
R E S EARCH ART I C L E
ANTHROPOLOGY
1Australian Centre for Ancient DNA, School of Biological Sciences and The Environment
Institute, The University of Adelaide, Adelaide, South Australia 5005, Australia. 2Department
of Anthropology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA. 3Depart-
ment of Genetics, Harvard Medical School, Boston, MA 02115, USA. 4Broad Institute of
Harvard and MIT, Cambridge, MA 02142, USA. 5Howard Hughes Medical Institute, Boston,
MA 20815, USA. 6Department of Archaeology and History, La Trobe University, Melbourne,
Victoria 3086, Australia. 7School of Mathematical Sciences, The University of Adelaide,
Adelaide, South Australia 5005, Australia. 8Museo de Sitio Huaca Pucllana, Miraflores,
Lima 18, Peru. 9Departamento de Humanidades, Pontificia Universidad Católica del Perú,
Lima 32, Peru. 10Centro de Investigaciones Arqueológicas del Museo de Sitio de Ancón,
Lima 38, Peru. 11Instituto Nacional de Antropología e Historia, Ciudad de Mexico, Mexico
City 6500, Mexico. 12Unidad de Arqueología y Museos, Ministerio de Culturas y Turismo
de Bolivia, La Paz 3165, Bolivia. 13Universidad de Magallanes, Punta Arenas 6210427, Chile.
14Peabody Museum of Archaeology and Ethnology at Harvard University, Boston, MA
02138, USA. 15Instituto de Investigaciones de Alta Montaña, Universidad Católica de Salta,
Salta 4400, Argentina. 16Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy
Cruz 2290, Cdad. Autónoma de Buenos Aires, Argentina. 17National Geographic Society,
Washington, DC 20036, USA. 18Instituto de Investigaciones Arqueológicas y Paleontológicas
del Cuaternario Pampeano–Consejo Nacional de Investigaciones Científicas y Técnicas,
Universidad Nacional del Centro de la Provincia de Buenos Aires, 7600 Olavarría, Argentina.
19Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile. 20School of
Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia.
*Corresponding author. E-mail: bastien.llamas@adelaide.edu.au (B.L.); alan.cooper@adelaide.
edu.au (A.C.); wolfgang.haak@adelaide.edu.au (W.H.)
†These authors contributed equally to this work.
‡Present address: Department of Integrative Biology, University of Texas at Austin, Austin,
TX 78712, USA.
§Equal senior authors.
¶Present address:Max Planck Institute for the ScienceofHumanHistory, Jena 07745, Germany.

Llamas et al. Sci. Adv. 2016; 2 : e1501385 1 April 2016
2016 © The Authors, some rights reserved;

exclusive licensee American Association for

the Advancement of Science. Distributed

under a Creative Commons Attribution

NonCommercial License 4.0 (CC BY-NC).

10.1126/sciadv.1501385
Ancient mitochondrial DNA provides high-resolution
time scale of the peopling of the Americas
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The exact timing, route, and process of the initial peopling of the Americas remains uncertain despite much research.
Archaeological evidence indicates the presence of humans as far as southern Chile by 14.6 thousand years ago (ka),
shortly after the Pleistocene ice sheets blocking access from eastern Beringia began to retreat. Genetic estimates of
the timing and route of entry have been constrained by the lack of suitable calibration points and low genetic
diversity of Native Americans. We sequenced 92 whole mitochondrial genomes from pre-Columbian South American
skeletons dating from 8.6 to 0.5 ka, allowing a detailed, temporally calibrated reconstruction of the peopling of the
Americas in a Bayesian coalescent analysis. The data suggest that a small population entered the Americas via a
coastal route around 16.0 ka, following previous isolation in eastern Beringia for ~2.4 to 9 thousand years after
separation from eastern Siberian populations. Following a rapid movement throughout the Americas, limited gene
flow in South America resulted in a marked phylogeographic structure of populations, which persisted through time.
All of the ancient mitochondrial lineages detected in this study were absent from modern data sets, suggesting a
high extinction rate. To investigate this further, we applied a novel principal components multiple logistic regression
test to Bayesian serial coalescent simulations. The analysis supported a scenario in which European colonization
caused a substantial loss of pre-Columbian lineages.
INTRODUCTION
The geographic isolation of the Americas delayed human settlement
until the end of the Pleistocene [20 to 10 thousand years ago (ka)]; how-
ever, despite this relatively recent date, the specific time, place, and
route of entry remain uncertain. It is likely that the first peoples
moved from Asia across the Bering Land Bridge (1, 2), the landmass
between Eurasia and America exposed by lowered sea levels during
the Last Glacial Maximum (LGM). However, at this time, much of north-
ern North America was covered by the Cordilleran and Laurentide ice
sheets, which blocked access from eastern Beringia (Bering Land Bridge
and Alaska/Yukon) southward to the rest of the Americas (Fig. 1A).
Shortly after the Cordilleran ice sheet began to retreat ~17 ka (3), a po-
tential Pacific coastal route became available ~15 ka (Fig. 1B) (3, 4),
whereas an alternative route through an inland ice-free corridor along
the eastern side of the Rocky Mountains opened around ~11.5 to 11 ka
(4–6). The timing and route used in the migration event are important
in understanding the size, number, and speed of the first migratory
wave(s). Timing and route are also pivotal in resolving contentious
issues such as the nature of peoples before Clovis—the first wide-
spread archaeologically recognized culture in North America (13.2
to 12.8 ka) (1).

Genetic studies of Native American populations are complicated
by the demographic collapse and presumed major loss of genetic di-
versity following European colonization at the end of the 15th century
(7). However, geographically widespread signals of low diversity and
shared ancestry (8–13)—particularly striking in maternally inherited
mitochondrial and paternally inherited Y-chromosome sequence data—
suggest that small founding groups possibly initially entered the Amer-
icas in a single migration event that gave rise to most of the ancestry
of Native Americans today (9, 12, 14). In contrast, the distribution of
some of the rare founding mitochondrial haplogroups (D4h3a along
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the Pacific coast of North and South America, and X2a in northwest-
ern North America) suggests that distinct migrations along the coastal
route and the ice-free corridor occurred within less than 2000 years
(15). Recent studies have identified a weak Australasian genomic
signature in several Native American groups from the Amazon,
compatible with two founding migrations (16), although the Austra-
lasian gene flow may have occurred after the initial peopling (17). Ir-
respective of the number of migration waves, the founding population
appears to have rapidly grown and expanded southward (8, 14, 18),
with low levels of gene flow between areas following initial dispersion
(12, 14).
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Unfortunately, the precision of molecular clock studies in the
Americas to date has been limited by the low genetic diversity and
lack of appropriate calibration points to accurately estimate rates of
molecular evolution. As a result, current mitochondrial molecular
clock estimates of the initial entry into the Americas, which assume
that the event corresponds to the initial diversification of Native
American genetic lineages, range from 26.3 to 9.7 ka (Fig. 2A). This
broad range spans most of the time frame over which the Bering Land
Fig. 1. Eastern Beringia during the LGM and retreat of the ice sheets.
(A) Exposed land when sea levels were lowest (light green), modern-day
landmass (dark green), and ice sheets (white). At the height of the LGM, the
Laurentide and Cordilleran ice sheets blocked access to the Americas from
eastern Beringia (that is, the Bering Land Bridge and Alaska/Yukon) (30).
Populations west of the Bering Land Bridge were able to migrate south-
ward during the LGM, but those on the Bering Land Bridge were unable to
retreat farther than the Aleutian ice belt (arrows). The last point of detectable
gene flow between Siberian and Native American ancestral populations
(24.9 ka) and the geographic isolation marked by the formation of Native
American founder lineages (18.4 ka) are shown (see Fig. 2B for details). The
Yana Rhinoceros Horn site (32 ka) and the Swan Point site (14 ka) illustrate
the temporal and geographic gaps in the Beringian archaeological record.
(B) The ice sheets that began to retreat ~17 ka, opening a potential Pacific
coastal route by ~15 ka (arrow). The rapid population expansion (16.0 ka)
likely marks the movement south of the ice (see Fig. 3C for details).
Fig. 2. Comparison of Bayesian estimates of the TMRCA of the Native
American founder haplogroups and of the divergence from Siberian
lineages. (A) Mean age (symbols) and 95% highest posterior density (HPD)
(error bars) for the TMRCA of each of the Native American haplogroups.
Shading indicates the period between the oldest lower bound of any
95% HPD and the youngest upper bound of any 95% HPD for each data
set. The purple dotted lines show the TMRCA bounds based on tip calibra-
tion; the blue dotted lines show the extreme TMRCA bounds from previous
publications (26.3 to 9.7 ka) (20, 25). (B) The isolation of Native American
populations estimated to have occurred after the last observable diver-
gence between Siberian and Native American lineages (24.9 ka based on
the lowest 95% HPD upper bound) and before the oldest date at which
all Native American founder haplogroups formed (18.4 ka based on the
lowest 95% HPD upper bound). See section S5 for detailed methods.
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Bridge route was feasible. Given the narrow temporal span of the ac-
tual diversification and migration into the Americas, much greater
precision is needed to distinguish between different migration routes
and hypotheses.

Molecular clocks highly depend on the quality of calibration points
to accurately estimate rates of molecular evolution (19). In the Amer-
icas, the scarce evidence of early human occupation and the absence of
sites in eastern Beringia for most of the late Pleistocene hinder reliable
calibration. An additional major challenge is the temporal dependence
of molecular rate estimates, whereby molecular evolution appears
more rapid when measured over short time intervals (19). In humans,
this problem is most apparent when recent time scales (for example,
the human settlement of the Americas) are analyzed using deep fossil
calibrations such as the human-chimpanzee split ~6 to 7 million years
ago (20). Accurate molecular rate estimates require a distribution of
calibration points close to the age of events under study (21, 22); in
this regard, ancient DNA sequences from dated skeletons provide suit-
able tip calibrations for studying recent evolutionary events (23).

To generate a detailed view of human matrilineal genetic diversity
in the Americas through time, with multiple calibration points, we se-
quenced the complete mitochondrial genome (mitogenome) of 92
pre-Columbian individuals, ranging in age from ~8.6 to 0.5 ka (table
S2). We then used Bayesian approaches to estimate coalescence times,
reconstruct a demographic history, and simulate and test population
scenarios.
RESULTS AND DISCUSSION

Novel genetic diversity in pre-Columbian times
The 92 pre-Columbian mitogenomes were sequenced to an average
coverage depth of 112× (5.6× to 854.2×; table S2). Sequences were as-
signed to 84 distinct haplotypes, which fell within the expected overall
mitochondrial diversity of Native South Americans (13), that is,
haplogroups A2, B2, C1b, C1c, C1d, and D1 (figs. S2 to S5). The Na-
tive South American haplogroup D4h3a was not observed in our an-
cient data set, although we sampled the South American southern
cone (Arroyo Seco 2, Argentina) where this lineage is common today
(15). None of the 84 haplotypes identified from ancient samples are
represented in the existing genealogy of global human mitochondrial
diversity [that is, PhyloTree mt; (24)] (figs. S2 to S5) or in the literature
(fig. S6). Although modern Native American genetic diversity is not well
characterized, this result clearly illustrates the importance of sampling
pre-Columbian specimens to fully measure the past genetic diversity
and to reconstruct the process of the peopling of the Americas.

Marked synchronicity of the Native South American
haplogroup times to most recent common ancestor
The estimated times to most recent common ancestor (TMRCA) for
haplogroups A2, B2, C1, D1, and D4h3a were highly synchronous
(Fig. 3 and fig. S8), confirming previous interpretations that all five
haplogroups were part of one initial population (25). The TMRCA fell
within the range of previous molecular date estimates, although the
narrower 95% credible intervals considerably increased the precision
(Fig. 2A). Older dates for the initial diversification within each haplo-
group have been previously calculated using the human-chimpanzee
calibration (25, 26), whereas much younger dates resulted from cali-
brations using non–Native American mitochondrial lineages asso-
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ciated with biogeographic events (20). This clearly illustrates the
impact of time-dependent rate estimates and the critical influence of
the calibration framework (27). Our use of a large number of tempo-
rally and phylogenetically distributed tip dates provides an accurate
calibration of the molecular rates relevant to Native American early
history (28), allowing a uniquely precise timeline for the peopling of
the Americas.

Separation from Siberian populations during the LGM
The most recent genetic divergence observed between the ancestors
of Siberians and Native Americans (24.9 ka; section S5 and Fig. 2B) is
the last point at which we can detect apparent gene flow (that is, a
shared lineage) between the Siberian population and the ancestral Na-
tive American population. We can assume that the real population
divergence occurred after this point. In addition, if we accept that the
estimated TMRCA of each of the five Native American haplogroups
provides an independent estimate of the timing of the same small pop-
ulation’s isolation, we can use the 95% credible intervals to constrain
the lower bound (section S5). The resulting estimate that the two pop-
ulations became fully isolated between 24.9 and 18.4 ka is in accord-
ance with calculations frommodern complete genomes which indicate
that Siberians and Native Americans split no later than ~23 ka (17).
Gene flow to and from east Siberia certainly appears to have ceased by
the height of the LGM (18.4 ka; Fig. 2B).

Eastern Beringia as a sustainable refugium for ancestral
Native Americans
Our data cannot determine whether the separation between Siberian
and Native American ancestral populations occurred in Siberia or
Beringia. However, the start of isolation (24.9 to 18.4 ka) closely co-
incides with the LGM. We hypothesize that cold arid conditions drove
populations on the western (that is, Siberian) margins of the Bering Land
Bridge to migrate to southern refugia (Fig. 1A), as suggested by the
absence of megafauna kill sites younger than the far north Yana Rhinoc-
eros Horn site 32 ka (1). In contrast, any populations east of the
Kamchatka and Chukotka Peninsulas would not have been able to
retreat farther south than the Aleutian ice belt and would thus remain
isolated in eastern Beringia (Fig. 1A). We cannot accurately estimate
the size of this founding population, but the effective female popula-
tion that subsequently entered the Americas appears to be ~2000, which
accords well with previous studies (9, 10, 25). Although this number
cannot be directly translated into census population size, it suggests
that the human population isolated in eastern Beringia was relatively
small, probably not exceeding a few tens of thousands of people (sec-
tion S6). The presence of large numbers of megafauna in eastern
Beringia during the late Pleistocene, including the LGM, indicates
an ice-free region dominated by shrub tundra (29), which would have
been more than capable of sustaining such a population size (section
S6). Thus, our observations are consistent with the idea that the found-
ing Native American population used the exposed Bering Land Bridge
and adjacent regions in Alaska/Yukon as a refugium during the height
of the LGM, before climatic change and the retreat of the ice sheets
allowed access to the remainder of the Americas. Unfortunately, the
large temporal and geographic gaps in the archaeological record be-
tween the Yana Rhinoceros Horn site (~32 ka, western Beringia) and
the Swan Point site (~14 ka, eastern Beringia) provide little additional
information about this process (Fig. 1A) (1) or how the ancestral Native
Americans were isolated from their Asian counterparts.
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Fig. 3. Dated Bayesian mitogenomic tree and reconstruction of past effective female population size. The mitogenomic tree and the demographic
plot are based on replicate data set 1, which is representative of the three replicate data sets (fig. S7). (A) Complete tree showing the relationships
between the main Native American haplogroups A, B, C, and D, as well as their TMRCA (colored circles). Black circles show the divergences between
Siberian and Native American lineages. Siberian clades are shown in black and Native American clades are shown in gray. (B) Detailed tree with Siberian
clades (black), modern Native Americans (blue), and ancient Native Americans (red). Colored and black circles as in (A). Gray shadings and empty black
circles highlight shared ancestry for individuals from the same geographic location or from the same cultural background. The filled black triangle (haplo-
group A2) is the most recent common ancestor between an ancient haplotype and a modern haplotype at ~9 ka. (C) Extended Bayesian skyline plot of
female effective population size, based on a generation time of 25 years.
Llamas et al. Sci. Adv. 2016; 2 : e1501385 1 April 2016 4 of 10
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The Beringian Standstill (~2.4 to 9 thousand years)
The scenario of an Eastern Beringia refugium is consistent with the
Beringian standstill hypothesis, which suggests that the ancestral Na-
tive Americans were isolated in the area for up to 15 thousand years
(ky) (9, 10, 29). Our large data set of dated mitogenomes provides
tight estimates for the duration of the standstill and the subsequent
movement out of the area. The mitogenomic tree shows a sudden burst
of lineage diversification starting ~16.0 to 13.0 ka (Fig. 3B). This is
followed by a steep increase in the mean female effective population
size (>10%) between adjacent time bins starting 16.0 ka (Fig. 3C).
Overall, the population underwent a 60-fold increase between 16.0 and
13.0 ka, suggesting that 16.0 ka represents the initial entry into the
Americas, where population size significantly increased in a more fa-
vorable environment. Considering the time between isolation (24.9 to
18.4 ka) and entry (16.0 ka), the improved temporal resolution pro-
vided by our data suggests that the Beringian Standstill could have been
as short as ~2.4 ky, and no longer than ~9 ky, consistent with re-
cent estimates based on autosomal data from complete modern-day
genomes (17).

A coastal entry route
The population burst at 16.0 ka is contemporaneous with the rapid
retreat of coastal glaciers along the northwest Pacific coast associated
with a phase of stepwise ocean warming (2° to 3°C) in the region (3).
This date considerably predates the opening of the inland ice-free cor-
ridor ~11.5 to 11.0 ka (4–6) and indicates that the initial entry into the
Americas took place via a southward expansion along recently
emerged northwest Pacific coastal land (Fig. 1B) (3, 17, 28, 30, 31). Given
the early archaeological sites in Monte Verde in southern Chile at
14.6 ka (32), the mitogenome data indicate that the transit of the full
length of the Americas took around 1.4 ky.

Early geographic structure after entry into the Americas
The phylogenetic trees feature multiple long branches stemming from
the initial expansion period (Fig. 3B), irrespective of whether the line-
ages lead to pre-Columbian (ancient) or modern-day individuals. This
topology appears to reflect the swift migration and expansion of a
population, which contained each major haplogroup, into and through-
out the Americas (8, 14, 18). Subsequent lineage diversification within
each haplogroup appears to be constrained to within specific geographic
regions or shared cultural backgrounds (Fig. 3B, gray shadings), which
is consistent with suggestions that geographic structure was rapidly
established after colonization and was thereafter followed by limited
gene flow between populations from diverse regions (14, 33).

Extinction of ancient lineages after European colonization
It has been suggested that European colonization resulted in a bottle-
neck in Native American genetic diversity (34, 35). In the present data
set, it is notable that no ancient haplotype (Fig. 3B, red lineages)
shared a common ancestor with a modern haplotype (Fig. 3B, blue
lineages) more recently than ~9.0 ka (Fig. 3B, black triangle in haplo-
group A2), despite the number of samples examined from both popu-
lations. Our ancient samples were principally derived from large
population centers along the western coast of South America, which
experienced high extinction rates following European colonization.
Historic accounts have reported that the population decline was
more rapid and intense in the Gulf of Mexico and the Pacific coast
of Peru than in other areas such as the Mesoamerican plateau or the
Llamas et al. Sci. Adv. 2016; 2 : e1501385 1 April 2016
Andean highlands (7). The pronounced phylogeographic structure
observed in Native American mitogenomes suggests that such
demographic events could have removed major portions of genetic di-
versity in certain areas. As a result, it is possible that the lack of overlap
between ancient and modern haplotypes is influenced by the under-
sampling of modern-day diversity in the source regions of the ar-
chaeological material.

To further examine the issue of local extinction, we used BayeSSC
(36) to simulate 15,000 coalescence trees for each of seven potential
population scenarios (section S7; Fig. 4 and fig. S10). The Akaike
information criterion for model selection, which is included in the
BayeSSC package, informs about the relative fit of the models but does
not inform about their absolute quality. As an alternative, we applied a
principal components multiple logistic regression (PCMLR) model
(37) to the BayeSSC summary statistics to predict which of the pop-
ulation scenarios best fits the observed data. We introduce this novel
approach in approximate Bayesian computation as a powerful way
to estimate both the relative [graphical representation of principal
components analysis (PCA)] (Fig. 4 and fig. S10) and the absolute
(Bayesian model verification; table S6) qualities of the tested models
(section S7).

We found that demographic models with one panmictic popula-
tion (model A in Fig. 4 and fig. S10) or with a simple geographic
separation of populations harboring the ancient and modern lineages
(that is, a localized small-scale separation across the continent; model
D) were poor fits for the data (table S6). The addition of a post-
European bottleneck with survival of both ancient and modern line-
ages (models B and E) did not improve the goodness of fit. More
complex models combined geographic separation and early and on-
going loss of ancient lineages—accelerated (model F) or not (model G)
by the European landfall—to account for demographic processes such
as serial founder effects and drift, or population turnover and elimi-
nation during the expansion of Central Andean empires. Such mod-
els were also poor fits for the data (table S6). Only a model that
combined both the geographic separation of populations harboring
modern and ancient haplotypes and the subsequent rapid extinction
of the ancient lineages following European colonization fit our em-
pirical observations (model C, minimum probability of 0.995; table
S6). As a further test, when the demographic model C was removed
from the analysis, the principal components remained mostly un-
changed (fig. S11). This observation supports the robustness of the
PCMLR model in correctly discriminating between the different
demographic alternatives (38). However, none of the remaining demo-
graphic models (model A, B, D, E, F, or G) strongly fit all empirical
observations (table S8), showing that model C is the only strong fit for
the empirical data.

As a result, our ancient mitochondrial data suggest that European
colonization was followed by local mass mortality and extinction of line-
ages associated with major population centers of the pre-Columbian
past. Our results contrast with previous observations that Native
American genetic diversity has been temporally and geographically
stable for at least the past 2000 years (33). However, the apparent con-
tradiction between our study and earlier work is likely attributable to a
significant improvement of sequence resolution. We also caution that
the demographic models tested in this study are likely too simple to
encompass the particulars of the colonization of the Americas—
despite exploring scenarios with early emergence of geographic struc-
ture, as well as ongoing haplotype loss resulting from either serial
5 of 10
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founder effects and drift, or population displacement and elimination
during the expansion of major Central Andean imperial states. Finally,
more complete mitochondrial sequence data from early and modern-
day populations will be needed to further refine the demographic
models. In particular, it will be critical to ensure a strong spatial
overlap between archaeological sites and present-day population loca-
tions (for example, Peru).
Llamas et al. Sci. Adv. 2016; 2 : e1501385 1 April 2016
CONCLUSION

The additional resolving power gained from widespread temporal
calibrations makes ancient mitochondrial DNA data from South
America a very cost-effective approach to examining the precise tim-
ing, route, and sequence of events that led to the peopling of the
Americas. In addition, this data set provides a genetic view of the
possible role played by European colonization in reducing the overall
Fig. 4. Effects of population structure and European colonization on South American mitochondrial diversity. Seven population scenarios simu-
lated with BayeSSC are represented (models A to G). The arrowheads in demographic models C to G represent the time of separation (9 ka) between the
population carrying modern haplotypes (Population 0) and the population carrying ancient haplotypes (Population 1) (that is, meta-demes with a pattern
of localized small-scale separation across the continent). The bottom-right panel is a PCA plot of summary statistics for the 15,000 simulations for each of
the seven models (25% of simulated data are reported; see fig. S10 for the full data set). Observed data from the three replicates are shown as black circles
and fall closest to results from model C (green points).
6 of 10
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Native American genetic diversity to the low levels observed today.
In the absence of archaeological evidence in southern and eastern
Beringia that is relevant to the peopling of the Americas, further res-
olution of the entry and routes of dispersal of the early settlers will be
possible with ancient genomic data from South America.
MATERIALS AND METHODS

Archaeological samples
Most of the archaeological samples were collected in the Central Andes
from sites in Peru (n = 70), western Bolivia (n = 9), and northern
Chile (n = 6), whereas the remaining samples came from northern
Mexico (n = 5) and the Argentinian Pampas (n = 2) (fig. S1 and table
S2). Permissions from respective National Heritage organizations were
obtained for all archaeological material analyzed in the study (section
S1) and are available upon request. Radiocarbon dates were either
published previously (39, 40) or obtained from the Oxford Radio-
carbon Unit to confirm the archaeological assignation based on strat-
ification and examination of artefacts (table S1).

Ancient DNA analysis
All ancient DNA work was conducted in clean-room facilities of the
Australian Centre for Ancient DNA (ACAD) at the University of
Adelaide, the Human Paleogenomics laboratory at the University
of California at Santa Cruz (UCSC), and the Reich laboratory at Har-
vard Medical School (HMS). DNA contamination control measures
are detailed in section S1. DNA was extracted using silica in solution
(22, 41) and converted into double-stranded libraries with truncated
Illumina adapters (42). RNA or DNA baits were used for hybridiza-
tion capture, followed by Illumina high-throughput sequencing
(sections S1 to S4). Automated variant calls were confirmed by eye
directly from the read pileups to avoid errors attributable to DNA
damage (sections S2 and S4).

BEAST analysis
We used a Bayesian approach to estimate mitogenome coalescence
times from the complete data using BEAST 1.8.0 (43) and recon-
structed a demographic history via the extended Bayesian skyline
method (44), which infers effective population size. Three random
subsets of 87 modern South American and Mexican mitogenomes
were used with the ancient data in replicate analyses. To estimate
the date of separation from Old World populations, we also added 20
of the most closely related east Siberian mitogenomes. The previously
published 12.6-ky Anzick-1 genome from Montana, United States (45),
was included to provide genetic diversity for haplogroup D4h3a and to
increase the depth of calibration points.We combinedmodern and dated
ancient mitogenomes and analyzed three replicate data sets of 200 se-
quences. The 93 ancient samples (including 12 sequences older than
3.5 ky) ensured temporal (12.6 to 0.5 ka) and phylogenetic coverage
(Fig. 3B), allowing internal calibration of the substitution rate for each
SouthAmerican haplogroup (fig. S9). Details are provided in section S5.

BayeSSC and model testing
We used BayeSSC (36) to simulate data for seven population scenarios
(Fig. 4): one panmictic population without (model A) or with a post-
European bottleneck (model B), or geographic separation (9 ka) of par-
allel populations featuring modern or ancient haplotypes (model D);
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geographic separation can be followed by either a post-European
bottleneck for both populations (model E), a complete extinction of
ancient lineages after contact with Europeans (model C), an early and
progressive loss of lineages leading to extinction of ancient lineages
(model G), or an early and progressive loss of ancient lineages followed
by a rapid post-European extinction (model F). We calculated within-
deme (Tajima’s D, haplotype diversity, number of haplotypes, etc.)
and between-deme [Fixation index (FST), average pairwise distances]
statistics for the observed and simulated data. We then performed a
PCA to remove colinearity between the summary statistics, because they
are likely to be correlated (37, 46), using the princomp function inR (47).
Finally, we fit a multiple logistic regression model (37) in which the re-
sponse variablewas themodel underwhich the datawere simulated and
the explanatory variables were the first five principal components. This
approach predicted which scenario was the most likely to have produced
data like those that we observed. Details are provided in section S7.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/4/e1501385/DC1
Supplementary Materials and Methods
Section S1. Archaeological samples, radiocarbon dating, and DNA contamination control
Section S2. DNA extraction, library preparation, and mitochondrial capture (ACAD)
Section S3. DNA extraction and library preparation (UCSC Human Paleogenomics laboratory
and HMS Reich laboratory)
Section S4. Mitochondrial DNA capture (HMS Reich laboratory)
Section S5. Bayesian phylogenetic analysis of mitochondrial data
Section S6. Ecological assessment of population sustainability in Beringia
Section S7. Bayesian coalescent simulations and evaluation of demographic scenarios
Table S1. Date calibrations for ancient mitogenome sequences.
Table S2. List of ancient samples, associated metadata, and sequencing results (separate Excel
document).
Table S3. Complete list of accession numbers for modern mitogenome sequences.
Table S4. Polymerase chain reaction (PCR) primers used for mitochondrial long-range PCR.
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