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Abstract

Airway hyperresponsiveness (AHR) is a hallmark feature in asthma
characterized by exaggerated airway contractile response to stimuli
due to increased airway sensitivity and chronic airway remodeling.
We have previously shown that allergen-induced AHR in mice is
associated with aberrant DNA methylation in the lung genome,
suggesting that AHR could be epigenetically regulated, and these
changes might predispose the animals to asthma. Previous studies
demonstrated that overexpression of phosphodiesterase 4D
(PDE4D) is associated with increased AHR. However, epigenetic
regulation of this gene in asthmatic airway smooth muscle cells
(ASMCs) has not been examined. In this study, we aimed to
examine the relationship between epigenetic regulation of PDE4D
and ASMC phenotypes. We identified CpG site–specific
hypomethylation at PDE4D promoter in human asthmatic ASMCs.
We next used methylated oligonucleotides to introduce CpG
site–specific methylation at PDE4D promoter and examined its

effect on ASMCs. We showed that PDE4D methylation decreased
cell proliferation and migration of asthmatic ASMCs. We further
elucidated that methylated PDE4D decreased PDE4D expression in
asthmatic ASMCs, increased cAMP level, and inhibited the
aberrant increase in Ca21 level. Moreover, PDE4D methylation
reduced the phosphorylation level of downstream effectors of Ca21

signaling, including myosin light chain kinase and p38. Taken
together, our findings demonstrate that gene-specific epigenetic
changes may predispose ASMCs to asthma through alterations in
cell phenotypes. Modulation of ASMC phenotypes by methylated
PDE4D oligonucleotides can reverse the aberrant ASMC functions
to normal phenotypes. This has provided new insight to the
development of novel therapeutic options for this debilitative
disease.
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Chronic asthma is characterized by
persistent airway hyperresponsiveness
(AHR), an exaggerated narrowing of the
airway in response to a variety of physical
and chemical stimuli due to increased
airway sensitivity, inflammation, and
remodeling (1, 2). Antiinflammatory
therapy is currently the primary medication
for asthma, and studies of AHR have

been prevalently focused on inflammatory
cells, mediators, and immune responses (3).
However, accumulating evidence shows
that AHR may also present in patients
with asthma without inflammation,
suggesting that airway inflammation
cannot fully explain the mechanisms
underlying AHR (4–6). Therefore,
noninflammatory AHR mechanisms should

not be overlooked, and require additional
in-depth investigations.

Airway remodeling characterized by
airway smooth muscle (ASM) hypertrophy
and hyperplasia is a salient feature of
asthma, and is linked to AHR (7, 8). In vitro
studies have consistently shown that
ASM cells (ASMCs) of subjects with asthma
are hypercontractile and proliferative
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compared with nonasthmatic ASMCs
(9, 10), indicating that the phenotypic
changes persisted in cultured asthmatic
ASMCs. Epigenetic modification via DNA
methylation, histone modifications, or
noncoding RNA is a possible mechanism
for the persistent phenotypic changes in
cells, tissues, and organs (11). Aberrant
changes in histone modifications and
microRNAs have been implicated in
phenotypic switch in ASMCs (reviewed in
Ref. 12). Specific histone modifications at
inflammatory or growth factor genes may
contribute to the increased production
that modulates the ASMC phenotypes
(13, 14). Asthmatic ASMCs showed
increased histone H3K18 acetylation,
and enhanced binding of p300 at the
CXCL8 promoter as compared with
nonasthmatic ASMCs. On the other
hand, ASMCs showed alteration in
expression of specific microRNAs
in proinflammatory milieu, resulting in
aberrant expression of genes modulating
ASMC proliferation, hypertrophy, and
contractility (15–18). Furthermore, DNA
methylation is the best-studied epigenetic
mechanisms in asthma studies. DNA
methylation changes are associated with
asthma (19, 20) and linked to specific
triggers of asthma, such as pollutant
exposures (21–24). We previously
reported that acute exposure to house
dust mite (HDM) induced AHR in
a mouse model, and the AHR induction
was associated with epigenetic

modulations of genes related to ASMC
proliferation and contraction (25, 26).
Specifically, we found promoter
demethylation of phosphodiesterase
4D (Pde4d) gene in tracheal ASMCs
isolated from HDM-exposed mice.
PDE4D is a cAMP-specific
phosphodiesterase, which regulates
intracellular cAMP level. Knockout
of Pde4d abolishes the airway reactivity
toward cholinergic stimulation and
ovalbumin sensitization in mice (27).
PDE4D, through regulation of
intracellular cAMP level, modulates
a variety of ASM functions, including cell
death, cell proliferation, contraction, and
migration (28–30). In fact, a genome-
wide association analysis study has
identified PDE4D as an asthma-
susceptibility gene (31). Herein, we
hypothesize that epigenetic regulation of
PDE4D promoter methylation alters the
expression of PDE4D, which leads to
aberrant phenotypic changes of human
asthmatic ASMCs. In this study, we aimed
to: (1) examine the epigenetic alteration
of PDE4D promoter occurring at human
asthmatic ASMCs; (2) compare the
phenotypes, including proliferation,
migration, and agonist-induced Ca21

response, of nonasthmatic and asthmatic
ASMCs; and (3) investigate if modulation
of PDE4D promoter methylation reverses
the aberrant ASMC phenotypes in
subjects with asthma. This study provides
important information on the epigenetic
regulation of PDE4D/cAMP signaling in
asthmatic ASMCs, and may lead to
a novel modality of treatment for this
devastating disease.

Material and Methods

Detailed methods are described in the online
supplement.

Cell Culture
Human ASMCs from subjects with
and without asthma were either
purchased (LONZA Inc., Walkersville,
MD) or isolated from deceased
donors using methods described
previously (32).

Real-Time Quantitative PCR
Total RNA was extracted and reverse
transcribed. mRNA levels were quantified
by quantitative PCR (qPCR). The 22DDCt

method was used to calculate the
relative expression level of transcripts
normalized to RPL19.

Bisulfite Genomic Sequencing
Bisulfite conversion of genomic DNA
extracted from ASMCs was performed
before PCR. PCR amplicon was
subcloned into pCR2.1 vector. Three to
four individual clones from each donor
were sequenced.

Methylation-Specific PCR
CpG site–specific methylation of PDE4D
was assayed by qPCR. Control DNAs
(fully methylated and fully unmethylated)
were mixed in various concentrations and
served as quantification standards
when determining the percentage of
DNA methylation of samples from
qPCR.

Transfection with Methylated
Oligonucleotides
ASMCs were transfected with nontargeting
control or DNA oligonucleotides specific for
methylated PDE4D for 3 days. The
phosphorothioate oligonucleotides were
designed to replace the cytosines in CpG
dinucleotides with methylated cytosine
(33–35).

Measurement of the Intracellular
cAMP Level
Transfected cells were incubated with new
medium with 5% FBS for 24 hours before
measurement. cAMP levels in cell
supernatants were measured with a cAMP
high-throughput screening Immunoassay
(EMD Millipore, Billerica, MA).

alamarBlue Cell Viability Assay
Cell viability at 3 days after transfection was
measured by alamarBlue assay (Invitrogen,
Carlsbad, CA).

Cell Migration Assay
Cell migration was measured by QCM
Chemotaxis assay (EMDMillipore, Billerica,
MA).

Cytosolic Calcium Measurement
Transfected ASMCs were seeded onto glass
coverslips overnight in growth medium
and were then serum deprived for 48 hours
before calciummeasurements. Intracellular
calcium concentration ([Ca21]i) was

Clinical Relevance

Prior epigenetic work has focused
primarily on epigenetic regulation of
pathways involved in the initiation of
allergen sensitization in immune cells.
However, few studies have investigated
lung cell–specific epigenetic changes,
which are directly linked to altered
lung function. In the present study, we
demonstrate that application of
methylated DNA oligonucleotides can
reverse the aberrant epigenetic
changes in asthmatic airway smooth
muscle cells and thus modify the
airway smooth muscle responsiveness.
Our findings may provide insight for
the use of epigenetic modifiers in
treating asthma through the reversible
nature of epigenetic modulations.
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monitored as described previously
(36).

Western Blot Analysis
Transfected ASMCs were lysed, resolved by
SDS-PAGE and electrotransferred onto
a polyvinyl difluoride (PVDF) membrane.
Standard Western blot procedures were
followed.

Results

PDE4D mRNA was abundantly expressed
in asthmatic ASMCs with a level fourfold

higher than that in nonasthmatic ASMCs
(Figure 1A). In silico analysis revealed that
CpG islands (GC% .60%) at 59 PDE4D
encompassed the transcription and
translation start sites (Figure 1B). The
methylation status of a total of 99 CpG
sites at the 59 promoter region of PDE4D
was examined by bisulfite sequencing,
and the methylation status of individual
CpG site (CpG sites 26–99) at the 59
PDE4D (298 to 1608, including the
59 untranslated exon and first exon) is
shown in Figure 1C. There was no
significant difference in methylation status
of CpG sites 1–25 between nonasthmatic

and asthmatic ASMCs (data not shown).
By contrast, PDE4D promoter was
demethylated significantly in asthmatic
ASMCs comparing the average percent
methylation of CpG sites 26–99 with
nonasthmatic ASMC (P = 0.02).
Furthermore, a cluster of CpG sites
(boxed region, CpG sites 87–90;
Figure 1C) showing differential
methylation (P, 0.01) was identified in
asthmatic ASMCs. These results indicate
that PDE4D expression was increased
in asthmatic ASMCs, and that the
increased mRNA transcription is
associated with demethylation in
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Figure 1. Difference in gene expression and promoter methylation level of phosphodiesterase 4D (PDE4D) between nonasthmatic and asthmatic airway
smooth muscle cells (ASMCs). (A) mRNA expression level of PDE4D in asthmatic ASMCs (five donors) relative to nonasthmatic ASMCs (five donors)
assayed by quantitative polymerase chain reaction (qPCR). Values are mean 6 SD. **P, 0.01. (B) Schematic diagram of CpG dinucleotide (CG) content
(%) in the 59 promoter region of PDE4D. In silico analysis identified the CpG islands (shaded in gray in the genomic DNA sequence) based on the CG
content greater than 60% with an observed:expected ratio of 0.6 (MethPrimer). ATG, translational start site; TSS, transcription start site; UTR, untranslated
region. PCR amplicon generated by bisulfite sequencing PCR (BSPCR) and methylation-specific qPCR (MSPCR) indicated by the regions bounded by
arrows. (C) Methylation status of individual CpG site at the PDE4D promoter in nonasthmatic (three donors) and asthmatic ASMCs (three donors) was
assayed by bisulfite sequencing. Unmethylated (open circles) or methylated (solid circles) CpGs are indicated. Each row of circles represents an individual
clone sequenced. Three to four individual clones from each donor were picked for sequencing. Boxed area illustrates the specific CpG sites showing
differential methylation in asthmatic ASMCs (P, 0.01).
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a specific CpG cluster of PDE4D
promoter.

Methylated DNA oligonucleotides
were designed to introduce DNA
methylation at the specific CpG sites on
PDE4D promoter (boxed region). Synthetic
methylated oligonucleotides can modify
targeted cytosine residue to 5-methyl-
cytosine and bind to one strand of the gene
to generate a hemimethylated DNA. This
hemimethylated DNA allows binding of
DNA methyltransferase 1, which catalyzes
methylation at the complementary strand,
resulting in fully methylated target CpG
sites in both DNA strands (33). Asthmatic
ASMCs transfected with methylated
PDE4D oligonucleotides (M-PDE4D)
showed an eightfold reduction in mRNA
level of PDE4D compared with those
treated with nontargeting methylated
DNA oligonucleotides (M-CTL) and
lipofectamine (LF) control, whereas PDE4D
expression in nonasthmatic ASMCs was
unaffected (Figure 2A). In concord with the
increased PDE4D expression, the
percentage of promoter methylation of
PDE4D was significantly lower in the
asthmatic ASMCs (Figure 2B). Treatment
of asthmatic ASMCs with M-PDE4D
completely reversed the reduction of CpG
site–specific methylation, as assayed by
methylation-specific PCR (Figure 2B).
M-PDE4D increased the percentage
methylation of PDE4D by approximately
30% (to fully methylated) and a
corresponding eightfold reduction in
PDE4D mRNA level in asthmatic ASMCs.
This suggests that PDE4D was silenced
successfully in asthmatic ASMCs by
M-PDE4D. The absence of additional
silencing effect of the methylated
oligonucleotides on PDE4D expression in
nonasthmatic ASMCs suggests that their
respective CpG sites were already fully
methylated.

The effect of epigenetic modulation
of PDE4D on cell phenotypes was gauged
by determining growth and migration of
ASMCs transfected with M-PDE4D,
M-CTL, or LF. The number of viable
asthmatic ASMCs in the M-CTL or LF
control was noticeably higher than that
of the corresponding nonasthmatic
ASMCs, suggesting enhanced
proliferation in asthmatic ASMCs.
Transfection of M-PDE4D normalized
the increase in the viable asthmatic
ASMCs, but had no effect on the
nonasthmatic ASMCs (Figure 3A).

Chemotaxis assay showed that asthmatic
ASMCs had a higher migration
activity, which was inhibited by
M-PDE4D (Figure 3B), but M-PDE4D
had no effect on the migration
of nonasthmatic ASMCs. These
data demonstrate that epigenetic
modulation of PDE4D regulates the cell
proliferation and migration of asthmatic
ASMCs.

Increase in intracellular cAMP
concentration ([cAMP]i) alters ASMC
proliferation, migration, and contraction
via modulation of the [Ca21]i (37). To
investigate the mechanism underlying the
epigenetic effect of PDE4D on the
ASMC phenotypes, the change in [cAMP]i

and [Ca21]i in M-PDE4D–transfected
ASMCs was measured. There was no
significant difference in basal [cAMP]i
between nonasthmatic and asthmatic
ASMCs, but [cAMP]i was elevated
significantly in asthmatic ASMCs after
M-PDE4D transfection (Figure 4A). The
Ca21 response elicited by 3 mM
histamine was significantly higher in
asthmatic ASMCs, compared with the
nonasthmatic ASMCs (Figure 4B).
M-PDE4D transfection decreased the
histamine-induced Ca21 response by 40%
in asthmatic ASMCs to the same level of
the nonasthmatic ASMCs. This inhibitory
effect of M-PDE4D was not observed
in nonasthmatic ASMCs. Our findings
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Figure 2. Effect of methylated oligonucleotides on gene expression and promoter methylation of
PDE4D in nonasthmatic and asthmatic ASMCs. (A) mRNA expression level of PDE4D and (B) CpG
site–specific methylation (%) of PDE4D (1366 to 1592) assayed by MSPCR in nonasthmatic (five
donors) and asthmatic (five donors) ASMCs transfected with PDE4D-targeting (M-PDE4D) or
nontargeting methylated oligonucleotide control (M-CTL). b-actin was used as the reference gene to
normalize the amount of bisulfite-treated DNA template. Methylated DNA standards (0, 25, 50, 75,
and 100% methylated DNA) were used when determining percentage of DNA methylation of samples
from qPCR. *P, 0.05 in comparison to lipofectamine (LF) control of nonasthmatic ASMCs; #P, 0.05
in comparison to M-CTL of asthmatic ASMCs.
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Figure 3. Methylated PDE4D inhibited cell proliferation and migration of asthmatic ASMCs. (A) Cell
viability assayed by alamarBlue and (B) cell migration examined by chemotaxis assay in
nonasthmatic (three donors) and asthmatic (three donors) ASMCs treated with LF with or without
PDE4D-targeting (M-PDE4D) or nontargeting methylated oligonucleotide control (M-CTL). *P, 0.05
in comparison to LF control of nonasthmatic ASMCs; #P, 0.05 in comparison toM-CTL of asthmatic
ASMCs.
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indicate that the enhanced Ca21 response
to histamine in asthmatic ASMCs could
be related to the epigenetic alteration
of PDE4D.

To further investigate if alterations in
Ca21 mobilization via gene silencing of
PDE4D leads to aberrant asthmatic
ASMC phenotypes, we examined the
effect of M-PDE4D on the
phosphorylation of myosin light chain
kinase (MLCK), p38, and extracellular
signal–regulated kinase (ERK) 1/2, which
are the downstream effectors of Ca21-
induced signaling (Figure 5). Asthmatic
ASMCs showed increased levels of
phosphorylated MLCK, p38, and ERK2
proteins as compared with that of
nonasthmatic ASMCs. Furthermore,
M-PDE4D caused a 120 and 50% decrease
in phosphorylation of MLCK and p38,
respectively, in asthmatic ASMCs, but had
no effect on nonasthmatic ASMCs (Figures
5A and 5B). The expression levels of
phosphorylated ERK1/2 in both
nonasthmatic and asthmatic cells
treated with M-PDE4D were unchanged.

Taken together, we provide evidence
that epigenetic alteration of PDE4D
can modulate the Ca21 homeostasis
and activation of MLCK and p38
signaling, which may contribute to
the aberrant ASMC phenotypes
observed in subjects with asthma.

Discussion

The present study demonstrates that
PDE4D promoter demethylation
contributes to the increased PDE4D gene
expression in asthmatic ASMCs. This is
in agreement with our previous study
showing that HDM-induced AHR was
associated with the epigenetic alterations
of Pde4d (25). Furthermore, we showed
that the epigenetic alteration of PDE4D
was associated with the abnormal increase
in cell proliferation, migration, and
histamine-induced Ca21 response in
asthmatic ASMCs. By introducing
PDE4D promoter methylation by
methylated oligonucleotides, the aberrant

phenotypes in asthmatic ASMCs could be
reversed. Our results, hence, suggest that
the CpG site–specific demethylation of
PDE4D may account, at least in part, for
the altered phenotypes of asthmatic
ASMCs that are responsible for the airway
remodeling and AHR in patients with
asthma. Strikingly, a moderate change in
CpG site–specific methylation at the
PDE4D promoter by methylated
oligonucleotides caused a dramatic
decrease in PDE4D expression. By in
silico search of the TRANSFAC database
(38), we identified transcriptional factors
(TFs), Sp1, Sp3, E2f-1, and p300, may
potentially bind to the specific CpG
sites (boxed area, Figure 1C) at the
PDE4D promoter. De novo methylation
has been shown to be associated with the
recognition site of Sp1 and E2f-1 (39,
40). Sp3 is shown to interact with
histone deacetylases (41), whereas p300
histone acetyltransferase modulates gene
transcription via chromatin remodeling
(42). Given the fact that DNA
methylation occurring at recognition
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sites of TFs may suppress the gene
transcription by either inhibiting
the binding of TFs to the promoter and/or
hindering the chromatin stability by
further recruiting DNA methyltransferases
and histone modification enzymes to
the promoter, it is possible that moderate
or slight changes in methylation
pattern at specific CpGs may contribute
to a larger change in gene expression
level. Although future studies are
needed to examine the regulation
of the PDE4D transcriptional activity,
our data provide an insight in to the
development of efficient and specific
inhibitors for PDE4D.

PDE4D belongs to the PDE4 family,
and is the major PDE subtype in
human ASMCs. It is a cAMP-specific
phosphodiesterase for the degradation of
cAMP for lowering [cAMP]i. cAMP plays
important roles in various physiological
functions of ASMCs. b2-Agonist inhibits
ASMC proliferation and contraction
through cAMP production mediated by
G protein–coupled receptors and adenylyl

cyclase (43, 44). Trian and colleagues (28)
reported that b2 adrenergic receptor-
mediated cAMP generation is
dysregulated in asthmatic ASMCs by the
increased cAMP degradation by PDE4,
may be partly due to the increased
PDE4D expression. They further propose
the intrinsic abnormality seen in
asthmatic ASMCs in the absence of
proinflammatory milieu may be
due to the genetic and/or epigenetic
predisposition. Herein, we provide the
evidence that PDE4D is overexpressed via
promoter demethylation in asthmatic
ASMCs. Increased PDE4D expression
enhances hydrolysis of cAMP that
inhibits activity of protein kinase A.
Reduction in protein kinase A activity
inhibits the sarcoplasmic reticulum (SR)
Ca21 release from inositol trisphoshate
receptor and extracellular Ca21 entry, and
lessens the amelioration of SR Ca21

uptake via sarco/endoplasmic reticulum
Ca21 ATPase (SERCA) (45). Eventually,
the intracellular Ca21 level is increased,
which may up-regulate MLCK and p38,

leading to enhanced ASMC contraction,
proliferation, and migration (46–49).
Hence, PDE4D up-regulation can
suppress the cAMP-dependent signaling
pathways, leading to aberrant ASMC
phenotypes. Our data support the
hypothesis that the aberrant cAMP
production is “programmed” via
epigenetic regulation of PDE4D, and it
may predispose the ASMCs to be
hyperresponsive. On the other hand,
gene silencing of PDE4D via DNA
methylation contributes to the decreased
Ca21-dependent activities through
cAMP signaling to inhibit cell growth
and migration, suppress ASM contraction,
and shift ASM tone to relaxation.
We summarized the possible mechanisms
underlying epigenetic regulation of
ASMCs via PDE4D methylation in
Figure 6.

The important role of PDE4D in
asthma has been implicated in a genome-
wide association analysis study that
identified PDE4D as an asthma-
susceptibility gene. Multiple PDE4D
single-nucleotide polymorphisms (SNPs)
were strongly associated with patients
with asthma of different ethnicities.
However, to date, there has been no direct
study on the effect of PDE4D SNPs on
PDE4D function. Our present study
indicates that, in addition to the SNPs,
PDE4D is epigenetically modulated in
asthmatic ASMCs. However, how the
persistent epigenetic alteration of PDE4D
is established in asthmatic ASMCs
remains unknown. We previously
demonstrated the changes in mRNA level
of the DNA methylation modulators,
including Dnmt3A, methyl-CpG–binding
domain proteins (Mbd2 and Mbd3), and
ten-eleven translocation proteins (Tet1)
in mouse chronically exposed to house
allergen (26). It will be informative to
further examine how PDE4D is
epigenetically regulated by these DNA
methylation modulators, and how
these modifications persist in the
presence or absence of stimuli as in our
cultured asthmatic ASMCs. AHR is
often considered an epiphenomenon of
airway inflammation. However, recent
studies revealed that ASMCs showed
asthmatic phenotypes, even in the
absence of the inflammation (4, 5, 6).
Our findings show that asthmatic
ASMCs are epigenetically modulated,
and such epigenetic alterations
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Figure 5. Methylated PDE4D altered phosphorylation of myosin light chain kinase (MLCK) and p38,
but not extracellular signal–regulated kinase (ERK) 1/2 in asthmatic ASMCs. Expression of the
phosphorylated (A) MLCK, (B) p38, (C) ERK1, and (D) ERK2 proteins in nonasthmatic (three donors)
and asthmatic (three donors) ASMCs transfected with PDE4D-targeting (M-PDE4D) or nontargeting
methylated oligonucleotide (M-CTL), or transfection control (LF) was quantitated as percent of
band intensity as compared with LF control of nonasthmatic ASMCs. *P, 0.05 in comparison to LF
control of nonasthmatic ASMCs; #P, 0.05 in comparison to M-CTL of asthmatic ASMCs.
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could be the consequence of prior
allergen exposures, inflammation, or
some as-yet unidentified mechanisms
that predispose the ASMC to
being highly proliferative and
contractile.

Pharmacological PDE inhibitors
have been recently developed for the
treatment of asthma because of their
bronchodilator and antiinflammatory
effects (50). Although the causal
relationship between epigenetic

regulation of PDE4D and airway
inflammation has not yet been
studied, we here demonstrate the
successful modification of the CpG
site–specific methylation of PDE4D in
asthmatic ASMCs using methylated
DNA oligonucleotides, which may
provide an alternative method of
epigenetic therapy for asthma. It is
exciting to speculate as to the
possibility of reversing the predisposed
asthmatic phenotype in ASMCs

to normal status with gene-specific
methylated DNA oligonucleotides. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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Figure 6. Proposed mechanisms of how epigenetic regulation of PDE4D via promoter methylation alters ASMC phenotypes. In asthmatic ASMCs, PDE4D promoter
is aberrantly unmethylated, and hence promotes PDE4D gene expression. Overexpression of PDE4D enhances the hydrolysis of cAMP and lowers the intracellular level
of cAMP that could lead to decreased activity of protein kinase A (PKA). Reduction in PKA activity inhibits the sarcoplasmic reticulum (SR) Ca21 release from inositol
trisphoshate receptor (IP3R) and extracellular Ca21 entry, and lessens the amelioration of SR Ca21 uptake via sacro/endoplasmic reticulum Ca21 ATPase (SERCA).
Eventually, the intracellular Ca21 concentration ([Ca21]i) is increased, which may up-regulate MLCK, p38, and/or ERK1/2, leading to enhanced cell contraction,
proliferation, and migration. Aberrant ASMC phenotypes may predispose the ASMCs to be hyperresponsive. Introduction of CpG site–specific methylation at PDE4D
promoter by methylated oligonucleotide results in suppression of PDE4D expression to the level of the nonasthmatic ASMCs and ultimately reverses the aberrant cell
phenotypes seen in asthmatic ASMCs. CH, methyl group at 5’ cytosine; DNMT, DNA methyltransferase; Ga, G-protein alpha; Pol II, RNA polymerase II.
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