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Abstract

Alcohol dependence leads to persistent neuroadaptations, potentially related to structural plasticity. 

Previous work has shown that hippocampal neurogenesis is modulated by alcohol, but effects of 

chronic alcohol on neurogenesis in the forebrain subventricular zone (SVZ) have not been 

reported. Effects in this region may be relevant for the impairments in olfactory discrimination 

present in alcoholism. Here, we examined the effects of prolonged alcohol dependence on 

neurogenesis. Rats were sacrificed directly after 7 wk of intermittent alcohol vapour exposure, or 

3, 7 or 21 d into abstinence. Proliferation was assessed using BrdU and Ki67 immunoreactivity, 

newly differentiated neurons (neurogenesis) as doublecortin-immunoreactivity (DCX-IR), and 

neural stem cells using the SOX2 marker. In the dentate gyrus, chronic dependence resulted in a 

pattern similar to that previously reported for acute alcohol exposure : proliferation and 

neurogenesis were suppressed by the end of exposure, rebounded on day 3 of abstinence, and 

returned to control levels by days 7 and 21. In the SVZ, proliferation was also suppressed at the 

end of alcohol exposure, followed by a proliferation burst 3 d into abstinence. However, in this 

area, there was a trend for reduced proliferation on days 7 and 21 of abstinence, and this was 

accompanied by significant suppression of DCX-IR, indicating a long-term suppression of 

forebrain neurogenesis. Finally, a decrease in the SOX2 stem cell marker was detected at days 7 

and 21, suggesting long-term reduction of the SVZ stem cell pool. While suppression of 

hippocampal neurogenesis by alcohol dependence is transient, the suppression in the forebrain 

SVZ appears long-lasting.
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Introduction

Alcoholism develops following repeated and prolonged episodes of brain exposure to 

intoxicating levels of alcohol. Accordingly, prolonged brain alcohol exposure in rodents 

triggers lasting behavioural changes that parallel features of the clinical syndrome, including 

a persistent escalation of alcohol self-administration (Rimondini et al. 2002; Roberts et al. 
2000). Models using repeated cycles of intoxication and withdrawal mimic the course of the 

clinical condition, and are most effective for inducing escalation of alcohol intake (O’Dell et 
al. 2004; Rimondini et al. 2002). Alcohol intake in post-dependent animals is sensitive to 

acamprosate, an approved alcoholism treatment, while alcohol intake of non-dependent rats 

is unaffected by this medication (Rimondini et al. 2002). Moreover, similar to the clinical 

condition (Gilman & Hommer, 2008), the post-dependent state is characterized by a 

persistently up-regulated behavioural sensitivity to stress (Sommer et al. 2008), while basal 

levels of circulating glucocorticoids are normal (Rimondini et al. 2002). Thus, neuroadaptive 

processes induced by prolonged exposure to cycles of intoxication and withdrawal parallel 

those in human alcoholism, and might be informative for human pathophysiology.

Adult neurogenesis is a mechanism of neuronal plasticity (Alvarez-Buylla & Lim, 2004; 

Curtis et al. 2007; Eriksson et al. 1998; Gould, 2007). A population of neural precursors is 

found in the dentate gyrus subgranular zone (SGZ). Neurogenesis in this region has been 

implicated in regulation of stress reactivity, and is itself suppressed by stress (Gould et al. 
1997; Mirescu & Gould, 2006). Similar to stress, chronic alcohol self-administration by 

mice reduces hippocampal neurogenesis and induces depression-like behaviour, 

consequences that are reversed by the antidepressant fluoxetine (Stevenson et al. 2009). 

However, effects of alcohol on hippocampal neurogenesis are complex, and different effects 

have been reported depending on species, dose, pattern of intake and time following brain 

exposure (Aberg et al. 2005; Nixon, 2006; Nixon & Crews, 2004). The other major source of 

neuronal progenitors in the adult central nervous system is the forebrain subventricular zone 

(SVZ). Both in rodents and humans, cells that originate from progenitors in the SVZ migrate 

to become GABAergic and dopaminergic neurons in the olfactory bulb, where they 

contribute to learning, associating, and discriminating odours (Curtis et al. 2007; Wilson et 
al. 2004). Impaired olfactory discrimination has been found in human alcoholics (Rupp et al. 
2003), but long-term effects of chronic alcohol on neurogenesis in the SVZ have to our 

knowledge not been reported previously.

Here, we enquired whether adult neurogenesis in the SGZ and the SVZ is altered following a 

prolonged history of dependence, and whether any changes persist into protracted 

abstinence. We exposed rats to 7 wk of daily intermittent cycles of alcohol vapour 

intoxication and withdrawal using a model that reliably produces alcohol dependence and a 

lasting post-dependent state (Heilig et al. 2009; Heilig & Koob, 2007). Cell proliferation, 

differentiation of new cells into neurons, and stem cell populations were studied at a series 

of time-points, covering a period from intoxication to 3 wk of abstinence.
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Methods

Animals

Male Wistar rats (Møllegård, Denmark) weighing 220–250 g at the beginning of the 

experiment, were housed four per cage under a reversed 12-h light/dark cycle (lights on 

23:00 hours) with free access to food and water. All experiments were approved by the 

Stockholm South Animal Ethics Committee (permits S84/98).

Alcohol vapour exposure

Vapour exposure was used because it allows a high degree of control over brain alcohol 

exposure at pharmacologically active levels, and induces behavioural and molecular changes 

relevant for the pathophysiology of alcoholism (Heilig & Koob, 2007). A total of 53 exposed 

animals and 24 matched controls were used. Exposure was done as described previously 

(Rimondini et al. 2002). Briefly, stainless-steel and glass chambers were used, and alcohol 

was pumped into heated stainless-steel coils connected to the airflow. Final alcohol 

concentration was adjusted by changing the pump flow, and was monitored via a 

spectrometer. Exposure was for 17 h during each 24-h period (on 16:00 hours, off 09:00 

hours). Rats were allowed to habituate to the chambers for 1 wk, then exposed to a low 

alcohol concentration for 1 wk, and finally exposed to alcohol vapour to induce dependence 

for 7 wk. Control animals were kept with normal airflow. Each week all rats were weighed, 

and random subjects (n=6–8) were tested for blood alcohol concentration. Blood was 

collected from the lateral tail vein, and serum assayed for alcohol using an NAD/NADPH-

spectrophotometric assay kit (Sigma Aldrich Inc., USA) according to the manufacturer’s 

instructions.

To confirm behavioural consequences of exposure, 10 exposed and eight control animals 

were randomly selected from the respective batch, and tested for voluntary alcohol 

consumption 3 wk after exposure. Two-bottle, free-choice, continuous access alcohol in 

0.2% saccharin vs. 0.2% saccharin-only was assessed after a 3-wk resting period that 

followed the last exposure cycle as described. One week was allowed to gradually increase 

the alcohol concentration to 6% (w/v), i.e. 3 d with 2% and 4 d with 4% alcohol, followed 

by a 2-wk testing period. These animals were not used for the histological analysis because 

of the possibility that their differential voluntary alcohol consumption may confound 

estimates of proliferation and neurogenesis. The consumption data have constituted a part of 

a previous publication (Sommer et al. 2008).

To determine the effects of chronic alcohol dependence and abstinence, multiple time-points 

were studied: at the end of 7 wk daily alcohol exposure, and after 3, 7 and 21 d of 

abstinence.

5′-bromo-2-deoxyuridine (BrdU) labelling

To allow comparison to previously published work (Nixon & Crews, 2002) while 

maintaining temporal specificity needed to interpret effects on cell proliferation, rats were 

injected intraperitoneally (i.p.) with a single dose of BrdU nucleotide (200 mg in 0.9% 

saline/kg; Sigma, USA) immediately upon completion of the 7-wk exposure (day 0) or on 
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days 3, 7 or 21 of abstinence (n=3–9/time-point). BrdU injections were performed starting at 

09:00 hours (light off). Non-exposed controls (n=3–4/time-point) were injected in parallel. 

Animals were sacrificed 5 h after BrdU injection.

Immunohistochemistry

Rats were anaesthetized with a lethal dose of pentobarbital (100 mg/kg i.p.), and perfused 

intracardially with 0.1 M phosphate-buffered saline (PBS) followed by 4% 

paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). Brains were removed, post-fixed for 

48 h in the same fixative and transferred to 0.1 M PBS solution. Forty μm coronal vibratome 

forebrain sections (Bregma +2.5 mm to −7.5 mm) were collected in cryoprotectant solution 

(30% ethylene glycol, 30% glycerol in 40 mM PB; pH 7.4) in 1:12 series and stored at 

−20 °C. Every sixth section/animal (each section 240 μm apart) was kept for analysis of 

BrdU immunoreactivity (IR), an established marker of cell proliferation. Because BrdU 

staining may be affected by factors other than proliferation rates, such as differences in 

BrdU availability caused by altered blood flow or in blood–brain barrier permeability, we 

also used the endogenous marker of the cell cycle, Ki67 (Gerdes et al. 1984) on adjacent 

sections. Every twelfth section/animal (each section 480 μm apart) was kept for DCX 

immunohistochemistry to detect newly differentiated neurons (Brown et al. 2003; Gleeson et 
al. 1999; Rao & Shetty, 2004), and immunohistochemistry for the high mobility group 

transcription factor SOX2, to label neuronal stem cells. SOX2 expression is largely restricted 

to neural stem cells, is known to be expressed within neural progenitors throughout 

adulthood (Brazel et al. 2005) and is necessary for neural stem cell maintenance and survival 

(Episkopou, 2005). SOX2 may be expressed in GFAP-positive astroglia ; however, the 

majority of SVZ progenitors are negative for GFAP (Komitova & Eriksson, 2004).

Immunohistochemistry of free-floating brain sections was performed as described 

previously (Nixon & Crews, 2004), using monoclonal anti-mouse BrdU antibody (1 :2000, 

MAB3424, Chemicon, USA), monoclonal mouse anti-Ki67 [1 :200; Novocastra 

Laboratories, UK (no. NCL-Ki67-MM1)], polyclonal goat anti-doublecortin antibody (anti-

DCX, 1: 400, SC8066, Santa Cruz Biotechnology, USA) and polyclonal rabbit anti-Sry-

related high-mobility group box 2 antibody (anti-SOX2, 1: 200, AB5770, Chemicon). To 

control for day-to-day variability, controls and alcohol-exposed animals for their respective 

time-point were always processed in parallel.

Quantification of BrdU, Ki67, DCX and SOX2 immunoreactivities

In the SGZ (Bregma −1.8 to −5.6 mm), BrdU-IR-positive cells were counted at 60× (oil 

immersion objective), while Ki67-IR and DCX-IR were counted at 40× magnification. Cell 

counts were obtained as number of IR positive cells/mm2 using the Bioquant Life Science 

Image Analysis System (USA). It has previously been established under similar conditions 

that cell counts obtained by this methodology result in estimates that are highly concordant 

with those obtained using stereology (Crews et al. 2004). In the SVZ (Bregma +1.0 to +0.2 

mm), cell counts were obtained for Ki67-IR cells, while the densities of BrdU-, DCX- and 

SOX2-positive cells were too high to lend themselves to cell counting. We therefore first 

established, in a subset of sections, that optical density measurements were highly correlated 

with cell counts (r=0.92, p<0.0001, n=24), in agreement with a published comparison of 
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these two measures within the dentate gyrus (Crews et al. 2004). Densitometry was then 

performed bilaterally, in 40× magnification, in 2×6 squares (25×25 μm) per section over 

Bregma levels +1.6 to −0.4 mm, and yielded mean integrated optical densities (IOD). 

Exposed and control animals sacrificed at their respective time-points were always 

processed in parallel.

Statistical analysis

The data met assumptions of normality and homogeneity of variances. For each marker 

within each region, unexposed controls from the respective time-points were first compared 

for possible differences due to batch variation of staining efficiency. When no differences 

were found (p>0.10), controls were pooled, and data were analysed by one-way ANOVA, 

and the respective alcohol-exposed group was compared to the pooled control group using 

Dunnett’s post-hoc test. This was true for all markers within the dentate gyrus, and BrdU, 

Ki67 and SOX2 in the SVZ. DCX-IR within the SVZ showed significant batch-to-batch 

variation. We approached this in two different ways. A widely used method to overcome 

batch variation is to normalize experimental values to control from the same batch, which 

allows for valid comparisons between batches (Walker, 2006). Following this approach, data 

from each batch were normalized to their respective controls, after which analysis proceeded 

as described above. To examine the robustness of this approach, we also analysed the data 

using a two-way ANOVA of raw, non-normalized optical densities, with time (0, 3, 7, 21 d) 

and treatment (alcohol or air) as factors, followed by post-hoc comparison of the respective 

alcohol-exposed group and its corresponding control at each time-point using Newman–

Keuls test. The results of the two approaches were highly concordant. Both sets are provided 

in the Results section, and the normalized data are shown in Fig. 4a. In all analyses, p<0.05 

was considered to be significant.

Results

Dependence induction

Similar to our previous experiments (Rimondini et al. 2002), exposure induced blood 

alcohol concentrations (BACs) in the range of 150–300 mg/dl, which fell to undetectable 

levels within 5 h during the alcohol-off period. Signs of mild withdrawal, such as tail 

stiffness and piloerection, were observed during the off intervals by the end of the 7-wk 

exposure period, but withdrawal intensity never reached seizure levels. As reported 

previously (Sommer et al. 2008), exposed animals showed a more than 2-fold increase of 

voluntary alcohol intake compared to controls (3.8±0.35 vs. 1.44±0.28 g/kg.d, mean

±S.E.M. ; F1,20=12.7, p<0.001).

Dentate gyrus

In the dentate gyrus, the number of BrdU-IR cells varied as a function of time from exposure 

(Fig. 1; main effect: F4,38=11.8, p<0.0001). Post-hoc analysis showed that numbers of 

BrdU-IR cells were decreased at the end of alcohol exposure (day 0, p<0.01). This was 

followed by a burst of proliferation on day 3 (p<0.001). Proliferating cells returned to 

control levels on days 7 and 21 of abstinence (Fig. 1a, b). The correlation of BrdU-IR and 
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Ki67-IR was high (R=0.61, p<0.0001), and Ki67-IR followed a temporal pattern that closely 

paralleled that of BrdU-IR (Fig. 1c ; main effect of time: F4,39=25.3, p<0.0001).

DCX-IR also varied as a function of time (Fig. 2; main effect: F4,40=8.5, p<0.0001). Similar 

to its effect on proliferation, chronic alcohol exposure decreased DCX-IR cells by the end of 

the exposure (day 0, p<0.001). There was a statistically non-significant trend (p=0.09) 

towards an increase on day 3. DCX-IR returned to control level after 7 and 21 d of 

abstinence.

SVZ

Proliferating cells within the forebrain SVZ were detected as a band of BrdU-IR cells 

outlining the frontal aspect of the lateral ventricles [Fig. 3a (inset), and b]. Proliferation was 

potently and biphasically modulated by chronic alcohol exposure (Fig. 3a ; main effect of 

time: F4,38=12.0, p<0.0001). Controls showed large numbers of BrdU-IR cells along the 

ventricles, that were markedly reduced by the end of alcohol exposure (p<0.001). A 

pronounced peak of proliferation compared to control levels was found 3 d into abstinence 

(p<0.001), followed by a decrease to levels that were numerically lower, but did not 

significantly differ from controls after 7 d as well as 21 d. The correlation of BrdU-IR and 

Ki67-IR was high also in this region (R=0.60, p<0.0001), and Ki67-IR followed a temporal 

pattern that closely paralleled that of BrdU-IR (Fig. 3c ; main effect of time: F4,40=4.5, 

p=0.00002).

One-way ANOVA of normalized DCX-IR values in the SVZ showed a biphasic variation as 

a function of time (Fig. 4; main effect: F4,37=57.2, p<0.00001), with chronic alcohol 

reducing DCX-IR at the end of exposure (p<0.001), followed by a doubling of DCX-IR at 3 

d (p<0.001), with an increase still present on day 7 (p<0.001). In contrast, DXC-IR was 

reduced to levels below those of controls on day 21 (p<0.001, Fig. 4). Because this analysis 

used normalized optical densities to address batch variation in staining intensity, we also 

carried out a two-way ANOVA with time following exposure, and treatment as factors, on 

raw optical density data not subjected to normalization. Using this approach, there was also 

a significant effect of time (F3,34=18.5, p<0.00001), and a significant time×treatment 

interaction (F3,34=32.0, p<0.00001). Once again, post-hoc analysis showed that DCX-IR 

levels in alcohol-exposed animals were lower than their respective controls upon termination 

of exposure (p<0.001), higher than controls on day 3 (p<0.001) and day 7 (p<0.01), and 

finally decreased below control values on day 21 (p<0.01). Thus, analysis of normalized and 

raw optical density data yielded essentially identical results.

Because of the trend for decrease in proliferation rates, and the robust decrease in 

neurogenesis observed 3 wk after exposure, we assessed whether a loss of forebrain stem 

cells might underlie the impairment of SVZ neurogenesis. To this end expression of SOX2-

IR was determined. SOX2-IR within the SVZ also varied as a function of time (Fig. 5; main 

effect of time: F4,38=8.8, p<0.0001). SOX2-IR in the SVZ was not altered during 7 wk of 

daily alcohol vapour exposure, or after 3 d of abstinence following dependence. However, on 

day 7 of abstinence, SOX2-IR was reduced 25–35% (p<0.001) and remained reduced on day 

21 (p<0.01). The long-lasting reduction in SOX2 is consistent with a loss of neural stem 

cells in the forebrain.
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Discussion

We found that a prolonged history of alcohol dependence has pronounced effects on 

neurogenesis in the adult rat brain that vary with time and brain region.

Effects of prolonged alcohol dependence on dentate gyrus neurogenesis

In the hippocampal dentate gyrus, chronic intermittent alcohol exposure markedly reduced 

proliferation, as detected both by BrdU-IR and Ki67-IR. Because Ki67 measures were 

highly correlated with those for BrdU and produced the same temporal profile, it is unlikely 

that effects on circulation or integrity of the blood–brain barrier, that could otherwise affect 

BrdU incorporation, could confound our proliferation estimates. Furthermore, neurogenesis, 

detected as DCX-IR, was also suppressed at the end of alcohol exposure. These data are in 

agreement with published reports, which consistently find that hippocampal neurogenesis in 

rats is reduced by alcohol upon voluntary self-administration (Crews et al. 2004; Stevenson 

et al. 2009), combined vapour inhalation and self-administration (Richardson et al. 2009), 

and after a 4-d binge-like dependence model (Nixon & Crews, 2002). Our present findings 

demonstrate that suppression of hippocampal neurogenesis occurs with prolonged 

dependence, and does not recover as long as intoxicating blood alcohol levels are 

maintained.

Three days into abstinence following prolonged dependence, we observed a rebound burst of 

proliferation in the dentate gyrus. This was accompanied by a trend for increased 

neurogenesis. These findings are consistent with and expand on results from previous 

studies. In the 4-d binge intoxication model, initial depression of dentate gyrus neurogenesis 

was also followed by a rebound burst of proliferation some days into abstinence (Nixon et 
al. 2008; Nixon & Crews, 2004). This resulted in increased neurogenesis, as well as an 

increase in microglia that persisted in the brain for long periods, mimicking the increase in 

microglia found in brains of human alcoholics (He et al. 2007). Following the prolonged 

brain alcohol dependence in the present study, a similar burst in hippocampal proliferation 

was observed, although we did not detect a subsequent significant increase in newly 

differentiated neurons. It is possible that a burst in neurogenesis was missed by the time-

points chosen (Brown et al. 2003). Alternatively, following prolonged rather than acute brain 

alcohol exposure, increased proliferation may to a lesser extent result in formation of new 

neurons that differentiate and survive. This could be caused by decreased survival of newly 

generated cells, as previously shown with prolonged brain alcohol exposure (Herrera et al. 
2003), or decreased differentiation of progenitors into neuronal phenotypes following 

prolonged dependence. Finally, 1 and 3 wk into abstinence, both proliferation rates and 

neurogenesis in the dentate gyrus had returned to normal, indicating that effects of alcohol 

dependence in this region are transient and ultimately reversible.

A consistent picture thus emerges for the effects of prolonged brain exposure to intoxicating 

alcohol levels on hippocampal neurogenesis. During chronic intoxication, the rate of new 

neuron formation is markedly suppressed, presumably in part secondary to suppressed 

proliferation of neural precursor cells. During protracted abstinence, hippocampal rates of 

new neuron formation return to normal, but do not significantly rebound to compensate for 

the deficit that has accumulated during prolonged intoxication. The contribution of new 
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dentate neurons has been postulated to be important for restraining stress reactivity (Mirescu 

& Gould, 2006), and its deletion through disruption of the gene encoding TrkB results in a 

highly anxious phenotype (Bergami et al. 2008). This predicts that a deficit in new dentate 

neurons following prolonged alcohol dependence might contribute to exaggerated stress 

reactivity and elevated anxiety in the post-dependent state, a behavioural phenotype that is in 

fact consistently observed (Heilig & Koob, 2007).

Loss of hippocampal neurogenesis due to prolonged alcohol exposure may contribute to 

depression-like behaviour observed in mice during protracted alcohol abstinence, and 

reversed by antidepressants (Stevenson et al. 2009). Alcohol-use disorders are frequently 

comorbid with depression and anxiety (Grant et al. 2004), and loss of hippocampal 

neurogenesis during prolonged alcohol dependence could also contribute to the high clinical 

comorbidity of depression and alcoholism. Finally, stimulation of hippocampal neurogenesis 

has been postulated as a therapeutic mechanism behind antidepressant actions (Duman & 

Monteggia, 2006; Malberg et al. 2000; Pittenger & Duman, 2008; Santarelli et al. 2003). 

Inhibition of hippocampal neurogenesis by chronic intoxication may therefore be speculated 

to prevent successful treatment of comorbid depression in patients with alcohol-use 

disorders, although antidepressant treatments may act through both neurogenesis-dependent 

and -independent mechanisms (Bjornebekk et al. 2009; David et al. 2009).

Effects of prolonged alcohol dependence on SVZ neurogenesis

Our report is the first to follow neurogenesis in forebrain SVZ during prolonged alcohol 

dependence and abstinence. Similar to the dentate gyrus, prolonged alcohol exposure 

suppressed SVZ neurogenesis, in the absence of effects on SOX2-expressing cells. The 

rodent and human SVZ are thought to contain true neuronal stem cells, with greater 

pluripotency than the neural precursor cells of the hippocampus (Quinones-Hinojosa et al. 
2006; Seaberg & van der Kooy, 2002). The SVZ stem cells are heterogeneous, and 

encompass rapidly dividing cells, early neuroblasts and migrating neuroprogenitors (Doetsch 

et al. 1997). SOX2 is a stem cell transcription factor that identifies a subset of stem cells 

likely to represent the most pluripotent stem cells of the adult brain (Brazel et al. 2005; Ellis 

et al. 2004; Episkopou, 2005). Previous observations in the dentate gyrus have suggested 

that chronic alcohol exposure can disrupt neurogenesis by decreasing neural precursor cell 

proliferation, inhibiting cell survival and altering morphological maturation of newborn 

neurons (He et al. 2005). The initial suppression of SVZ neurogenesis following alcohol 

exposure occurred in the absence of effects on SOX2-positive cells, and may therefore be 

accounted for by similar mechanisms, while the subset of pluripotent SVZ stem cells 

expressing SOX2 is initially spared. Here, the initial suppression of SVZ neurogenesis 

following alcohol exposure occurred in the absence of effects on SOX2-positive cells, 

suggesting that SOX2-expressing stem cells are not sensitive to direct toxicity from alcohol, 

while more differentiated neural progenitors are.

Similar to the dentate gyrus, the initial suppression of SVZ neurogenesis was followed by a 

burst of proliferation 3 d into abstinence, accompanied by a corresponding peak of new 

neuron formation of a similar magnitude. Most importantly, the peaks of proliferation and 

neurogenesis in the SVZ were followed by trend-level reductions in the proliferation 
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markers, and a robust decrease in the neurogenesis marker by the end of the 3-wk abstinence 

interval studied. This late phase decrease in neurogenesis was accompanied by reduced 

numbers of SOX2-expressing cells. There are only two plausible mechanisms to account for 

reduced neurogenesis that result from decreased progenitor cell proliferation : a loss of 

progenitor cells, or interference with their progression through the cell cycle. The closely 

correlated decrease in both BrdU-IR and Ki67-IR at day 21 is not consistent with cell-cycle 

effects. Against this background, the most parsimonious interpretation of the data is that 

forebrain SVZ neurogenesis is long-term impaired following prolonged alcohol dependence 

through a loss of SOX2-expressing progenitor cells. These data complement a recent study 

showing permanent impairments in cell proliferation in the prefrontal cortex in a model of 

alcohol dependence (Richardson et al. 2009), and provide a potential mechanism for this 

observation.

In rodents and humans, neurons newly formed from stem cells in the SVZ migrate to the 

olfactory bulb and contribute to olfactory function (Alvarez-Buylla & Lim, 2004; Curtis et 
al. 2007). Innate alcohol preference in mice seems to be strongly dependent on genes with 

localized expression in the olfactory system (Tabakoff et al. 2008). Deficits in olfactory 

sensitivity and discrimination specifically related to alcohol dependence have been described 

repeatedly in humans (Potter & Butters, 1979; Rupp et al. 2003; Rupp et al. 2004). It has 

recently been found that these impairments correlate with the degree of impairment for 

executive cognitive function (Rupp et al. 2006), a category of deficit that also predicts 

relapse in recently detoxified severe alcoholics (Wicks et al. 2001). The biological 

mechanisms linking SVZ neurogenesis, alcohol preference, olfactory bulb function and 

executive deficits are presently unknown. However, alcoholics have cognitive deficits that 

improve in abstinence, but do not completely return to control levels (Crews et al. 2005), 

consistent with partial but incomplete recovery of neurogenesis. The loss of SVZ progenitors 

following prolonged alcohol dependence could thus contribute to long-term changes in 

cognitive function and risk for relapse in abstinent alcoholics.

Conclusions

In summary, we report here that prolonged brain alcohol exposure results in a reversible 

suppression of proliferation and neurogenesis in the hippocampal dentate gyrus, in a manner 

that may contribute to increased behavioural stress reactivity and negative affect. We further 

report that SVZ neurogenesis is long-term impaired following a prolonged history of alcohol 

dependence, in a manner that might contribute to cognitive deficits and other long-term 

neurobiological changes commonly observed in alcoholism. Whether these alterations in 

neurogenesis are directly involved in excessive alcohol consumption in post-dependent 

animals remains to be determined.
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Fig. 1. 
Hippocampal cell proliferation during protracted abstinence. (a) Top: schematic illustration 

of the sampled area (grey outline) for BrdU-immunoreactive (IR) cell counting of the 

dentate gyrus subgranular zone (SGZ) in a coronal rat section (adapted from Vaidya et al. 
2007). Bottom: data showing the number of BrdU-IR positive cells/mm2 (mean±S.E.M.) in 

the SGZ at various time-points after the last intoxication cycle (■) and in alcohol-naive 

controls (□, n=16). The number of BrdU-positive cells varied as a function of time 

(p<0.0001), and was decreased immediately after alcohol exposure (day 0, n=9), followed 

by a rebound burst on day 3 (n=8), returning to normal levels on day 7 (n=8) and day 21 

(n=3). (b) Illustrative brightfield photomicrographs showing clusters of BrdU-positive cells 

in the SGZ at the different time-intervals. Scale bar, 30 μm; Bregma level=−1.8 to −5.6 mm 

according to Paxinos & Watson (2005). (c) Data showing the number of Ki67-IR positive 

cells/mm2 (mean±S.E.M.) at the respective time-point after the last intoxication cycle [■, 

n=9 (day 0), n=8 (day 3), n=8 (day 7), n=3 (day 21)] and in alcohol-naive controls (□, 

n=16). ** p<0.01, *** p<0.001 vs. controls. (For detailed statistics, see Results section.)
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Fig. 2. 
Hippocampal neurogenesis during protracted abstinence. (a) Data showing the number of 

newly differentiated, doublecortin-immunoreactive (DCX-IR) cells/mm2 (mean±S.E.M.) in 

the subgranular zone (SGZ) at varying intervals after the last intoxication cycle (■) and 

alcohol-naive controls (□, n=16). The number of positive cells varied as a function of time 

(p<0.0001). DCX-IR cells were markedly decreased immediately following exposure (day 0, 

n=9), showed a trend level rebound (day 3, n=8), and then returned to levels that did not 

differ from controls (day 7, n=8; day 21, n=3). *** p<0.001 vs. controls. (For detailed 

statistics, see Results section.) (b) Illustrative brightfield photomicrographs of DCX-IR-

labelled cells within the SGZ at the different time-intervals. Scale bar, 30 μm; Bregma level=

−1.8 to −5.6 mm.
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Fig. 3. 
Cell proliferation in the subventricular zone (SVZ) during protracted abstinence. (a) Top: 

schematic illustration representing the sampled areas (■) within the SVZ (grey outline) for 

densitometric evaluation of 5′-bromo-2-deoxyuridine-immunoreactivity (BrdU-IR) in 

coronal rat sections (adapted from Vaidya et al. 2007). Bottom: data showing mean 

integrated optical densities (IOD; mean±S.E.M.) of BrdU-IR-positive cells in relation to 

alcohol-naive controls (□, n=16) at different time-points after the last intoxication cycle (■). 

BrdU-IR varied as a function of time (p<0.001). BrdU-IR cells were markedly suppressed 

immediately following exposure (day 0, n=8), followed by a rebound burst on day 3 (n=8), 

and finally a return to levels on day 7 (n=8) and 21 (n=3) that were numerically lower than 

controls, although the individual post-hoc comparisons failed to reach significance. ** 

p<0.01 vs. controls. (For detailed statistics, see Results section.) (b) Illustrative brightfield 

photomicrographs showing clusters of BrdU-IR-positive proliferating cells in the SVZ at the 

different time-points. Scale bar, 80 μm; Bregma level=+1.0 to +0.2 mm. (c) Data showing 

mean integrated optical densities (IOD; mean±S.E.M.) from Ki67-IR at various time-points 

after the last intoxication cycle (■, n=9 (day 0), n=8 (day 3), n=8 (day 7), n=3 (day 21)] and 

in alcohol-naive controls (□, n=16).
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Fig. 4. 
Neurogenesis in the subventricular zone (SVZ) during protracted abstinence. (a) Data 

showing doublecortin-immunoreactivity (DCX-IR) as normalized mean integrated optical 

density (IOD; mean±S.E.M.) in the SVZ at varying intervals after the last intoxication cycle 

(■) and in controls (□; absolute value 306±46, n=15). DCX-IR varied as a function of time 

(p<0.00001). It was suppressed immediately following exposure (day 0, n=8), rebounded to 

elevated levels on day 3 (n=8) and day 7 (n=8), and was again suppressed on day 21 (n=3). 

*** p<0.001 vs. controls. (For detailed statistics, see Results section.) (b) Illustrative 

brightfield photomicrographs of SVZ DCX-IR neurons at varying intervals following 

exposure. Scale bar, 80 μm; Bregma level=+1.0 to +0.2 mm.
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Fig. 5. 
Loss of SOX2-immunoreactive (IR)-labelled neural stem cells in the subventricular zone 

(SVZ) during protracted abstinence. (a) Data show mean integrated optical densities (IOD; 

mean±S.E.M.) of SOX2-IR-labelled neural stem cells at varying intervals following the last 

intoxication cycle (■) compared to control rats (□, n=16). SOX2-IR varied as a function of 

time (p<0.0001). Levels did not differ from controls on day 0 (n=8) and 3 (n=8), but were 

suppressed on day 7 (n=8), and remained suppressed on day 21 (n=3). ** p<0.01, *** 

p<0.001. (For detailed statistics, see Results section). (b) Illustrative brightfield 

photomicrographs of SOX2-IR-labelled neural stem cells in the SVZ at the different time-

points. Scale bar, 80 μm; Bregma level=+1.0 to +0.
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