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Diacylglycerol kinases (DGKs) belong to a family of
cytosolic kinases that regulate the phosphorylation of
diacylglycerol (DAG), converting it into phosphatidic acid
(PA). There are 10 known mammalian DGK isoforms, each
with a different tissue distribution and substrate specificity.
These differences allow regulation of cellular responses by
fine-tuning the delicate balance of cellular DAG and PA. DGK
isoforms are best characterized as mediators of signal
transduction and immune function. However, since recent
studies reveal that DAG and PA are also involved in the
regulation of endocytic trafficking, it is therefore anticipated
that DGKs also plays an important role in membrane
trafficking. In this review, we summarize the literature
discussing the role of DGK isoforms at different stages of
endocytic trafficking, including endocytosis, exocytosis,
endocytic recycling, and transport from/to the Golgi
apparatus. Overall, these studies contribute to our
understanding of the involvement of PA and DAG in
endocytic trafficking, an area of research that is drawing
increasing attention in recent years.

Introduction

The cytosolic diacylglycerol kinases (DGKs) are a family of
kinases that regulate the phosphorylation of diacylglycerol
(DAG), thus generating phosphatidic acid (PA). DGKs are
widely conserved evolutionarily, and are found in organisms as
diverse as bacteria,1 fungi, Saccharomyces cerevisiae, plants,2

multi-cellular organisms including Drosophila melanogaster and
Caenorhabditis elegans,3,4 and mammals.5 DGK from Escherichia
coli share little structural resemblance to the eukaryotic enzymes,6

although eukaryote DGKs have a highly conserved catalytic
domain. Drosophila melanogasterDGK shares homologous amino
acid sequences at the carboxyl-terminal domain with porcine
DGK.7 In plants such as Arabidopsis thaliana, DGK has evolved
into 3 phylogenetic clusters. Cluster I, encoded by AtDGK1 and
AtDGK2, resembles the mammalian DGKe, while the other 2

clusters, contain only the conserved kinase domain but lack other
accessory motifs, and accordingly are much smaller proteins.5,8

Intriguingly, the yeast Saccharomyces cerevisiae DGK does not
possess the signature catalytic domain with an ATP-binding
domain, but utilizes CTP. It also has a much simpler and less var-
ied amino-terminal regulatory domain than its ATP-dependent
homologs.9 To date, in mammals, 10 DGK isoforms have been
identified.10-19 All DGK isoforms have a conserved catalytic
domain with an ATP-binding site that is required for kinase
activity, and cysteine-rich regions that are homologous to the
C1A and C1B motifs of protein kinase C (PKC) 20.

Beyond the conserved catalytic domains, the regulatory
domains of mammalian DGK isoforms differ greatly, leading to
differential localization and regulation of phospholipids in the
cells. Based on these regulatory domains, DGK isoforms can be
divided into 5 subtypes. Figure 1 summarizes the catalytic and
diverse regulatory domains in each DGK isoform of each type,
and Table 1 summarizes current knowledge of their subcellular
localization. In addition to the conserved domains, type I DGKs
(DGKa, b, and g) contain a calcium-binding EF hand motif 21.

Upon activation, DGKa rapidly translocates from the cytosol to
the plasma membrane.22 Type II DGKs (DGKd, h and k) have
a unique pleckstrin homology (PH) domain and a sterile a motif
(SAM) domain10 that can bind to the endoplasmic reticulum
(ER) and affect anterograde transport.23 Type III DGK (DGKe)
has a unique substrate specificity for arachidonate-DAG.24,25

This substrate specificity renders DGKe the most important iso-
form that catalyzes the first step of phosphatidylinositol (PI) re-
synthesis. Although there is no evidence supporting a direct role
for DGKe in membrane trafficking, it is possible that of the
DGK isoforms, only DGKe exerts an additional function medi-
ating membrane trafficking via PtdIns cycling. Type IV DGKs
(DGKz and i) have a nuclear localization signal in a MARCKS
homologous domain,26 4 ankyrin repeats, and carboxyl terminal
PDZ-binding domains.27 Type V DGK (DGKu) has 3 C1
domains, a putative PH domain, and a Ras association (RA)
domain. In humans, each subtype of the DGK family isoforms
displays a tissue-specific expression profile. For example, DGKa
is mostly detected in brain and immunologic organs, such as
spleen and thymus.22 DGKb is expressed in neurons in caudate-
putamen, the nucleus accumbens, and the olfactory tubercle.12,28

DGKd is substantially expressed in spleen, ovary and skeletal
muscle.10,29,30 DGKz is also highly expressed in spleen and thy-
mus, as well as in heart and pancreas.31
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Studies using DGK knock-out mouse models have revealed
the involvement of various DGK isoforms in different diseases.
DGKa or DGKz-null T cells display defects in immune func-
tion.32,33 DGKd haploinsufficiency causes the development of
insulin resistance in skeletal muscle and adipose tissue.30 In addi-
tion, DGKb/DGKe knockout mice exhibit brain disorders and
behavioral abnormalities.34-36

Since DGKa was identified in the 1990s, studies on DGK
family proteins have primarily focused on their function in regulat-
ing signaling pathways. DGK terminates DAG-based signals and
accentuates PA signaling, and both DAG and PA serve as impor-
tant second messengers in the cells. The activation of DGK usually
involves the translocation of DGK to a membrane compartment.37

Upon recruitment to the membrane, DGK can be activated by
calcium binding to the EF hand motif. DGK activity is initiated
or enhanced by some lipid components including the products of
phosphatidylinositol-3-kinase (PI3K) such as phosphatidylinositol-
3,4,5-trisphosphate (PIP3),

38 phosphatidylserine, and sphingosine.6

It is also activated via Src tyrosine kinase phosphorylation39 and

serine phosphorylation by protein kinase C (PKC).40 Some
upstream players participating in DGK activation include interleu-
kin2 (IL-2) receptor signaling,41 epidermal growth factor receptor
(EGFR),42 T cell antigen receptor signal transduction,22 and hepa-
tocyte growth factor receptor (HGFR).43

The substrate and product of DGK, DAG and PA respec-
tively, play different roles in endocytic events. These include
vesicular trafficking, the secretory pathway regulation, and Golgi
apparatus function. The mechanisms by which DAG regulates
membrane trafficking are diverse: 1) serving as a second messen-
ger to activate PKC, PKD, and downstream signaling cas-
cades;44-46 2) involvement in PI cycling regulation of
phosphatidylinositol 4,5-bisphosphate (PIP2) abundance, inosi-
tol 1,4,5-trisphosphate (IP3)

47 and subsequent Ca2C influx.48

On the other hand, the local concentration of PA is an important
regulator of trafficking, possibly because: 1) PA-enriched mem-
branes with higher curvature tend to undergo fission;49 2) it
serves as a docking site for recruiting specific proteins such as
Rab coupling proteins (RCP),50 Molecules Interacting with-
CAsL-Like1 (MICAL-L1),51 and Sorting nexin 27 (SNX27) 52

to the membrane; 3) it is an intermediate for PtdIns re-synthe-
sis.24 Given the increasing awareness of the relevance of lipid
metabolites such as DAG and PA in membrane trafficking,
understanding the significance of DGK function in regulating
the fine balance of DAG-to-PA levels is becoming an increasingly
important research goal.

Exosome Secretion

DAG mediates acrosome fusion with plasma membrane
The acrosome is a secretory granule that is released from

mammalian sperm and is essential for fertilization. Acrosomal
secretion is a special type of regulated exocytosis, which uses con-
served exocytic mechanisms also found in neuronal, endocrinal
and other cells.53 Upon inhibition of DGK in cells with the
inhibitor R59022, impaired DGK activity leads to increased lev-
els of DAG. Simultaneously, the level of PA correspondingly
decreases in these cells. In this case, considerable stimulation of
acrosomal exocytosis is observed.53,54 Subsequent studies have
identified DAG’s role in stimulating acrosomal exocytosis
through PKC and phospholipase D1 (PLD1) activation, promot-
ing the continued production of PIP2 and subsequently, IP3
which is required for the intra-acrosomal calcium efflux during
fusion with the plasma membrane of the spermatozoon
(See Figure 2 for the metabolism of DAG and related

Figure 1. Schematic diagram illustrating the domain architecture of diac-
ylglycerol kinase isoforms. The ten members of the mammalian DGK
family are grouped into 5 types according to their regulatory domains.
PH, pleckstrin homology domain; SAM, sterile amotif domain.

Table 1. Known subcellular localizations of different DGK isoforms

Localization DGK isoforms

Plasma membrane a,22, 79 d,117 b, g, z 79, 123

Endoplasmic reticulum d,23 h, k
Endosome membrane a,107 z 52

Nuclear z,26 i
Multi-Vesicular Body a 66

Trans-Golgi network a 79
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phospholipids). However, PA alone could not trigger exocyto-
sis.55 Furthermore, it was demonstrated that DAG activates
Rab3A leading to the assembly of SNARE complexes and mem-
brane fusion via interaction with Munc-13.55,56

PA regulation of the secretory pathway
Phospholipids may serve as an essential part of the machinery

driving the fusion and/or fission of membranes, based on their
shape and geometric features, and therefore may play a role in
the budding and generation of secretory vesicles. Indeed, mem-
brane domains enriched with acidic phospholipids, especially
PA, are prone to membrane fusion, in conjunction with Ca2C.57

However, the shape of PA varies greatly under different Ca2C

concentrations. Unsaturated PA has a cylindrical, bilayer-prefer-
ring structure under normal cytoplasmic conditions (37�C, pH
7.2, 0.5 mM free Mg2C); but at the mildly acidic intra-Golgi
conditions (pH 5.9–6.6, 0.3 mM Ca2C), it displays a conical
(type-II) shape,49 which is prone to form a highly curved mem-
brane facilitating the fission process.

Another documented role for PA in secretion relates to the
induction of neutrophil exocytosis from azurophilic granules
by anti-neutrophil cytoplasmic antibodies (ANCAs). This
likely results from the pathogenesis of endothelial cell damage
in small vessel vasculitis, with serine proteases and myeloper-
oxidase (MPO) released from the activated neutrophils.
DGK-generated PA is required for such exocytic activity,
since treatment with DGK inhibitors reduces granule release
by inhibiting granule fusion at the plasma membrane.58 In
this study, the addition of PA restored the release of MPO in
DGK-inhibited cells, whereas supplementing cells with DAG
failed to restore exocytosis. These findings collectively lead to

the suggestion that ANCA-driven granule exocytosis is medi-
ated by DGK-generated PA. Importantly, PA generated by
PLD is not involved in this process.59,60 PA production is
also correlated with the ANCA-induced neutrophil adhesion
in vitro.61

DGK regulates MVB formation and secretion
MVBs are formed by the inward invagination of the limiting

membrane of endosomes, giving rise to intraluminal vesicles
(ILVs). Although previously considered a mechanism of cargo
sorting for lysosomal degradation, MVBs also fuse with the
plasma membrane, secreting their ILVs into the extracellular
area.62 Studies show that DGK is involved in multiple processes
related to exosome secretion, including the formation and matu-
ration of Multi-Vesicular Bodies (MVBs) (i.e., the number of
MVBs per cell and inward vesiculation of MVBs), the budding
and release of exosomes from MVBs, and their fusion with the
plasma membrane.63-66 In cytotoxic T lymphocytes, MVBs are
responsible for releasing the pro-apoptotic Fas ligand (FasL) at
the immunological synapse67 with DGKa playing an important
regulatory role in this process.63,66 Upon receptor stimulation,
FasL and DGKa relocate to FasL-containing MVB structures.
DGKa is recruited to MVBs and to exosomes, where it plays a
dual role; DGKa kinase activity exerts a negative role in the for-
mation of mature MVBs, as experiments show that treatment
with a type I DGK inhibitor, R59949, induces the maturation of
CD63-positive/lysobisphosphatidic acid-positive MVBs, and
increases the secretion of exosomes.63,68,69 In contrast, down reg-
ulation of DGKa inhibits polarized exosome secretion, and
affects degranulation of MVBs at the immune synapse, while the
kinase inhibitor increases polarized secretion of exosomes. These
studies imply that DGKa kinase activity negatively regulates the
formation of mature MVBs, while regions outside the kinase
domain are required for polarization of MVBs and exosome
secretion.69

The role of DGK on secretion from the Golgi apparatus is
mediated via the cellular levels of DAG

The Golgi apparatus is an organelle found in most eukaryotic
cells, and it is responsible for the processing, sorting and trans-
porting of proteins and lipids. The formation of Golgi-to-plasma
membrane transport carriers is accomplished via budding, elon-
gation, constriction, and finally fission of the Golgi membrane.
These events are facilitated by lipid bilayer deformation as well as
the concerted efforts of many proteins that act at the various
stages of secretion.70 Previous studies have revealed that DAG
plays a dual role in the generation of transport carriers, and thus
mediates secretion from the Golgi. It serves in lipid signaling on
the trans-Golgi network (TGN) for the recruitment and activa-
tion of essential proteins onto the TGN membrane. Such pro-
teins include protein kinase D (PKD),44 protein kinase Ch
(PKCh),45,46 and the ARF GTPase-activating proteins (ARF
GAPs) Gcs1p, Age1p and Age2p71-73 (see Figure 2 for the down-
stream effectors of DAG). Reducing cellular DAG levels inhib-
ited recruitment and blocked TGN-to-plasma membrane
trafficking.74 On the other hand, the conical shape of DAG in

Figure 2. Pathways involved in the metabolism of DAG and PA
described in this review. DGK, diacylglycerol kinase. DAG, Diacylglycerol;
PA, phosphatidic acid; PC, phosphatidylcholine; PIP2, phosphatidylinosi-
tol 4,5-bisphosphate; IP3, inositol 1,4,5-trisphosphate; PLD, phospholi-
pase D; PLC, phospholipase C; PI4P, Phosphatidylinositol 4-phosphate; PI,
phosphatidylinositol; PKD, protein kinase D; PKC, protein kinase C; ARF
GAP, ARF GTPase-activating protein. Solid arrows indicate the metabolic
pathway, hollow arrows indicate the downstream effector activated by
DAG or IP3.
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the outer leaflet provides negative membrane curvature, which is
thought to facilitate membrane fission.75 Given the importance
of DAG levels on TGN-to-plasma membrane transport, the met-
abolic pathways for the production or consumption of DAG
intricately regulate the secretory pathway.76-78 However, the
molecular mechanisms mediating DAG cellular levels during
vesicular trafficking under physiological conditions are not well
understood.

DGK rapidly reduces the level of DAG, resulting in the
inhibition of TGN-to-plasma membrane transport, implicat-
ing the negative regulation of DGK on Golgi secretory path-
ways. Earlier studies established that DGKa translocates to
the TGN upon receptor stimulation.79 Furthermore, work in
yeast has revealed that the conversion of DAG to PA by
increased DGK expression significantly impairs Golgi func-
tion. Sec14p is a phosphatidylinositol (PI)-transfer protein
that generates the DAG precursor, phosphatidylcholine (PC).
PLD then converts PC into PA, which is dephosphorylated
by phosphatidic acid phosphatase (PAP) into DAG (Fig. 2).
Studies have demonstrated that Sec14p is important in main-
taining a favorable lipid environment for TGN-to-plasma
membrane trafficking,80-82 and thus is essential for yeast via-
bility and secretory competence. To date, a large class of
loss-of-function mutations in nonessential genes have been
identified, the “bypass Sec14p”mutations, that restore cell via-
bility and Golgi secretion with defective Sec14p, indicating
that such mutations occur in regulators of TGN transporta-
tion downstream of Sec14p. Among the “bypass Sec14p”
mutations, Sac1p deficiency functions by inducing accumula-
tion of phosphatidylinositol 4-phosphate (PI4P), a pro-secre-
tory phospholipid in the Golgi. Indeed, yeast DGK
expression compromises the ability of Sac1p deficiency to
effect “bypass Sec14p,” suggesting DGK’s negative role in
TGN secretory pathway, possibly through reducing the level
of PI4P.83

It is worth noting that the regulation of the DAG pool is more
tightly controlled by Sec14p-dependent PC-PA-DAG conversion
than through phosphorylation in the DAG-to-PA conversion
pathway.84 Currently, there is incomplete agreement over the
involvement of DGK-generated PA in regulating secretion from
the Golgi. On one hand, since PA is a direct product of DGK’s
activity on DAG and the up-regulation of DAG at the Golgi
does not lead to a concomitant PA level increase, this implies
that DGK might not be involved in this mechanism,85 or that
PA is rapidly transformed into other phospholipids. On the other
hand, a study shows that DGK activity on PA production, rather
than the consumption of DAG, regulates nascent vesicle secretion
from the TGN.86

Studies also show that the level of DAG at the Golgi medi-
ates retrograde transport (Golgi-to-ER), while anterograde
transport (ER-to-Golgi) is insensitive to DAG. PA phospha-
tase mediated DAG production is required for the formation
of COPI vesicles and Golgi-to-ER transport.74,87-89 Interest-
ingly, the level of PA generated via DGK-mediated phosphor-
ylation of DAG affects anterograde transport, which will be
described below.

Anterograde transport is mediated by local PA levels
A lipid micro-domain containing interconverting LPA, PA

and diacylglycerol has the potential to drive membrane fission
through changes in membrane deformation.49 Several proteins
have been identified that may induce fission at the Golgi appara-
tus: CtBP3/BARS and endophilin facilitate the conversion of
lysophosphatidic acid (LPA) to PA,90,91 PLD mediates genera-
tion of PA,92,93 and protein kinase D binds to DAG.94 Although
no direct evidence shows that DGK is involved in the regulation
of membrane fission, since PA is required for the fission of Golgi
structures, it is possible that membrane fission and fusion events
may require the DGK-generated PA, potentially implicating
DGK as a major player in mediating vesicle trafficking.

Although there are 10 isoforms in the DGK family, only
DGKa has been localized to the TGN,63 and a portion of cyto-
solic DGKd localizes to the ER via its SAM domain.23 DGKd
expression blocks the formation of COPII-coated structures in
the ER and slows ER-to-Golgi transport of Vesicular Stomatitis
Virus G Glycoprotein (VSV-G), indicating that the anterograde
transport is inhibited by DGKd. On the other hand, COPI struc-
tures are unaffected,23 suggesting that retrograde transport is
independent of DGKd. Apparently, lipid conversion is not
required for anterograde transport, since the overexpression of a
DGKd kinase-dead mutant led to similar inhibition of ER-to-
Golgi transport. As described above, the level of DAG affects the
formation of COPI endosomes and retrograde transport (Golgi-
to-ER), but not anterograde transport (ER-to-Golgi).74,89 It is
possible that the effect of DGK on anterograde transport from
the ER to the Golgi is mediated through the production of PA,
rather than DAG.

Others
There are some indications that DGK mediates the release

of neurotransmitters, possibly through the recruitment of
munc-13.95 Studies on DGKi knock-out mice show that it is
involved in presynaptic glutamate release during 3,5-dihydrox-
yphenylglycine (DHPG)-induced long-term potentiation.96

DGK1 knockout (the homolog of DGKu) in Caenorhabditis
elegans, led to an increase in acetylcholine release,97 suggesting
that DGK negatively regulates synaptic transmission. However,
the molecular mechanism underlying this role of DGK has yet
to be established.

Endocytic Recycling

Role of DAG in recycling
DGK affects the DAG/Ras/ERK signaling pathway, either

through regulating the DAG levels or directly by mediating the
activity of downstream proteins such as PKC, and/or Munc-
13.33,98-101 In either case, PKC serves as an important down-
stream signaling protein involved in multiple trafficking pro-
cesses. Classical and novel PKC bind to DAG.102,103 PKCa
localizes to transferrin-positive recycling endosomes in the peri-
nuclear area, and PKCa stimulation by DAG/ phorbol myristate
acetate (PMA) accelerates the recycling of transferrin to
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the plasma membrane,104,105 while the sorting of LDLR to the
lysosome remains unaffected.105 Furthermore, perturbation of
this DAG gradient through the inhibition of DGK impaired
both dynein recruitment and microtubule organizing center
(MTOC) polarization.64

Role of PA in recycling
Endocytic recycling is mediated by local PA levels
DGKa-derived PA binds and recruits the Rab-coupling pro-

tein (RCP) to the tips of invasive pseudopods. Since RCP is
required for the recycling of a5b1 integrin during cell migra-
tion,106 DGKa is essential for RCP to drive the recycling of
a5b1 integrin.50

Another effect of DGK-derived PA in endocytic recycling lies
in the regulation of tubular recycling endosomes (TRE) that are
decorated by Molecules Interacting with CAsL-Like1 (MICAL-
L1). MICAL-L1 and Syndapin2 promote the biogenesis of TRE
(thus regulating TRE function), and they are both recruited to
the TRE membrane through direct interactions with PA.51

DGKa-derived PA mediates the recycling of Major Histocom-
patibility Complex Class I (MHC I) without affecting its inter-
nalization. In addition, the MICAL-L1-decorated TRE are
disrupted upon DGKa-depletion, leading to general defects in
endocytic recycling.107When the compromised synthesis of PA
by DGKa-knock-down is preserved by preventing it catabolism,
with the PA phosphatase inhibitor propranolol, the loss of TRE
is reversed. This indicates that DGKa regulates endocytic recy-
cling through the level of PA.

PA as a binding partner for SNX27
Sorting nexin 27 (SNX27), a member of the SNX family of

proteins involved in intracellular sorting and trafficking108,109

interacts with DGKz. This interaction is required for the localiza-
tion of SNX27 to the sorting endosomes in Jurkat T cells.
DGKz-siRNA accelerated the recycling of transferrin receptor
from the endocytic recycling compartment to the plasma mem-
brane in T lymphocytes.52 Although the reason why DGKz–
knock-down in T lymphocytes has such a dramatically different
impact than DGKa-knock-down in other cell types remains
unknown, it is possible that compensation by other DGKs and/
or other PA-generating pathways in T cells is more robust.

Endocytosis

Dynamin is a key regulator of membrane constriction and fis-
sion during endocytosis that binds to anionic lipids (including
PA) through its Pleckstrin Homology (PH) domain. The pres-
ence of PA increases dynamin’s enzymatic activity, and induces
its deep penetration into the membrane.110 Moreover, in experi-
ments where liposomes of different lipid components were co-
incubated with dynamin, PA-containing liposomes had the most
efficient dynamin-coated tubule formation.111

Genome-wide short interfering RNA screening analysis was
performed to assess the involvement of different human kinases
on endocytosis, measuring the rate of VSV-G entry via clathrin-

mediated endocytosis (CME) and Simian virus 40 (SV40) inter-
nalization via clathrin-independent endocytosis (CIE).112 In this
study it was predicted that DGKb negatively influences CIE
while DGKg positively mediates CIE, and DGKd seems to have
a dual effect promoting CIE and inhibiting CME.

By inhibiting type I DGK, total cellular PA levels decreased.
Correspondingly, the internalization of epidermal growth factor
(EGF) was significantly impaired. However, the uptake of trans-
ferrin remained unaffected, suggesting that EGF internalization
depends on DGK activity, whereas the uptake of transferrin is
independent of the kinase activity. Moreover, upon inhibition of
type I DGK, fewer clathrin-coated pits (CCP) formed, indicating
a role for DGK activity in CCP formation.113

In addition to its kinase activity regulating DAG-PA conver-
sion, DGKs also serve as scaffolding proteins that recruit regula-
tory proteins required for endocytosis. For example, during
clathrin-dependent endocytosis, CCP are formed with the assis-
tance of clathrin and the Adaptor Protein 2 (AP-2) complex.
DGKd co-localizes with these CCP through its interaction with
AP-2 via F369DTFRIL and D746PF sequences in the catalytic
domain. Furthermore, the uptake of both transferrin and EGF
were significantly reduced in the absence of DGKd. Importantly,
the kinase activity is also required for the endocytic process, as
the kinase-dead mutant could not reverse the impaired uptake
observed upon DGKd knock-down.114 This is probably due to
the regulatory effect of PA on CME. Although DAG stimulates
the internalization of transferrin in some organisms such as Try-
panosomatids brucei, in human cells DAG levels do not influence
transferrin endocytosis.115 These studies suggest that DGK medi-
ates clathrin-dependent endocytosis either through kinase activity
leading to PA production, or by serving as a scaffold protein that
recruits AP-2 for CCP formation.

Phagocytosis and macropinocytosis are processes essential for
innate immunity and tissue homeostasis, during which cells such
as macrophages ingest particulate (phagocytosis) or soluble (mac-
ropinocytosis) pathogens into membrane-bound vacuoles. The
molecular mechanisms mediating phagocytosis include protein
tyrosine kinases, GTP-binding proteins, PKC, actin polymeriza-
tion and membrane movement.116 Phosphoinositide metabolism
serves as critical regulation of the initiation of both processes. A
local phagosomal DAG accumulation is observed by biochemical
means during particle ingestion.117 The phosphorylation by
DGK is a critical determinant of DAG at the phagocytic sites.118

DGK inhibition by R59002 or R59949 increases the DAG-posi-
tive phagosomes, and enhances reactive oxygen species (ROS)
generation by these phagosomes,118,119 indicating that DGK ter-
minates the DAG signaling mediating phagosomal ROS produc-
tion. On the other hand, PA is detected at the plasma membrane
in phagocytes. Both DGK and PLD are responsible for the PA
production at phagocytic sites.120,121 Among the 10 isoforms of
DGK, DGKb, DGKg, and DGKz are found in the plasma
membrane of macrophages, suggesting that multiple DGK iso-
forms are involved in the regulation of macropinocytosis. The
abundance of PA in the plasma membrane correlates with mem-
brane ruffling; accordingly, DGK inhibitor R59002 treatment
depresses both the rate and extent of ruffle formation. Upon
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DGK inhibition, macropinosome formation and dextran inter-
nalization are impaired.120 In addition to regulating the DAG-
PA equilibrium, DGKz plays a crucial role in phagocytosis and
macropinocytosis via the activation of the Rho-GTPase family
protein, Rac1.122,123

Summary and Conclusion

In addition to the important role DGKs play in cell sig-
naling and immune activity, their effect on endocytic traffick-
ing should not be underestimated. By catalyzing the
conversion of DAG to PA, DGKs regulate different stages of
endocytic trafficking, including the transport from/to the
Golgi apparatus, the formation and secretion of MVBs, endo-
cytosis, and the biosynthesis of recycling endosomes. There
are 10 mammalian DGK isoforms, each with different regula-
tory domains, substrate specificities, and tissue/subcellular dis-
tribution, resulting in differential regulation of membrane
trafficking. The existence of multiple isoforms suggests that
there may be different DGKs at distinct subcellular struc-
tures, and that there is localized regulation of DAG/PA levels

mediating endocytic trafficking. However, lipid metabolism is
a dynamic, bi-directional processes, and DGKs may need to
cooperate with other lipid modifiers to create and/or main-
tain an optimal membrane environment for trafficking. It is
also possible that DGKs function in a kinase-independent
manner. One example is that DGKd facilitates CME through
its binding to AP-2, but not through its kinase activity in
regulating DAG or PA levels.

By mediating membrane trafficking, DGKs control cell
morphology, migration, apoptosis, protein biosynthesis, and
receptor activation. Although there is no established pathol-
ogy caused by a malfunctioning DGK isoform, knock-out
mouse models reveal significant pathological consequences,
including insulin insensitivity, immune function abnormali-
ties and brain disorders, suggesting a potential role for DGKs
as therapeutic targets in disease.
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