fine -tuned 

connectivity that depends on a single or multiple factors can lead to a few active dynamic 

modes in the network. Importantly, the modes maintained by the network inherit their 

structure from the deterministic part of the connectivity.

V. MATRICES WITH HETEROGENEOUS DEGREE DISTRIBUTIONS

Here we will use our general result to compute the spectrum of a random connectivity 

matrix with specified in- and out-degree distributions. Realistic connectivity matrices found 

in many biological systems have degree distributions which are far from the binomial 

distribution that would be expected for standard Erdős-Rényi networks [28]. Specifically, 

they often exhibit correlation between the in- and out-degrees, clustering, community 

structures and possibly heavy-tailed degree distributions [5, 29]. Some results exist for 

symmetric adjacency matrices with broad degree distributions [30, 31] that are useful to 

studying systems beyond neuroscience.

We consider a connectivity matrix appropriate for a neural network model. Since each 

element of this matrix will have a nonzero mean, our current theory cannot make statements 

about the dynamics. Nevertheless the spectrum of the connectivity matrix is important on its 

own as a step towards understanding the behavior of random networks with general and 

possibly correlated degree distributions.

Consider a network with NE excitatory and NI inhibitory neurons (N = NE + NI). The 

connectivity is defined through the in- and out-degree sequences, N dimensional vectors 

where the ith element represents the number of incoming or outgoing connections to or from 

neuron i. Each inhibitory neuron has incoming or outgoing connections with probability p0 

to or from every other neuron in the network. Within the excitatory subnetwork, degree 

distributions are heterogeneous. Specifically, kin, kout are the average excitatory in- and out-

degree sequences that are drawn from a joint degree distribution that could be correlated. We 

assume that , where k̄ is the mean connectivity, and that the 
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marginals of the degree distribution are equal. Define x, y to be the NE dimensional vectors 

 and .

The matrix P defines the probability of connections given the fixed normalized degree 

sequences and p0:

(36)

The random adjacency matrix is then Aij ~ Bernoulli (Pij). Note that because the adjacency 

matrix is random, kin and kout are the average in- and out-degree sequences.

The connectivity matrix is then

(37)

with

(38)

where W0 is the ratio of the synaptic weight of inhibitory to excitatory synapses. It should be 

noted that the connections to and from inhibitory neurons are much less well characterized 

empirically, and the evidence for specific structure in these connections is weaker than for 

excitatory neurons. For this reason, outside of the excitatory subnetwork connectivity is 

assumed to be homogeneous.

To leading order, the distribution of eigenvalues of J will depend only on the mean and 

variance of its elements, which are summarized in the deterministic matrices Q (means) and 

 (variances) with elements

(39)

(40)

We will show that the rank of the deterministic matrix Q is ≤ 3 (generically for large N and 

non-fine-tuned parameters rank {Q} = 3). In [10], Tao considered a case similar to ours, 

studying the spectrum of the sum of a random matrix with independent and identically 

distributed elements and a low-rank perturbation. In Sec. 2 of that paper, it is shown that 

because the resolvent, (J0–z)−1 (where z is a complex number), is close to  outside the 

support of the spectrum, outlying eigenvalues fluctuate around the nonzero eigenvalues of 

the low-rank perturbation. Adapting the arguments of [32] in Sec. 5, as done in [11], it can 

be shown the resolvent of random matrices with independent and non identically distributed 
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entries is also close to  outside the support of the bulk spectrum. Hence, outlying 

eigenvalues will fluctuate around the deterministic low-rank eigenvalues.

Combining these, we expect that if the nonzero eigenvalues of Q are outside of the bulk that 

originates from the random part of the matrix, the spectrum of the matrix J (with nonzero 

means) will be approximately a composition of the bulk and outliers that can be computed 

separately and that the approximation will become exact as N → ∞. This is verified through 

numerical calculations (Fig. 4).

Viewing the normalized degree sequences x, y as deterministic ministic variables we define

(41)

Given the parameters W0,p0, NE, NI, we show in Appendix B that 

(generically for large N and non-fine-tuned parameters ) and its 

characteristic polynomial is  with

(42) 

†

and ak = 0 for k > 4. Therefore, using our results, the radius of the bulk spectrum of J is 

equal to the square root of the largest solution to .

Furthermore we show that the nonzero eigenvalues of Q are equal to the roots of the 

polynomial , with

(43)
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and bk = 0 for k > 3, such that the outlying eigenvalues of J are approximated by the roots of 

 that lie outside of the bulk.

If the degree sequences are not specified, but only the joint in- and out-degree distribution 

they are drawn from, the random matrix J will be constructed in two steps: first kin and kout 

are drawn from their joint in- and out-degree distribution, and then the elements of J are 

drawn using the prescription outlined above. In such cases, one can in principle compute the 

averages , , etc., in terms of the moments of the joint degree distribution, and 

substitute these averages into the formulas we give assuming the degree sequences are fixed.

We have carried out that calculation (Appendix C) for Γ degree distributions with form 

parameter κ, scale parameter θ and arbitrary correlation ρ of the in- and out-degree 

sequences (see Fig. 4). We find that, for fixed marginals, the radius of the bulk spectrum 

depends extremely weakly on the correlation of the in- and out-degree sequences (see solid 

red line in inset to Fig. 4). The matrix Q however has a real, positive eigenvalue that for 

typical examples increases monotonically with the correlation, such that for some value it 

exits the bulk to the right (see Fig. 4). Work by Roxin [18], Schmeltzer et al. [19], and 

unpublished work by Landau and Sompolinsky [33] has shown that the broadness and 

correlation of the joint degree distribution can lead to qualitative changes in the behavior of 

a spiking network. Further work is required to investigate whether and why these changes 

can be explained by the spectrum of the connectivity matrix derived here. We anticipate that 

the outlier exiting the spectrum may be related to the transition to a saturated state observed 

in networks with block structure in [23].

VI. AN EXAMPLE FROM ECOLOGY

Random matrices have been used to study a wide variety of complex systems outside of 

neuroscience. Examples include metabolic networks, gene-regulatory networks, and 

communication networks. Here we analyze matrices with triangular structure that arise in 

ecology of food webs. The past few years have seen a resurgence of interest in the use of 

methods from random matrix theory to study the stability of ecosystems [34–36]. While the 

original work by R. May assumed a random unstructured connectivity pattern between 

species [37], experimental data shows marked departures from random connectivity [38]. 

This includes hierarchical organization within ecosystems where larger species have 

asymmetric effect on smaller species, larger variance in the number of partners for a given 

species [39], and fewer cycles involving three or more interacting species than would be 

expected from an Erdős-Rényi graph [40]. A popular model for food web structure is the 

cascade model [41], where species are rank ordered, and each species can exclusively prey 

upon lower-ranked species. The differential effects between predators and prey in the 

cascade model can be described using connectivity matrices with different statistics for 

entries above and below the diagonal [42]:

(44)

with
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(45)

(46)

where Θ is the Heaviside step function. We use the convention Θ(0) = 0. Here, J describes 

the interactions between different species in the ecosystem. For μa, μb > 0 and sufficiently 

larger than ga, gb, the entries above (below) the diagonal are positive (negative), so the 

matrix describes a perfectly hierarchical food web, where the top-ranked species consumes 

all the other species, the second species consumes all the species but the first, and so on.

We will focus on the random part of the matrix (i.e., we set μa = μb = 0). The spectrum of the 

sum of the deterministic and random parts remains a problem for future study. Note that 

since the deterministic part has full rank, one cannot apply simple perturbation methods.

According to our analysis, the support of the spectrum of J is a disk with radius , 

, and

(47)

Following the derivation in [42] we will show that .

The characteristic polynomial  is simplified by subtracting the i+1 

column from the ith column for i = 1,..., N – 1 giving

(48)

where we have defined  and . This simplifies to the recursion relation 

. Taking into account that , this 

recursion relation can be solved, giving:

(49)

Setting the characteristic polynomial  to 0 leads to the equation,

(50)

which has multiple roots
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(51)

We are interested in the largest among the N roots, which is real and positive. Taking into 

account the dependence of a and b on N, we find that:

(52)

as desired.

Interestingly, for all values of ga, gb the spectral radius of J is smaller than the radius of the 

network if the predator-prey structure did not exist. The latter is equal to . This 

suggests that the hierarchical structure of the interaction network serves to stabilize the 

ecosystem regardless of how dominant the predators are over the prey.

Note however that in this model there are no correlations. In [42], it was shown numerically 

that correlations (i.e., the expectation value of ) can dramatically change the stability of 

the network, compared with one that has no correlations.

VII. DISCUSSION AND CONCLUSIONS

We studied jointly the spectrum of a random matrix model and the dynamics of the neural 

network model it implies. We found that, as a function of the deterministic structure of the 

network (given by g), the network becomes spontaneously active at a critical point.

Identifying a space where the dynamics of a neural network can be described efficiently and 

robustly is one of the challenges of modern neuroscience [43]. In our model, above the 

critical point, the deterministic dynamics of the entire network are well approximated by a 

potentially low-dimensional probability distribution, with dimension equal to the number of 

eigenvalues of a deterministic matrix that have real part greater than 1.

The two limitations of our previous studies [11, 13] for interpreting multi-unit recordings are 

(1) that the cell-type identity of each neuron in the network has to be known and (2) that 

predictions are averaged over all neurons of a specific type.

Here both limitations are remedied. First, while some information about the connectivity 

structure is still required, this could be in the form of global spatial symmetries (“rules”) 

present in the network, such as the connectivity rule we used in the ring model. Second, our 

analysis provides a prediction for single neuron quantities, namely the participation of every 

neuron in the network in the global active dynamic modes.

Existence of discrete network modules with no apparent fine-tuned connectivity has been 

shown to exist in networks of grid cells in mammalian medial entorhinal cortex [44]. These 
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cells fire when the animal's position is on the vertices of a hexagonal lattice, and are thought 

to be important for spatial navigation. Interestingly, when characterizing the firing properties 

of many such cells in a single animal one finds that the the lattice spacing of all cells belongs 

(approximately) to a discrete set that forms a geometric series [44]. Much work has been 

devoted to trying to understand how such a code could be used efficiently to represent the 

animal's location (see for example [45, 46]) and how such a code could be generated [47].

However, we are not aware of a model that explains how multiple modules (subnetworks 

with distinct grid spacing) could be generated without fine-tuned connectivity that is not 

observed experimentally. In our model, continuous changes to a connectivity parameter can 

introduce additional discrete and spatially periodic modes into the network represented by 

finer and finer lattices. We are not arguing that the random network we are studying here 

could serve as a model of grid-cell networks, as there are many missing details that cannot 

be accounted for by our model. Nevertheless our analysis uncovers a mechanism by which a 

low-dimensional, spatially structured dynamics could arise as a result of random 

connectivity.

More broadly, our results offer insight into the question of what is the appropriate random 

matrix model for studying networks with structured connectivity. We focus our discussion 

on networks with increased probability of bidirectional connections (see for example [5]). 

Most empirical datasets consist of connectivity measurements within a subnetwork of a few 

neurons, and thus cannot distinguish between the following two processes giving rise to the 

observed over-representation of bidirectional connections [48]. One possibility is that 

microscopic (e.g., molecular) signaling is responsible for an increased probability that 

neuron i is connected to j, given that j is connected to i. An alternative possibility is that the 

in and out degree sequences are correlated macroscopically, so that if neuron j is connected 

to i the in- and out-degrees of i will be large with increased probability, so the chance that i 
is connected to j is larger than the average connectivity in the network. These two 

possibilities are related to different random matrix models that imply markedly different 

network dynamics: the first to an elliptic model where the elements Jij and Jji are correlated 

[7], and the second to a model with heterogeneous and correlated degree distributions, such 

as the one studied here that has a circularly symmetric spectrum.
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Appendix A: The limit K, N → ∞

Here we will show that the difference between the piecewise estimate g̃ and the continuous 

synaptic gain function g goes to 0 as N → ∞. We assumed that the unit square can be tiled 

by square subsets of area  where g is bounded, differentiable, and its first derivative is 

bounded in each subset. Note that the Lipschitz constant of g can depend on N, but s0 

cannot.
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For , recall our definitions for g ̃ and μi [Eqs. (13) and (14)] and define kij = 

(K−1(μi – 1), K−1μi × (K−1(μj – 1), K−1μj. Also recall our assumption that each point is either 

inside a square with side s0 within which there are no discontinuities or on the border of 

such a subset. Thus, for  we can assume that every constant region of g̃ is contained 

within a single square subset.

We would like to show that for all i, j

(A1)

Since s0 is independent of N, we only have to show that Eq. (A1) is true within a subset 

where g satisfies the smoothness conditions.

Using our definitions and the fact that g has Lipschitz constant ,

(A2)

So finally,

(A3)

Appendix B: The characteristic polynomials of GN(2) and Q

Here we compute directly the characteristic polynomials of  and Q (Eqs. 42, 43) using 

the minor expansion formula.

1. Calculation of spectrum of G(2)

Recall that N = NE + NI, and let  be the k × k matrix with elements taken from the 

intersection of k specific rows and columns of . The notation  will indicate that 

exactly kE and kI of these rows and columns correspond to excitatory and inhibitory 

neurons, respectively.

For convenience we will use ν = p0 (1 – p0) and . We would like to write 

an expression for the characteristic polynomial of  using the sums over its diagonal 

minors

(B1)
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where  for k ≥ 1 and a0 = 1. The notation  means a sum over all 

combinations of NE, NI such that NE + NI = k (i.e. the so-called k-row diagonal minors of 

). We will compute a0, . . . , a4 explicitly and show that ak = 0 for k > 4.

We begin by noting that the determinant of the 3 × 3 matrix

is 0 because the middle matrix is the sum of two rank 1 matrices.

The coefficient a0

By definition, a0 = 1.

The coefficient a1

The second coefficient, a1 is simply the trace

(B2)

where in the second row we used the functions of the degree sequences [Eq. (41)].

The coefficient a2

The third coefficient a2 is the sum of two row diagonal minors. There are three types of 

diagonal minors, only two of which are nonzero:

(B3)

Carrying out the summation over possible combinations

(B4)

Putting these together we get
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(B5)

The coefficient a3

The fourth coefficient a3 is the sum of all three row diagonal minors. Now there are four 

types of minors, only one of which is nonzero:

(B6)

Carrying out the sum,

(B7)

The coefficient a4

The last nonzero coefficient is a4, the sum of all four row diagonal minors. Here there are 

five types, only one of which is nonzero:

(B8)

Carrying out the sum we get

(B9)

The coefficients ak with k > 4

Now we show that ak = 0 for k > 4. A diagonal minor representing a subnetwork of five 

neurons or more can have NI = 0, NI = 1, or NI ≥ 2. If NI ≥ 2 the diagonal minor is zero 

because of repeated columns. If NI = 1, then NE ≥ 4. Here, the determinant is a weighted 
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sum of k = NE −1 = N −2 row diagonal minors of the form  which is zero for NE 

≥ 4. Last, if NI = 0 then again we have a sum of terms of the form  which are zero as 

discussed above.

2. Calculation of spectrum of Q

Using a similar approach we will compute the characteristic polynomial of Q and show that 

generically rank {Q} = 3. Using the sums over diagonal minors of QNE+NI,

(B10)

where  for k ≥ 1 and where  is a k × k matrix with elements taken from the 

intersection of k rows and columns of Q. Again,  will indicate that kE and kI rows and 

columns correspond to excitatory and inhibitory neurons, respectively.

The coefficient b0

By definition we have b0 = 1.

The coefficient b1

The second term is the trace

(B11)

The coefficient b2

The third coefficient is the sum over two row diagonal minors:

(B12)

carrying out the summation, we get

(B13)

The coefficient b3
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The fourth and last nonzero coefficient is the sum over three row diagonal minors

Carrying out the sum,

(B15)

The coefficients bk with k > 3

Now we show that bk = 0 for k > 3. A minor representing a subnetwork of four neurons or 

more can have NI = 0, NI = 1, or NI ≥ 2. If NI ≥ 2 the minor is zero because of repeated 

columns. If NI = 1, then NE ≥ 3. Here, the determinant is a sum of k = NE − 1 N −2 row 

diagonal minors of the form  which is zero for E ≥ 3. Lastly, if NI = 0 then again 

we have a sum of terms of the form  which is zero as discussed above.

Appendix C: Networks with Γ degree distributions

We choose a specific parametrization where the marginals of the joint in- and out-degree 

distribution are Γ with form parameter κ, scale parameter θ and have average correlation ρ. 

Owing to the properties of sums of random variables that follow a Γ distribution, we can 

write the random in- and out-degree sequences as

(C1)

where 1 ≤ i ≤ NE. In this Appendix 〈·〉 will denote averages over the joint in- and out-degree 

distribution.

The moments of the distribution imply that, for this parametrization,

(C2)

for all 1 ≤ i ≤ NE. Here, since elements of  and  are (separately) independent and 

identically distributed we will suppress the subscript i and superscripts in, out when 

possible, and let 〈k2〉 = 〈kin⊤kin〉, kinkout = kin⊤kout, etc.
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One can verify that indeed the average correlation between the in- and out-degree sequences 

is

(C3)

Using this parametrization we compute the averages , , etc., and express them in 

terms of ρ, θ, κ, and NE.

The functional 

(C4)

The functional 

(C5)

The functional 

(C6)

The functional 

To compute  we first derive an expression for kin2kout2. Using the independence of k1, 
k2, k3,

(C7)

Now we can write
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(C8)

The functional 

To compute  (and ) we first derive an expression for 〈kinkout2〉. Using the 

independence of k1; k2; k3,

(C9)

Now we can write

(C10)

The functional 

(C11)
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FIG. 1. 
Eigenspaces of two example networks – one with block structured connectivity (top) and 

another with continuous gain modulation (bottom). (a) The synaptic gain matrix gij. (b) The 

spectrum of the random connectivity matrix J in the complex plane. The spectrum is 

supported by a disk with radius  indicated in red. (c) The square root of the largest 

eigenvalues of . When these are greater than 1, the corresponding eigenvectors [shown in 

(d)] are active autocorrelation modes. For the continuous function we chose the circulant 

parametrization (see Sec. IV A) with g0 = 0.3, g1 = 3.0 and γ = 2.0. For the block structured 

connectivity, g was chosen such that the first five eigenvalues match exactly to those of the 

continuous network.

Aljade et al. Page 28

Phys Rev E. Author manuscript; available in PMC 2017 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 2. 
Low-dimensional structure of network dynamics. Traces of the firing rates ϕ[xi(t)] (a) and 

autocorrelations Ci(τ) (b) of eight example neurons chosen at random from the network with 

continuous gain modulation (shown in the bottom row of Fig. 1). (c) The sum of squared 

projections of the vector Ci(τ) on the vectors spanning UG(2) (the active modes, solid lines) 

or  (the inactive modes, dashed lines). The dimension of the subspace UG(2) is K★ = 1 

for the network with g = const and K★ = 3 for the block and continuous cases (orange and 

red, respectively), much smaller than N – K★ ≈ N, orthogonal the dimension of the 

complement space . (d) Our analytically derived subspace accounts for almost 100 

percent of the variance in the autocorrelation vector for  (in units of the synaptic time 

constant). (e) Reducing the dimensionality of the dynamics via principal component analysis 

on ϕ(x) leads to vectors (inset) that account for a much smaller portion of the variance 

(when using same dimension K★ for the subspace), and lack structure that could be related 
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to the connectivity. (f) Summary data from 50 simulated networks per parameter set (N, 

structure type) at τ = 0. As N grows the leak into  diminishes if one reduces the space of 

the Ci(τ) data while the fraction of variance explained becomes smaller when using PCA on 

the ϕ[xi(t)] data, a signature of the extensiveness of the dimension of the chaotic attractor.
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FIG. 3. 

Results for a toroidal network. (a) A grid strategy with  for tiling the [0, 1] × [0, 1] 

torus with N neurons (left) and the resulting deterministic gain matrix with elements gij for 

three values of N as defined in Eq. (35) (right). Unlike the ring network, here g depends on 

N, and its derivative is unbounded so as N increases the gain function “folds.” The 

parameters of the connectivity matrix are g0 = 0.7, g1 = 0.8. (b) The 25 nonzero eigenvalues 

of  for N = 1600 and the eigenvectors corresponding to eigenvalues that are greater than 

1 plotted on a torus with coordinates . (c) The sum of squared projections of the 

vector Ci(τ) on the vectors spanning UG(2) (the active modes, red line) or  (the inactive 

modes, black line). Shades indicate the standard deviation computed from 50 realizations. 

(d) Comparison of the variance explained at τ = 0 by our predicted subspace (solid line) and 

by performing PCA on ϕ(x) (dashed line). Error bars represent 95% confidence intervals. 

Inset: the subspace we derived accounts for a large portion of the variance for time lags 

 (in units of the synaptic time constant).
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FIG. 4. 
Spectrum of connectivity matrices with heterogeneous, correlated joint degree distribution. 

The network parameters were chosen to be κ = 0.7, θ = 28.57, NE = 1000, NI = 250, p0 = 

0.05, W0 = 5, where κ and θ are the form and scale parameters respectively of the 

distribution from which the in- and out-degree sequences are randomly drawn. The average 

correlation ρ between the in- and out-degree sequences was varied between 0 and 1. For the 

values ρ = 0.2 (left) and ρ = 0.8 (right) we drew 25 degree sequences and based on them 

drew the connectivity matrix according to the prescription outlined in Sec. V. The 

eigenvalues of each matrix were computed numerically and are shown in black. For each 

value of ρ we computed the average functions ,  etc., and the roots of the 

characteristic polynomials  and  (see Appendixes B and C for derivation). The 

predictions for the support of the bulk (solid red line) and the outliers (orange points and 

dotted line) are in agreement with the numerical calculation. Inset: as a function of ρ, there is 

a positive outlier that exits the disk to the right.
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