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Abstract

Lysophosphatidic acid (LPA) is a pleiotropic lipid signaling molecule
associated with asthma pathobiology. LPA elicits its effects by binding
to at least six known cell surfaceGprotein–coupled receptors (LPA1–6)
that are expressed in the lung in a cell type–specific manner. LPA2 in
particular has emerged as an attractive therapeutic target in asthma
because it appears to transduce inhibitory or cell-protective signals.
We studied a novel and specific small molecule LPA2 agonist
(2-[4-(1,3-dioxo-1H,3H-benzoisoquinolin-2-yl)butylsulfamoyl]
benzoic acid [DBIBB]) in a mouse model of house dust mite–induced
allergic airway inflammation. Mice injected with DBIBB developed
significantly less airway and lung inflammation compared with
vehicle-treated controls. Levels of lung Th2 cytokines were also

significantly attenuated by DBIBB. We conclude that pharmacologic
activationof LPA2 attenuatesTh2-driven allergic airway inflammation
in a mouse model of asthma. Targeting LPA receptor signaling holds
therapeutic promise in allergic asthma.

Keywords: asthma; house dust mite; periostin; lysophosphatidic
acid

Clinical Relevance: Lysophosphatidic acid (LPA) is
associated with asthma pathobiology. A novel LPA2 agonist
attenuates allergic inflammation, highlighting that targeting LPA
receptor signaling holds therapeutic promise in allergic asthma.

Allergic asthma is a complex and
heterogeneous disease caused by aberrant
immune responses to allergens and other
inhaled irritants. Although available
therapies can effectively control asthma
symptoms in many patients, there is an
unmet need for new treatments that target
the underlying disease. Biologic compounds
targeting specific molecular endotypes are
under active development (1), but
approaches that inhibit new effector
pathways in asthma would be an important
advance.

Lysophosphatidic acid (LPA) is
a pleiotropic lipid signaling molecule
associated with asthma pathobiology
(2, 3). LPA is a normal component of
epithelial lining fluids, and lung LPA
concentrations increase significantly after
segmental allergen challenge (especially
polyunsaturated species) (4, 5). The
majority of extracellular LPA is generated
by hydrolysis of the choline moiety from
lysophosphatidylcholine by the enzyme
autotaxin (ATX), which was recently shown
to play an important role in a mouse model

of allergic airway inflammation (5).
Relevant to the pathophysiology of asthma,
LPA can enhance smooth muscle growth
and contractility (6–9), induce mast cell
activation (10–13), induce chemotaxis
and migration of inflammatory cells
(14–17), and elicit chemokine and cytokine
release from bronchial epithelial cells
(18–22). Because LPA can also exert
antiinflammatory or homeostatic effects
in other contexts (2, 23, 24), the net effect
of this molecule on airway inflammation
and hyperreactivity will depend on where
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and when it is produced in the airway,
and on the target cell types and receptors
engaged.

LPA elicits its effects by binding
to at least six known cell surface G
protein–coupled receptors (LPA1–6)
that are expressed in the lung in a cell
type–specific manner (reviewed in Ref. 25).
LPA receptor signaling regulates diverse
cellular processes, such as activation,
proliferation, survival, and migration.
LPA2, in particular, has emerged as an
attractive therapeutic target in asthma
for several reasons. First, the intracellular
C-terminal domain of LPA2 couples with
unique downstream modules distinct
from other LPA receptors that appear to
transduce cell-protective signals (26–29).
Second, LPA2 deficiency in mice attenuates
allergen-driven airway inflammation and
hyperreactivity, at least in part by inhibiting
dendritic cell activation (30). Third, novel
small-molecule LPA2 agonists were recently
synthesized that demonstrate robust
receptor selectivity without inhibiting

ATX activity (a weakness of earlier-
generation compounds [31]). These
LPA2 agonists demonstrated remarkable
efficacy in protecting mice from acute
radiation syndromes, indicating that they
have favorable bioactivity in the setting
of tissue inflammation and damage
(32). Here, we report that 2-[4-(1,3-
dioxo-1H,3H-benzoisoquinolin-2-yl)
butylsulfamoyl] benzoic acid [DBIBB]), a
novel and specific LPA2-specific sulfamoyl
benzoic acid agonist, strongly inhibits
house dust mite (HDM)–driven allergic
inflammation in mice.

Materials and Methods

Mice
Wild-type BALB/c mice were purchased
from Charles River Laboratories
(Wilmington, MA). All mice were
maintained at the University of Rochester
and age- and sex-matched littermate
controls were used in all experiments.

The studies were performed in strict
accordance with guidelines from the
National Institutes of Health. The protocol
was reviewed and approved by the
University of Rochester Committee
of Animal Resources, and studies
were conducted in accordance with
institutional guidelines.

HDM Asthma Protocol and Sample
Collection
Female BALB/c mice were used at 8–10
weeks of age. HDM (Dermatophagoides
pteronyssinus) extract (endotoxin 156.2
EU/ml; Greer Laboratories, Lenoir, NC)
was resuspended in sterile PBS and
30 mg/30 ml was administered to isoflurane-
anesthetized mice intranasally for 10
consecutive days. In addition, mice were
administered either vehicle (PBS, 1%
ethanol, 2% propanediol) or 30 mg of an
LPA2 agonist (DBIBB) intraperitoneally
each day (Figure 1). At 48 hours after
the last challenge, mice were killed.
Bronchoalveolar lavage (BAL) was

HDM (30 ug/mouse) i.n. + vehicle i.p.
HDM (30 ug/mouse) i.n. + LPA2 agonist i.p.
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Figure 1. Less airway inflammation in lysophosphatidic acid (LPA) 2 agonist–treated mice. (A) Diagram of the house dust mite (HDM) allergen dosing
regimen. Mice were administered HDM extract (30 mg/30 ml) intranasally (i.n.) for 10 consecutive days. Mice were also administered either vehicle
(PBS, 1% ethanol, 2% propanediol) or 30 mg of an LPA2 agonist (2-[4-(1,3-dioxo-1H,3H-benzoisoquinolin-2-yl)butylsulfamoyl] benzoic acid [DBIBB])
intraperitoneally (i.p.) each day. At 48 hours after the last challenge, mice were killed. (B) Total bronchoalveolar lavage (BAL) counts were determined by
hemocytometry. (C) Absolute number of BAL macrophages, eosinophils, lymphocytes, and neutrophils. Data are mean6 SEM, n=8 mice/group. *P , 0.05.
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performed by exposing the trachea and
gently instilling 0.75 ml of PBS into
the lungs twice using a Teflon cannula.
Serum was collected after centrifugation
of whole blood. The mice were perfused
with 5 ml of PBS and then the left lobe
was tied off and cut out for lung digests.
The remaining lung was inflated with
10% formalin for histological analyses.
Total cell counts from the BAL fluid
were determined using a hemocytometer
and cytospins were prepared by
cytocentrifugation and staining with
Protocol Hema 3 Stain Set (Fisher
Scientific, Waltham, MA) to count
differentials.

Histological Analysis
Lung tissue was embedded in paraffin
and 5-mm sections were mounted on slides
and stained with hematoxylin and eosin.
Lung sections were scored by blinded
observers using a semiquantitative
scoring system, on a 0–4 scale, which takes
into account the extent and severity of
inflammation, as described in the online
supplement.

Lung Digest Preparation
The excised left lobe was finely chopped and
incubated in media containing collagenase
type 2 (1 mg/ml; Worthington Biochemical,
Lakewood, NJ) and DNase (30 mg/ml) for
30 minutes. The pieces were then gently
mashed through a 100-mm strainer,
washed, red blood cells lysed, and cells
plated in a 24-well plate with media.
The cells were incubated at 378C and
the supernatants were collected 24 hours
later.

ATX Activity Assay
Lysophospholipase D activity of ATX was
measured using an enzyme-coupled assay,
as described in the online supplement.

Results

To test the LPA2 agonist (DBIBB) in a
physiologically relevant model of allergic
inflammation, wild-type BALB/c mice
(8- to 10-week-old females) were
administered intranasal HDM extract (30
mg in 30 ml normal saline; D. pteronyssinus,
endotoxin 156.2 EU/ml) for 10 consecutive
days (Figure 1A). This protocol reproduces
many features of allergic asthma, including
eosinophilic airway inflammation and Th2

cytokine production (33). Control mice
received vehicle (PBS, 1% ethanol, 2%
propanediol) by intraperitoneal injection
daily, whereas test mice received 30 mg of
DBIBB resuspended in vehicle in parallel
(Figure 1A). At 48 hours after the last
challenge, mice were killed. To ensure that
the vehicle itself was not having deleterious
effects, HDM-treated mice were compared
with HDM plus vehicle-treated mice, and
no differences were observed (see Figure
E1 in the online supplement).

After HDM exposure, vehicle-treated
mice developed substantial airway
inflammation, as demonstrated by increased
BAL cell counts, which was significantly
attenuated in mice administered the LPA2

agonist (3.616 0.86 versus 1.746 0.303 105

total cells [mean6 SEM], n = 8, P = 0.0353;
Figure 1B). BAL fluid differentials
demonstrated a trend toward lower
numbers of eosinophils and neutrophils,
and a statistically significant reduction
in macrophages and lymphocytes after
LPA2 activation (Figure 1C; macrophages:
1.96 0.35 and 0.796 0.213 105 [P = 0.01],
eosinophils: 1.16 0.34 and 0.676 0.223 105

[P = 0.16], lymphocytes: 0.246 0.07 and
0.106 0.033 105 [P = 0.05], neutrophils:
0.386 0.15 and 0.156 0.053 105 [P = 0.10],
and in vehicle-treated and LPA2 agonist-
treated mice, respectively). We also observed
decreased tissue inflammation in response
to LPA2 activation, as determined by
semiquantitative scoring of hematoxylin
and eosin–stained lung sections in a blinded
manner (9.56 0.53 versus 7.256 0.25
inflammatory score [mean6SEM]; n = 4–8;

P = 0.0039; Figure 2A). Vehicle-treated mice
displayed robust pulmonary inflammation
with perivascular and peribronchial cellular
infiltration. The extent and severity of these
inflammatory markers were significantly
attenuated in the LPA2 agonist treated mice
(Figure 2B).

Analysis of BAL supernatants revealed
marked attenuation of proinflammatory
cytokines in LPA2 agonist–treated mice
after HDM exposure. The levels of Th2
cytokines IL-4 and IL-5 were decreased in
response to LPA2 activation, whereas the
levels of IL-10 tended to increase compared
with vehicle-treated mice (Figures 3A–3C).
These data suggest that the LPA2 agonist
changes the Th2 cytokine milieu in the
airways of the treated mice, leading to
a more antiinflammatory environment.
However when we scored PAS1-stained
lung sections, we did not observe any
differences in mucus production in the
airways between the two groups (Figure E2).

The titer of total serum IgE was not
significantly different between the
two groups (Figure 4A; 4.16 0.69 and
3.56 0.583 103 ng/ml; P = 0.26). These
data suggest that pharmacologic activation
of LPA2 during HDM allergen sensitization
and challenge reduced lung and airway
inflammation, but did not affect the class
switching of Igs synthesized by B cells.
In addition, we measured serum levels
of periostin, which is secreted by airway
epithelial cells in response to stimulation
by IL-4 and IL-13, and has recently been
identified as a surrogate biomarker of
Th2-driven asthma. Periostin levels in
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Figure 2. Less tissue inflammation in LPA2 agonist–treated mice. (A) Scoring of inflammation
severity from hematoxylin and eosin–stained lung sections (scoring system described in the
online supplement) and (B) representative images (43 and 203 [zoomed-in view of boxes in the
43 images]). Data are mean6 SEM, n = 4–8 mice/group. *P , 0.05.
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mice treated with the LPA2 agonists were
slightly, but not significantly, reduced
compared with vehicle-treated controls
(P = 0.08; Figure 4B). There was also no
difference in serum IL-13 concentrations
(Figure 4C).

To determine if tonic engagement of
LPA2 by DBIBB leads to changes in
LPA2 expression in the lung epithelial
cells, we treated human bronchial
epithelial (16HBE) cells with DBIBB (10 mM)
or vehicle (1:500 DMSO) for 0, 2, 6,
and 24 hours and measured LPA2

expression by Western blot. LPA2

expression was not different between
groups (Figure E3).

Finally, we also noted that DBIBB
decreased ATX activity in lung digests,
suggesting a previously unsuspected
negative-feedback loop between LPA2 and
ATX (Figure 5). However, ATX protein
concentrations in lung digest supernatants
were below the limit of detection, and
ATX protein and activity were unchanged
in the serum of vehicle-treated and
LPA2 agonist–treated mice (Figure E4).
Therefore, the mechanisms linking LPA2

activation to reduction of ATX activity
will require further study.

Discussion

In this article, we show, for the first time,
that activating LPA2 has therapeutic
potential in a murine allergic airway
inflammation model. Mice that were
administered the novel LPA2 agonist,
DBIBB, developed significantly less lung
inflammation after 10 days of HDM
challenges compared with vehicle-treated
mice. The antiinflammatory effect of
DBIBB was evident through total numbers
of cells recovered from the BAL fluid,
analysis of lung histology, and
measurement of Th2 cytokine production.
Collectively, these data support a model
in which altering the ATX/LPA axis by
activating LPA2 leads to a dampened
immune response upon allergen challenge.

Several lines of evidence point to a role
for the ATX/LPA axis in the pathogenesis of
asthma (2–5). First, subjects with asthma
have an increase in the LPA species 20:4
and 22:5 in their BAL fluid after segmental
allergen challenge (4). Park and colleagues
(5) corroborated these findings and showed
an increase in LPA 22:5 and 22:6 in
allergen-challenged subjects with asthma
and an increase in LPA 22:5 in the BAL

fluid of mice in a triple-allergen dust
mite, ragweed, Aspergillus mouse model
of allergic asthma. Second, in preclinical
models, LPA has been implicated in many
processes associated with asthma
pathophysiology, including leukocyte
recruitment and activation, as well as
bronchial hyperreactivity (reviewed in
Ref. 2). Because LPA can exert both
proinflammatory and antiinflammatory
effects in the lung (reviewed in Ref. 25),
its precise role in asthma will be dependent
on timing and location of LPA generation,
as well as LPA receptors engaged.

Our results build on preclinical data
that showed that LPA2 signaling is
antiinflammatory and a negative regulator
of dendritic cell activation (30). We have
shown previously that dendritic cells from
mice that are deficient in lpa2 were
hyperactive compared with their wild-type
counterparts in vitro, as seen by increased
ability to stimulate allogeneic CD41 T cells
to proliferate and produce IL-13. When
lpa2-deficient dendritic cells were allergen
pulsed and intratracheally administered to
wild-type mice, followed by aerosol allergen
challenge, the recipient mice succumbed to
greater lung eosinophilia. In addition,
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lpa2-deficient mice developed more airway
inflammation and hyperreactivity than
wild-type mice in mouse models of asthma
involving both systemic and mucosal
sensitization (with Ova as model allergen)
(30). In contrast to these findings, Zhao and
colleagues (34) have previously reported
that mice heterozygous for lpa2 (lpa2

1/2)
were partially protected from lung
inflammation after Schistosoma egg antigen
challenge. Likewise, in the dust mite,
ragweed, Aspergillus model of allergic lung
inflammation, lpa2

2/2 mice were more
resistant to lung inflammation than
wild-type mice (5). Reasons for these
discrepancies are unknown, but may be
due to differences in the antigens used
or genetic backgrounds of the mice.

In addition to dendritic cells, LPA2 is
expressed on mouse CD41 (35, 36) and
CD81 (36) T cells, neutrophils (36), lung
endothelial cells (36), fibroblasts (36), and
tracheal epithelial cells (34). Due to a lack
of an antibody that detects extracellular
surface LPA2, LPA receptor expression has
been analyzed at the mRNA and protein
level by quantitative PCR or Western blot
analysis, respectively. LPA2 is unique from
the other LPA receptors in its intracellular
C terminus, which contains distinct
protein–protein interaction domains.
The last four amino acids interact with
proteins such as the Na1/H1 exchange
regulatory factor 2 (NHERF-2) and
membrane-associated guanylate kinase with
inverted orientation-3 (MAGI-3) (37, 38),
which can activate extracellular signal-
regulated kinases and Ras homolog gene
family member A (RhoA) to promote cell
migration (39). In the proximal region,
LPA2 has a dileucine motif and several
putative palmitoylated cysteine residues

that associate with the LIM domains of
thyroid receptor interacting protein 6
(TRIP6) (40) and Siva-1 protein (26, 27).
Activating LPA2 leads to the recruitment
of TRIP6, a focal adhesion molecule, to
the C terminus of LPA2 at the plasma
membrane. This association leads to
its targeting to focal adhesions and
colocalization with actin, and is involved
with regulating LPA-induced cell adhesion
and migration (27, 40–42). LPA2 also binds
the Siva-1 protein, which is typically
thought of as proapoptotic, because it
activates caspases (43) and is up-regulated
during the DNA damage response (44–46).
However, upon it’s binding to activated
LPA2, Siva-1 is polyubiquitinated and
degraded in the proteasome, thereby down-
regulating its proapoptotic activity (26, 27).
Likewise, studies have shown that LPA2 is
necessary and sufficient to protect cells from
radiation-induced cell death and gut injury
(28, 29). To this end, recent research has
aimed to identify small-molecule drug
candidates that target LPA2 to protect
against radiation-induced apoptosis.
The DBIBB compound was recently
reported to reduce mortality of high-dose
(15.69 Gy) g-irradiated mice and mitigated
gastrointestinal acute radiation syndrome,
highlighted by increased crypt survival,
enterocyte proliferation, and reduced
apoptosis (32). DBIBB represents the first
radiomitigator small-molecule compound
to effectively treat tissue damage after
radiation, and future studies investigating
the mechanisms of this protective effect
will be beneficial.

In our model, we administered DBIBB
at the same time as HDM allergen. Whether
or not DBIBB has mitigative effects after
allergen-induced inflammation is

established is unknown, and warrants
future studies. Our data show that, when
the LPA2 agonist is administered to mice
during HDM challenges, significantly less
allergen-induced inflammation developed
compared with vehicle-treated mice. The
striking efficacy of DBIBB in dampening
tissue inflammation and Th2 cytokine
production could be due to attenuation
of cell recruitment to the lung, either
indirectly by inhibiting chemokine
production, or directly by affecting cell
migration. One possibility is that the
LPA2 agonist acts on bronchial epithelial
cells and changes their cytokine and/or
chemokine expression, thus inhibiting the
recruitment or activation of immune cells
to the airways. LPA has been shown to
stimulate the expression of thymic stromal
lymphopoietin (TSLP), involved in
dendritic cell maturation, and CCL20, a
dendritic cell and T cell chemoattractant,
from bronchial epithelial cells (22).
Whether this results from LPA2 signaling is
not known. Another possibility is that
epithelial chemokine production is
dependent on LPA2, and, if tonic
engagement of LPA2 by DBIBB leads to
receptor desensitization and/or
internalization, then DBIBB-exposed
epithelial cells might be less responsive
to endogenously produced LPA. Little
is known about receptor recycling or
trafficking of LPA receptors, except that
there are different mechanisms that
regulate LPA-dependent and PMA-
dependent internalization of LPA1 (47).
In addition, Lee and colleagues (39) have
shown that LPA does not induce LPA2

internalization, although rapid
internalization or recycling might have
escaped detection. We also did not see any
difference in LPA2 expression via Western
blot after DBIBB treatment (Figure E3).
Another explanation is that DBIBB inhibits
DC activity via LPA2, which would support
our previous observation that LPA2-
deficient DCs have a hyperactive phenotype
(30). However, because serum IgE was not
significantly inhibited in DBIBB-treated
mice, we concluded that early sensitization
steps of the HDM-dependent immune
response were intact in our model. Future
studies investigating the effects of DBIBB
on maturation and activation markers on
lung DC subsets after HDM challenge will
be needed to address this issue.

LPA also increases soluble ST2 (sST2)
(24) and IL-13Ra2 (23) expression from

HDM+vehicle

A
T

X
 a

ct
iv

ity

0

4

2

6

8

10
A B

***

HDM+LPA2 agonist

Inflammation

LPA2

LPA2 agonist

Autotaxin activity

Figure 5. LPA2 agonist decreases autotaxin (ATX) activity in the lung. (A) The lysophospholipase D
activity of ATX was indirectly measured in lung digest supernatants using an enzyme-coupled
assay using N-ethyl-N-(2-hydroxyl-3-sulfoproryl)-3-methylaniline (described in the online supplement).
Data are mean6 SEM, n = 8 mice /group. ***P , 0.001. (B) Proposed model: the LPA2 agonist
(DBIBB) activates the LPA2 receptor, which leads to a dampening of allergen-driven inflammation.

ORIGINAL RESEARCH

406 American Journal of Respiratory Cell and Molecular Biology Volume 54 Number 3 | March 2016



mouse and human bronchial epithelial
cells. These are both decoy receptors that
bind to IL-33 and IL-13, respectively, and
are considered antiinflammatory mediators.
Modulating the levels of available IL-33
could have an impact on innate immune
cell activation, such as IL-33–responsive
type 2 innate lymphoid cells (ILC2s) (48).
In the lung, ILC2s make IL-5 and IL-13
(49). In Figure 3, we note a significant
decrease in IL-5, whereas IL-13 was
immeasurable in both groups. However,
when we measured sST2 levels in the serum
of both vehicle-treated and DBIBB-treated
mice, we did not detect any differences
(Figure E5). In addition, IL-13Ra2
expression in BAL fluid was not
significantly different between vehicle-
treated and DBIBB-treated mice (Figure
E6). Consequently, we concluded that the
antiinflammatory effects of DBIBB are
likely independent of ST2 and IL-13Ra2
in our experiments. Consequently, we
concluded that the antiinflammatory effects
of DBIBB are likely independent of ST2
and IL-13Ra2 in our experiments.

The LPA2 agonist could also be
binding directly to the immune cells
and inhibiting their migration to the lung
in response to HDM. LPA2 signals through
Ga12/13, which activates Rho kinases and
leads to cytoskeletal remodeling, thus
regulating cell migration (50). Human and
mouse immune cells, such as eosinophils,
neutrophils, macrophages, dendritic cells,
CD41 and CD81 T cells, and mast cells,
have been shown to express LPA2, albeit
at differing levels (reviewed in Ref. 25).
We only saw a trend toward fewer

eosinophils and neutrophils in the BAL
fluid after LPA2 agonist administration
(Figure 1), but a significant decrease in
IL-5 levels (Figure 3). A reason for this
disconnect could be timing, and future
experiments that look earlier and later
after the last HDM challenge would be
interesting. Furthermore, DBIBB could be
affecting the recruitment or expansion of
ILC2s, which are another producer of IL-5
in the lung (49, 51). In Figure 3, we show
that DBIBB administration leads to an
increase in IL-10 in the BAL fluid. We
have not dissected the source of this
antiinflammatory cytokine, but we can
speculate that it is being produced from
regulatory T cells or apoptotic macrophages
in response to DBIBB (52, 53). We can
measure other antiinflammatory cytokines,
such as prostaglandin E2 or transforming
growth factor-b1 to investigate whether
DBIBB is enhancing resolution from
HDM-induced lung inflammation (54).
Future studies using mice deficient in lpa2
and adoptive transfer experiments will be
needed to define specific effects of DBIBB on
the recruitment of different cell types in vivo.

Periostin is an evolving biomarker
of Th2 inflammation that is secreted by
airway epithelial cells and lung fibroblasts in
response to IL-4 and IL-13 (55–59). Gene
expression profiling of humans with asthma
have shown a greater than fourfold increase
in periostin gene expression compared
with healthy control subjects (60).
However, data in periostin-deficient mice
have not been as well defined (61–63).
Blanchard and colleagues (61) noted
decreased eosinophilic inflammation in

the mouse lung after Aspergillus fumigatus
challenge in periostin-deficient mice,
whereas Gordon and colleagues (62) noted
increased airway hyperresponsiveness
and serum IgE after allergen challenge. In
another study, Sehra and colleagues (63)
saw no difference in eosinophils or Th2
cytokines between wild-type and periostin-
deficient mice, but did report enhanced
mucus production by goblet cells in
periostin-deficient mice in an ovalbumin
sensitization model. In our study, we noted
a decrease in serum periostin after DBIBB
treatment, but the difference was not
statistically significant. Whether LPA
signaling plays a direct role in periostin
expression or if less periostin was induced
due to the decreased levels of IL-4
remains to be determined.

Taken together, our data identify
LPA2 as a novel therapeutic target
in asthma. It will be interesting in
future studies to determine how
DBIBB attenuates tissue inflammation
and Th2 cytokine production in the
lung, and if these correlate with
physiological outcomes, such as
airway hyperresponsiveness. It will also
be exciting to decipher the mechanisms
and consequences of LPA2-dependent
inhibition of ATX activity (Figure 5).
Our results should add to the growing
enthusiasm for new therapies that target
the ATX/LPA axis in inflammatory
diseases in general and allergic asthma
in particular. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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