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Abstract Endoplasmic reticulum (ER) is the site of

protein synthesis, protein folding, maintainance of calcium

homeostasis, synthesis of lipids and sterols. Genetic or

environmental insults can alter its function generating ER

stress. ER senses stress mainly by three stress sensor

pathways, namely protein kinase R-like endoplasmic

reticulum kinase-eukaryotic translation-initiation factor 2a,
inositol-requiring enzyme 1a-X-box-binding protein 1 and

activating transcription factor 6-CREBH, which induce

unfolded protein responses (UPR) after the recognition of

stress. Recent studies have demonstrated that ER stress and

UPR signaling are involved in cancer, metabolic disorders,

inflammatory diseases, osteoporosis and neurodegenerative

diseases. However, the precise knowledge regarding

involvement of ER stress in different disease processes is

still debatable. Here we discuss the possible role of ER

stress in various disorders on the basis of existing literature.

An attempt has also been made to highlight the present

knowledge of this field which may help to elucidate and

conjure basic mechanisms and novel insights into disease

processes which could assist in devising better future

diagnostic and therapeutic strategies.
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Introduction

Recent developments highlighting new insights into the

endoplasmic reticulum (ER) stress regulated pathways, and

their role in various diseases, have attracted immense

attention towards this organelle. ER is a multifunctional

organelle coordinating numerous functions fundamental for

cell survival. It is the site of protein synthesis, protein

folding, synthesis of lipids and sterols, maintenance of cal-

cium homeostasis and post translational modifications of

proteins [1–3]. Genetic or environmental insults can alter the

functions of ER through calcium imbalance, redox imbal-

ance, glucose starvation, altered glycosylation of glyco-

proteins and protein misfolding, each of which can induce

ER stress [1–4]. In other words ER stress can be pictured as

perturbation arising from failure in execution of functions

assigned to ER or hindered working capacity of this orga-

nelle. To escape such adverse conditions, ER activates stress

sensor pathway termed as unfolded protein response (UPR)

through complex signaling network of Protein kinase R-like

endoplasmic reticulum kinase-eukaryotic translation-initia-

tion factor 2a (PERK-eIF2a), inositol-requiring enzyme 1a-
X-box-binding protein 1 (IRE1-XBP1), activating tran-

scription factor 6-CREBH (ATF6-CREBH) transducers.

This signaling network initiates changes in the expression of

hundreds of genes to restore cellular homeostasis. For

instance, halting of the global protein synthesis, through

general translation arrest, elevates the expression of ER

chaperons which enhances protein folding so as to maintain

the quality control of proteins while the misfolded proteins

get degraded through the ER-associated degradation

(ERAD) and autophagy. However, if the ER stress is pro-

longed, then UPR activates apoptotic signaling which may

progress through mitochondrial dependent or independent

pathways [Reviews; 5–8].
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ER senses stress mainly by three stress sensors namely

Protein kinase R-like endoplasmic reticulum kinase

(PERK), inositol-requiring enzyme 1a (IRE1) and acti-

vating transcription factor 6 (ATF6). These sensors induce

UPR after the recognition of ER stress/misfolding of pro-

teins. During normalcy, ER-luminal domains of UPR

transducers like IRE1, PERK and ATF6 are associated with

the glucose-regulated protein 78 (Bip/Grp 78), an HSP 70

family protein. Bip/Grp 78 maintains the homeostasis of

these signaling transducers. When ER is subjected to stress,

Bip/Grp78 is sequestered by unfolded proteins in ER,

resulting in its dissociation from the UPR transducers and

hence activation of these molecules [2, 9–11] see Fig. 1.

ER Stress and Apoptotic Signaling

Apoptosis, while on one hand, is fundamental to normal

development and maintenance of tissue homeostasis, on the

other, it is also a process by which physiologically normal

cells may die under stress or unfavorable conditions.

Apoptosis is implicated in several human diseases like

diabetes, hepatic disorders, neurodegenerative disorders

like Alzheimer’s and Parkinsons disease etc. Prolonged ER

stress result into the activation of apoptotic signaling

through UPR [12, 13]. During ER stress, calcium (Ca??)

effluxes from the ER increase cytosolic Ca?? levels and

disturb the mitochondrial membrane potential [14], which

results into the release of cytochrome c and forms apop-

tosome complex with Apaf1 and caspase 9. This complex

further activates the executioner caspases like caspase 3

and caspase 7 which leads to apoptosis [15–17]. ER

membrane associated caspase 12 is also implicated in the

activation of apoptosis through direct activation of caspase

3 or by caspase 9. CHOP/GADD153, sensor of endoplas-

mic reticulum stress, is highly up-regulated during ER

stress [18, 19]. In our studies, caspase 12 activation was

observed to be associated with enhanced intracellular cal-

cium levels together with increased mRNA and protein

levels of CHOP/GADD153 [20, 21]. CHOP is known to

inhibit the expression of antiapoptotic Bcl2 family proteins

and disturbs the ratio of Bax/Bcl2 [22, 23]. Several lines of

Fig. 1 Scheme illustrating the interplay between different signaling pathways induced in an event of unfolded protein response and subsequent

endoplasmic reticulum dysfunction in human diseases
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evidences suggest that Bcl2 family member proteins are

localized in both mitochondria and ER [24]. Whenever

these organelles sense stress, the ratio of pro- and anti-

apoptotic proteins gets disturbed which leads to initiation

of apoptotic signaling. Furthermore, CHOP activates

GADD34, which interacts with the phosphatase 1 and

dephosphorylates eIf2a which results into the protein

overload in ER [25–27]. IRE1a, an arm of UPR, induces

apoptosis in ER stress through its association with TNF-

receptor associated factor 2 (TRAF2) which activates

caspase 12 and apoptosis signal regulating kinase 1 (ASK1)

which in turn activates the pro-apoptotic signaling through

c- Jun N-terminal kinase (JNK) [28, 29]. Disturbed apop-

totic signaling is associated in various human diseases and

the above reports clearly implicate the involvement of ER

stress and UPR signaling in apoptosis.

ER Stress and Oxidative Stress

Reactive free radicals, including both reactive oxygen

species (ROS) and reactive nitrogen species (RNS), could

be substantially produced in response to multiple stresses,

in different cellular sub compartments [30–32]. ER pro-

vides an exclusive oxidizing environment to the proteins to

facilitate disulfide bond formation [33–35], and the ROS

generated as a result of this process in ER alone contributes

to 25 % of ROS generated by the cell [36]. Two enzymatic

components, protein disulfide isomerase (PDI) and endo-

plasmic reticulum oxidoreductin (ERO-1) are often impli-

cated in promoting oxidative stress in the ER compartment

of the cell. PDI catalyzes disulfide bond formation between

thiol moieties through thiol-disulfide oxidation, reduction,

and isomerization. PDI which is itself reduced in the pro-

cess is oxidized by ERO-1 via transfer of electrons from

reduced PDI to molecular oxygen (O2) resulting in oxida-

tive stress [37]. This may imply that oxidation of multiple

disulfide bonds would generate high levels of cellular ROS.

Further, any erroneous disulfide bonds so generated in the

process are subsequently reduced by glutathione (GSH).

This further diminishes the reduced glutathione pool

altering the redox environment within the ER.

There are also evidences which suggest that ROS may

be generated when accumulation of unfolded proteins in

the ER elicits Ca2? leakage into the cytosol through

inositol trisphosphate receptor (IP3R) [36, 38]. The per-

turbed cytoplasmic calcium levels evoke influx of Ca2? in

the nuclei and mitochondria [39] resulting in generation of

ROS. Since protein folding and refolding in the ER lumen

are highly energy-dependent processes, ATP depletion

consequential to protein misfolding may stimulate mito-

chondrial oxidative phosphorylation to increase ATP and

ROS production. In addition, ER transmembrane protein

NADPH oxidase complex, Nox4 may also be involved in

producing superoxide anion and hydrogen peroxide [40].

Cellular oxidative stress leads to activation of antioxi-

dant defense genes which are orchestrated mainly by the

Nrf bZIP-family of transcription factors [20, 41, 42]. There

are reports indicating possible relationship between Nrf

bZIP-family proteins and ER stress defenses. Nrf1 and

Nrf3 proteins of this family have been reported to be

associated with the ER membrane and nuclear envelope

which suggest their involvement in ER- related functions

[43, 44]. A study in Caenorhabditis elegans [45] revealed

that SKN-1, the Nrf ortholog, plays a critical role in

resistance to oxidative and ER stress. Moreover, it has been

reported that the response mobilized by SKN-1/Nrf under

UPR is observed to be overlapping but still distinct from

that evoked during oxidative stress conditions [45]. SKN-1/

Nrf is reported to be activated by ER stress, independent of

ROS signaling, and it provides resistance against reductive

stress as well [45]. Furthermore, studies also report that

PERK activates nuclear respiratory factor 2 (Nrf2) [17].

Nrf2 in turn regulates the protective mechanism within the

cells against oxidative stress by the transcription of

antioxidant enzymes. In unstressed cells Nrf2 resides in the

cytoplasm, through its association with the kelch-like Ech-

associated protein 1(Keap1), however, stress induces the

dissociation of Nrf2 from keap1, enabling its nuclear

translocation and activation. PERK is also known to

phosphorylate Nrf2 [46, 47], during ER stress, leading to

its nuclear accumulation, where it binds to the antioxidant

response element (ARE) and induces transcription of

antioxidant enzymes like heam oxygenase1 and glutathione

S-transferase etc. [17] see Fig. 1. Hence, ER signaling has

a broader impact on cellular stress defense networks that

are critical in coordination of ER and cytoplasmic

homeostasis.

ER Stress and Inflammatory Responses

ER stress and inflammatory responses are implicated in the

pathogenesis of various diseases including neurodegener-

ative, respiratory, cardiovascular, cancer, diabetes and

other metabolic diseases [48–51]. UPR signaling evokes

inflammatory reactions, through three arms of UPR, that

are PERK, IRE1 and ATF6, which in turn induce the

activation of NF-jB [52, 53]. NF-jB generally resides in

the cytoplasm, in inactive form through its association with

IkB protein, which prevents its activation and nuclear

translocation. Acute or chronic stress results into the acti-

vation of NF-jB by the proteosome based degradation of

IkB. Studies have revealed that IRE1a degrades IkB and

causes activation and nuclear translocation of NF-jB,
while PERK activates NF-jB through translational
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suppression of IkB. Moreover, IRE1 activates AP1, a

transcription factor that can induce the expression of tumor

necrosis factor (TNF), keratinocyte growth factor (KGF),

granulocyte macrophage colony-stimulating factor (GM-

CSF), interleukin (IL)-8, and certain cytokine receptors

[54–56]. Furthermore, UPR via ATF6 [52, 53] has been

implicated in the activation of acute phase response (APR),

which is generated immediately after tissue damage,

infection and inflammation etc. Acute phase proteins

(APPs) concentration increases in serum after the onset of

above conditions, ultimately causing fever, neurological

and pathological changes.

NLRP3 inflammasome has recently been recognized as

an innate immune signaling receptor that plays key role in

mediating cell responses to various endo- and exogenous

signals. Recent reports indicate that inflammasomes play a

critical role in a number of autoimmune and metabolic

diseases. NF-jB activates pro-IL1b which is converted to

mature IL1b by the NLRP3, ASC and caspase 1 complex

[57, 58]. Moreover, ROS and lysosomal damage also

activates NALP3 inflammasome pathway and induce pro-

inflammatory reactions. Reports clearly indicate that ER

stress induces pro IL1b and NLRP3 inflammasome acti-

vation [59, 60] through NF-jB pathway. The findings thus

surmise the role of ER stress in inflammatory pathways and

its related diseases.

ER Stress and Osteoporosis

Osteoporosis is a major health problem in ageing popula-

tion. It is characterized by reduced bone strength due to

which susceptibility of fractures is common. Low bone

mineral density (BMD) which is the hallmark of osteo-

porosis, has been related to ER stress. PERK-eIf2a sig-

naling is required for normal development of the postnatal

growth, function and viability of pancreas and skeletal

system [61, 62]. A study by Jie Liu et al. showed that low

BMD haplotype is distinct, due to associated single

nucleotide polymorphism, which is exhibited by increased

phosphorylation of eIF2a during ER stress, as compared to

alternate haplotype [63]. The balance between osteoblasts

(the mesenchymal stem cells derived bone forming cells)

and osteoclasts (the hematopoietic stem cells derived bone

resorption cells) is very important for the normal func-

tioning and development of bone [64–66]. He et al.

reported that blocking of dephosphorylation of eIf2a by

Salubrinal increases the osteoblast differentiation. They

also hypothesized that ER-stress regulation through eIF2a
and ATF4 could be a good system for antiosteoporosis

[67]. Diabetic patients are more prone to fractures espe-

cially that of hip and upper extremities as compared with

the non-diabetics [68]. Insulinopenia and hyperglycemia

cause low BMD which impairs bone formation [69].

Moreover, it is reported that diabetes itself induces

expression of ER stress specific CHOP in osteoblast cells

resulting in the progression of apoptosis in these cells [70].

Therefore, the balance between the osteoblasts and osteo-

clasts are disturbed which leads to the bone disorders and

development of diabetic osteoporosis [70]. IRE1a-XBP1
pathways are crucial for osteoblast maturation and play

important role in bone formation and bone resorption under

pathological conditions [71]. Furthermore, there are reports

that ER specific molecular chaperones like BiP (im-

munoglobulin heavy-chain binding protein) and PDI (pro-

tein-disulfide isomerase) are down-regulated in osteoblasts

obtained from osteoporosis patients [72]. These findings

suggest the importance of ER stress in osteoporosis,

skeletal development and also for devising therapeutic

strategies against skeletal diseases.

ER Stress and Cancer

There are reports that cancer cells require high protein

folding capacity of ER chaperons due to their enhanced

rate of growth and proliferation. The characteristics of

tumor microenvironment like hypoxia, redox imbalance,

pH fluctuations and nutrient starvation are the inducers of

UPR [73]. Moreover, it has been reported that UPR sig-

naling is upregulated in cancer cells [8]. It is also reported

that the redox imbalance due to hypoxic condition in

cancer cells results in the activation of UPR pathway.

Studies have also shown that Grp78 is highly expressed in

prostate, lung, breast and colon cancers [74–81]. Further-

more, a study showed that cells which do not expresse

Grp78 are unable to form tumor [82]. The above studies

validate the importance of Grp78 chaperon in tumor for-

mation. In essence, Grp78 increases the protein folding

capacity of ER thus reducing stress evoked cell death in

cancer cells. The PERK arm of the UPR also plays

important role in tumor proliferation and survival. Inacti-

vation of the PERK pathway by either generating muta-

tions in the kinase domain of PERK or introducing a

phosphorylation-resistant form of eIF2a impairs cell sur-

vival under extreme hypoxia [83]. Furthermore, PERK

limits oxidative DNA damage through Nrf2 activation

which further promotes cancer cell proliferation and sur-

vival [84]. The involvement of UPR in cancer is currently

promising therapeutic target for the treatment of cancer

[85].

Tumor suppressor gene TP53, which is activated during

different stressful conditions, plays pivotal role in several

biological mechanisms including promotion of cell cycle

arrest, senescence and apoptosis, [86–90]. TP53 regulation

in ER stress is debatable. Studies have revealed that ER
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stress stabilizes p53 activity and induces p53 mediated

apoptosis. On the other end, reports also showed that ER

stress induced downregulation of p53 by Gsk3b [91, 92]. In

a report from our lab downregulation of p53 was observed

in response to aluminium mediated ER stress in SHSY-5Y

cells [20]. Moreover, in a clinical setting, tumorigenesis as

well as the efficacy of therapy may be influenced by the

ability of ER stress to inhibit p53. This would confer

resistance to the inhibitory effect of ER stress on p53

functionality and may prove disastrous to tumors that retain

wild type p53 gene. Such an effect would enable the

cancerous cells to resist DNA damaging effect of agents

used in cancer treatment. In such an event, inhibiting ER

stress may serve as a useful strategy to augment the effi-

cacy of therapy directed against cancer progression.

ER Stress and Neurodegeneration

Causes of neurodegenerative disorders are multi-factorial

including redox imbalance, environmental factors, genetic

predisposition, glutamate-induced excitotoxicity, neuroin-

flammation, disruption in Ca2? levels, mitochondrial dys-

function and misfolded protein accumulation. In this

section of the review we have focused on the relationship

between ER stress in terms of UPR activation and its role

in neurodegenerative diseases. Accumulation of misfolded

proteins is a distinguishing aspect of many neurodegener-

ative diseases including Alzheimer’s [93] and Parkinson’s

disease [94]. As discussed above accumulation of mis-

folded proteins causes ER stress and activates UPR. Here

we discuss the role of UPR in two major neurodegenerative

diseases, i.e. AD and PD.

ER Stress and Alzheimer’s Disease

Alzheimer’s disease is characterized by the deposition of

toxic senile plaques of b amyloid protein and intracellular

neurofibrillary tangles containing hyperphosphorylated tau

[95]. The b amyloid proteins are formed as a result of

cleavage of amyloid precursor protein (APP) by the action

of b-secretase (BACE) and !-secretase. ER stress sensors

IRE1 and PERK are greatly influenced by presenilin

protein, which is an integral membrane protein and a part

of the !-secretase complex, and is widely expressed in

both ER and Golgi apparatus [96]. Reports indicate that

mutated presenilin reduces the phosphorylation of PERK-

eIF2a pathway which results in the accumulation of

proteins in ER [97]. Moreover, studies report increased

PERK and eIF2a levels in hippocampus neurons of AD

brain [98, 99]. These observations necessitate further

experimentation to carefully dissect the PERK-eIF2a

pathway in AD. Furthermore, mutant presenilin 1 inhibits

IRE1 signalling, which in turn stalls or suppresses the

transcription of ER chaperones such as GRP78, which has

been reported to be down-regulated in AD [97]. XBP1,

also implicated in AD, is known to control diverse cell

type- and context-dependent transcriptional regulatory

networks [100]. Modulation of IRE1 activity can reduce

or delay splicing of XBP1, thus switching signalling to a

pro-death response [101].

Generation of Ab, a characteristics hallmark of AD, is

also associated with ER [102, 103]. Ab is reported to induce

Ca2? release from ER stores [104]. However, reports also

suggest that influx of Ca2?, through calcium channels loca-

ted on plasma membrane or ER membrane, increases Ab
generation [105] by alteration in the metabolism and pro-

duction of Ab. Whatsoever may be the cause there is no

doubt that an intricate relationship exist between Ca2? dys-

function and AD [106]. Furthermore, Ca2? homeostasis is

essential for the proper functioning of ER chaperons and

protein folding. In our previous study we observed an asso-

ciation between increased intracellular calcium and

Ab(1–40) levels in neuronal cells apart from enhanced

CHOP and caspase12 levels [20]. It may be stated that

another characteristic feature ofAD is tau pathology. Tau is a

microtubule associated protein present in neurons which

maintains microtubule assembly and stabilization. ER stress

is normally linked with the early stages of tau pathology

[107, 108]. Tau proteins become hyperphosphorylated in

pathological conditions, which results in its dissociation

from microtubule assembly into unusual toxic filaments

[109]. The unfolded protein response activated in pretangle

neurons in AD hippocampus has been shown to be closely

associated with the presence of phosphorylated tau (p-tau)

and GSK-3b [98]. These findings elicit activation of UPR in

AD neurons at an early stage of neurofibrillary degeneration.

Moreover, prolonged activation of UPR may be involved in

both tau phosphorylation and neurodegeneration in AD

pathogenesis [110].

ER Stress and Parkinson’s Disease

Parkinson’s disease (PD) is characterized by the loss of

dopaminergic neurons in the substantia nigra pars com-

pacta along with the presence of intraneuronal cytoplasmic

inclusion bodies, known as Lewy bodies in the neurons

[111]. Most of the cases of PD, up to 90 %, are sporadic

while only 5–10 % of patients show monogenic form of the

disease [112]. Recent studies investigating implication of

ER stress in the pathophysiology of PD have reported

increased UPR activity in the affected brain regions of PD

patients and also in patients suffering from the related

multi-systems atrophy syndrome [113, 114]. It has been
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reported by Silva et al. [115], that deficiency of CHOP, a

key ER stress marker, protects the neonatal striatum from

neurotoxicant 6-hydroxydopamine. Reports also showed

that forced expression of ER stress sensor proteins, ATF6

alpha [117] and spliced XBP1 [116], confines neurotoxin-

induced dopaminergic neuronal death [117]. These reports

are indicative of the role of ER stress in the death and

dysfunction of dopaminergic neurons exposed to neuro-

toxicant models of PD.

Accumulation of misfolded proteins like a-synuclein
and Parkin-associated endothelin receptor-like receptor

(Pael-R) has been reported to be a key event which triggers

UPR in the ER. a-synuclein is an autosomal dominant PD

gene expressed in synaptic vesicles and in nervous tissue.

Post-translational modifications, like phosphorylation and

nitrosylation, of a-synuclein can cause misfolding and later

deposition of the protein into Lewy bodies in the substantia

nigra of PD patients [118]. Smith et al. [119] reported that

A53T mutation in a-synuclein activates UPR resulting in

increased expression of CHOP and GRP78 and increased

phosphorylation of eIF2 a. Furthermore, the authors also

reported that suppressing UPR through inhibition of eIF2a
phosphorylation protected the A53T mutant a-synuclein-
overexpressing cells from cell death. These reports suggest

that UPR mediates shift of the balance towards apoptosis

[119]. Moreover, mutations in leucine-rich repeat kinase 2

(LRRK2), also an autosomal dominant PD gene, causes

impairment in protein degradation pathways, accumulation

of oxidized proteins, impairment of the autophagy-lyso-

somal pathway, accumulation of a-synuclein and ubiqui-

tinated proteins [120]. LRRK2 has been observed to

localize in core of Lewy bodies [121] and is known to

upregulate GRP78, a key cell survival molecule during ER

stress [122]. In addition to a-synuclein and LRRK2, Pael-R

has also been detected to accumulate in the core of Lewy

bodies in sporadic PD [123]. Parkin, an autosomal reces-

sive PD gene, is an E3 ubiquitin ligase that plays an

important role in protein degradation of the misfolded Pael-

R [124]. Mutational loss of E3 activity of parkin has been

observed to cause unfolded Pael-R to accumulate and

finally induce ER stress mediated cell death [125].There-

fore, ER stress generated in response to accumulation of

unfolded Pael-R is suggested to be another pathophysio-

logical mechanism underlying autosomal recessive PD

[126–128].

The above findings discussed in relation to AD and PD

illustrate the paramount significance of ER stress in

development and progression of these diseases. Scientific

literature similarly supports the involvement of ER stress in

other neurodegenerative disorders like Amyotrophic lateral

sclerosis, Huntington diseases and Prions disease etc. (see

reviews Cláudia [110], Omura et al. [128], Lindholm et al.

[5]).

Conclusion

It may be concluded that ER plays a crucial role in protein

synthesis and folding. UPR which forms the critical arm of

ER stress signaling, gets activated in response to stress and

times when ER stress is prolonged, UPR assumes adverse

role, through disruption of cellular homeostasis. Overall

the existing literature clearly indicates the role of ER stress

in health and diseases (Table 1). Furthermore, dissection of

Table 1 Role of UPR transducers and proteins in different human diseases

Protein Function Disease References

IRE1 UPR sensor Human somatic cancers; Alzheimer’s disease;

Parkinson’s disease; ALS

[97, 129, 130,

131, 132]

CREBH Regulate expression of PPARa, HNF4a, and ATF6 a Extreme hypertriglyceridemia [133, 134, 135]

ATF6a UPR sensor Type 2 diabetes and pre-diabetic traits; Increased plasma

cholesterol levels; Alzheimer’s disease; ALS

[97, 136, 137,

138, 139]

PERK UPR sensor Wolcott–Rallison syndrome; Alzheimer’s disease;

Wolcott–Rallison syndrome; supranuclear palsy; ALS

[5, 97, 98, 131,

140, 141, 142]

ATF4 UPR sensor Parkinson’s disease [143]

Grp78

(BiP)

Senses ER stress, accumulation of misfolded proteins

and regulate expression of ATF6a and ATF4

Bipolar disorder; Alzheimer’s disease [144, 145, 146,

147]

PPT1 Palmitoylprotein thioesterase-1 Batten disease/infantile neuronal ceroid lipofuscinosis [148]

CHOP Regulate expression of ATF4 and ATF6a Early-onset type 2 diabetes in Italians [116, 149, 150,

151, 152]

WFS1 Regulate expression of XBP1 s Wolfram syndrome; risk of type 2 diabetes in Japanese

and European populations

[153, 154, 155,

156]

XBP1? UPR sensor Bipolar disease [157, 158]

? Denotes discrepancy in outcome of studies exploring the relation between XBP1 and bipolar disorder
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ER stress signaling could unravel new avenues that may

potentially be exploited for developing future therapeutics

to address ER stress-related anomalies.
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