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Abstract
Ephrins and Eph receptors enable contact-mediated interactions between cells
at every stage of nervous system development. In spite of their broad binding
affinities, Eph proteins facilitate specificity in neuronal migration and axon
targeting. This review focuses on recent studies that demonstrate how these
proteins interact with each other, and with other signaling pathways, to guide
specificity in a diverse set of developmental processes.
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Introduction
The complexity of nervous system function reflects a vast under-
lying diversity of neuronal cells and their integration in precise 
circuitry. During development, newly born neurons migrate to 
their final destination, become the right type of cell, and form pre-
cise connections with their synaptic partners. Given the relatively 
small number of genes in our genome, how is this complexity 
generated? A major contributor to the formation of neural circuitry 
is the Eph family of proteins, which comprises Eph receptors 
and their ephrin binding partners. These membrane-associated pro-
teins participate throughout neuronal development, during which 
they display promiscuous binding properties yet specify uniquely 
targeted events from proliferation to synaptogenesis.

In this large family of signaling molecules, such event specificity 
does not generally arise from binding selectivity between Eph 
receptors and ephrins. Instead, multiple modes of Eph-ephrin sign-
aling provide combinatorial codes that differentiate between groups 
of cells and coordinate multiple aspects of neural development, 
including cell migration and axon targeting.

Recent studies have demonstrated that differential responses 
depending on ephrin expression levels and expression of ephrin-
associated molecules allow cells born in one place at the same time 
to adopt distinct migratory routes. In addition, studies have shown 
how multiple signaling pathways enable distinct axons that grow 
through a common pathway to terminate in distinct locations.

Specification of neural circuits arises from multiple interacting 
signaling molecules. The large family of Eph proteins uses both 
redundancy in expression and multiple modes of signaling to direct 
this specificity, causing neurons to migrate to their final locations 
and make synaptic connections there that are appropriate for their 
function. How can a large family of molecules with broad bind-
ing capabilities and redundant expression confer this precision? 
Here, we discuss recent work focused on factors that determine 
specificity during cell migration, axon guidance, and midline  
specializations.

Eph-ephrin signaling
Eph receptors and ephrins display broad spatial and temporal 
expression throughout nervous system development. During early 
development, they contribute to neurogenesis (reviewed in 1) and 
differentiation2. Some interesting new perspectives that take into 
account the unique features of Eph-ephrin signaling have emerged.

Binding within and among cell classes
The Eph receptors are the largest known class of receptor tyrosine 
kinase. Together with the ephrins, they are divided into the A and B 
classes on the basis of sequence homology and binding affinities3. 
The EphA receptors (EphA1-10 in mammals) bind to all ephrin-A 
molecules (ephrin-A1-6), and the EphB receptors (1–6) bind to all 
ephrin-Bs (1–3); some variability has been reported in the binding 
affinities of individual pairs within a class4. There is some crosstalk 
between classes in that EphB2 can bind to ephrin-A5 and EphA4 
can bind to ephrin-B23,5,6.

Forward and reverse signaling
Unlike most ligands for receptor tyrosine kinases, the ephrins 
are associated with cell membranes. Ephrin-B proteins contain a 
transmembrane domain, and ephrin-A proteins are associated with 
cell membranes through a glycosylphosphatidylinositol linkage. A 
major consequence of this membrane association is that Eph-ephrin 
signaling mediates short-range cell-cell communication, although 
in some cases soluble forms of ephrin molecules can provide 
longer-range cues7–9. The communication between receptors and 
membrane ligands operates in both directions upon the binding of 
an Eph receptor in one cell with an ephrin on another cell. Forward 
signaling refers to signal transduction in a cell expressing the Eph 
receptor, which upon ligand binding initiates tyrosine phosphor-
ylation. In reverse signaling, signal transduction events are initi-
ated in a cell expressing an ephrin upon its binding with an Eph 
receptor. Both ephrin-A and ephrin-B proteins can mediate reverse 
signaling10–12.

Attractive and repulsive interactions
In cell migration and axon guidance, movement ultimately relies 
on the integration of signals that influence the cytoskeleton. 
Eph-ephrin signaling influences the functions of Rho GTPase 
proteins, which in turn regulate the actin cytoskeleton (reviewed 
in 4,13). Although Eph-ephrin signaling was initially thought to 
mediate chemorepulsive interactions, later evidence showed that 
both attractive and repulsive interactions occur. Recent studies 
have begun to illuminate the factors that determine how Eph-ephrin 
interactions influence cell migration, adhesion, and axon guidance.

Combinations and clustering
One potential switch for determining attractive versus repulsive 
interactions relates to the assembly of higher-order clusters upon 
ephrin binding to Eph receptors, a prominent feature unique to Eph 
receptors among the receptor tyrosine kinases14,15. Cluster forma-
tion relies on the ligand-binding domains as well as on interactions 
between adjacent receptors16,17. These clusters, needed for initiation 
of signal transduction pathways, can be expansive and can include 
more than one type of Eph receptor within a cluster18. Large clusters 
can include inactive receptors that can be phosphorylated within the 
cluster; consequently, a single ligand can result in phosphorylation 
of multiple receptors of both classes4,14,15. 

Several new studies have shed light on the role of clustering in the 
unique responses of Eph-ephrin signaling. EphA4 and EphA2 have 
similar affinities to ephrin-A5 but have opposing responses in cell 
assays, whereby EphA4 promotes repulsion while EphA2 promotes 
adhesion. Seiradake and colleagues19 studied the crystal structure 
and clustering properties and determined that EphA4 forms small 
clusters while EphA2 forms large arrays and that these clusters 
largely determine the cellular response. Along these lines, Klein 
and colleagues20 prepared clusters of EphB2 of varying sizes and 
compared effects on phosphorylation, cell collapse, and growth 
cone collapse. They determined that whilst dimers were associated 
with a lack of response, trimers and tetramers produced a func-
tional response and that the relative abundance of multimers cor-
related with the degree of the response. These studies suggest that 
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factors influencing the clustering of Eph receptors are critical for 
determining how cells will respond to ephrin binding.

Other interactions in cis 
Receptor clustering represents a cis interaction; that is, two Eph 
receptor molecules signaling within a single cell. Another type of 
cis interaction observed is the interaction of ephrins and Eph recep-
tors within the same cell, where they are often co-expressed. These 
interactions have been shown to decrease forward signaling21–23 and 
may play an important role in topographic mapping24,25 as well as 
axon guidance for spinal motor neurons21.

Differential control of cortical cell migration
Eph-ephrin interactions regulate cell migration throughout develop-
ment and are important for establishing boundaries and regulating 
intermixing of cells26,27. Several new studies highlight the complex-
ity in the regulation of cell movement by Eph-ephrin signaling. Cell 
sorting is accomplished by using both repulsive and attractive inter-
actions, both forward and reverse signaling, and a range of selective 
downstream targets of Eph-ephrin signaling.

Cerebral cortex development
The diverse and coordinated functions of Eph-ephrin signaling in 
cell migration are demonstrated by recent studies of cerebral cortex 
formation. Early in neural tube development, adhesion of neural 
progenitors to the apical surface is associated with symmetric cell 
division. A study of null mutations in ephrin-B1 found that these 
mice exhibited abnormal neuroepithelia and exencephaly28 and that 
the mutation further disrupted the apical localization of integrin 
β1. The authors used biochemical assays and culture approaches to 
show that ephrin-B1 negatively regulates the GTPase Arf6, which 
is essential for maintaining appropriate integrin β1 localization 
and adhesion of apical progenitors. In cortical development, some 
of the first cells to populate the nascent cortical surface are the 
Cajal-Retzius (CR) cells. This transient population of cells plays a 
critical role in cortical layering through its release of reelin, which 
is essential for the characteristic “inside-out” formation of layers. 
Although apical progenitors require ephrin-B1-mediated adhesion, 
a recent study used in vivo time-lapse imaging together with mode-
ling of cell movement to show that tangential dispersion of CR cells 
relies on contact-mediated repulsion29. Pharmacological and genetic 
disruption of Eph signaling showed that both EphA and EphB 
signaling contribute critically to this repulsion29. Interestingly, the 
function of reelin in establishing the cortical layers depends exten-
sively on ephrin-B-EphB signaling. Reelin enhances clustering of 
ephrin-Bs and EphBs, in addition to binding to its receptors. 
Mutant mice lacking ephrin-B-EphB signaling display severe 
migration phenotypes with inverted lamination, similar to those 
seen in reeler mice, and activation of ephrin-B-EphB signaling 
can rescue migration phenotypes in reeler mice30,31.

Another influence of Eph proteins occurs during radial migration. 
During cortical development, electrical synapses form prefer-
entially between radial glial cells and their sister neurons, form-
ing networks of lineage-related cells in radial columns. When 
inside-out radial migration is genetically disrupted, the preferen-
tial coupling between sister cells is lost32. The tangential dispersion 
of a subpopulation of these developing cortical neurons promotes 

crosstalk between clonal columnar units and is significantly reduced 
in mutant mice lacking ephrin-A signaling33.

Tangential migration of interneurons
In addition to regulating radial migration and cell dispersion, 
Eph-ephrin signaling is critical for the tangential migration of 
interneurons. Excitatory cortical neurons are born at the ventricu-
lar zone and migrate radially. In contrast, inhibitory interneurons 
are generated in the basal telencephalon and migrate extensively 
along a tangential route. Cortical interneurons born in the medial 
ganglionic eminence (MGE) migrate along a deep route, whereas 
preoptic area (POA)-derived interneurons migrate along a super-
ficial route. These routes exhibit complementary expression of 
EphA4 and ephrin-B3, respectively. A study using organotypic 
cultures and stripe assays together with gene knockdown and 
pharmacological approaches showed that forward signaling 
through EphA4 and reverse signaling through ephrin-B3 induce 
repulsion of MGE and POA interneurons in the inappropriate 
routes34. MGE interneurons also express ephrin-As, and reverse 
signaling induced in ephrin-As by EphA4 enhances motility in 
these migrating MGE interneurons35.

The POA also generates striatal neurons, which are generated at a 
similar time and also express ephrin-B3. However, striatal neurons 
traverse an intermediate route and terminate in the striatum, which 
expresses EphB1. Reverse signaling through ephrin-B3 elicited by 
striatal EphB1 is repulsive for migrating cortical interneurons but is 
an attractive stop signal for migrating striatal cells36. What accounts 
for these divergent effects? In cortical interneurons, EphB1- 
ephrin-B3 reverse signaling leads to enhanced phosphorylation of 
Src tyrosine kinase and of focal adhesion kinase (FAK), leading to 
enhanced repulsion. For striatal neurons, this same signaling leads 
to a dephosphorylation of Src and FAK, which leads to attraction36. 
These divergent effects might arise from endogenously high levels 
of phosphorylated Src and FAK in striatal cells and/or to distinct 
combinations of transcription factors in these two cell populations 
that can influence elements of signal transduction pathways.

Striatal interneurons are generated in the MGE along with cor-
tical interneurons. They are attracted to the striatum through 
Nrg1/ErbB4 signaling and are simultaneously repelled from the 
adjacent cortex through EphB forward signaling37. These authors 
used chromatin immunoprecipitation and luciferase assays to 
show that the expression of EphB1 and EphB3 is enhanced by 
Nkx2-1, which is expressed in striatal but not in cortical interneu-
rons born in the MGE.

Eph-ephrin signaling thus provides both repulsive and attrac-
tive cues for tangentially migrating neurons. The determination 
of migratory route depends on the ensemble of Eph receptors 
expressed along with the molecular context within cells destined 
for different routes.

Axon guidance
Topographic mapping
The function of Eph-ephrin signaling in axon guidance was origi-
nally discovered in the context of topographic mapping. Graded 
expression of ephrin-As in the optic tectum and opposing gradients 
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of EphA receptors were found to be necessary for forming the high 
degree of topography seen in this pathway38–40. Since then, fur-
ther evidence has shown that Eph-ephrin signaling is critical for 
establishing topographic projections in the auditory system10,41,42, 
somatosensory system43, olfactory system44, and others45–47. Both 
forward and reverse signaling play a role, as do attractive and 
repulsive interactions and interactions in cis. 

Formation of topography thus uses graded, or continuous, target-
ing signals. However, Eph-ephrin signaling also contributes signifi-
cantly to selection of discrete, or discontinuous, synaptic targets, 
and these modes of targeting often occur together in a single neu-
ral pathway. Interestingly, the function of individual Eph or ephrin 
family members is specialized within a structure, so that family 
members regulating topography are distinct from those regulat-
ing modular48, laminar49, or ipsilateral versus contralateral50 axon 
targeting decisions.

Choice points
Eph-ephrin signaling plays an important role in axon targeting at 
choice points, where axons select between two alternative routes. 
For example, null mutations in EphB1 result in reduced numbers 
of retinal ganglion cells that project ipsilaterally through the optic 
chiasm to the ipsilateral region of the lateral geniculate nucleus51. 
This phenotype is recapitulated when the cytoplasmic domain of 
EphB1 is deleted, suggesting that reverse signaling is not necessary 
for this targeting choice. Conversely, overexpression of EphB1 in 
mouse embryos is sufficient to direct retinal ganglion cell axons 
to the ipsilateral trajectory52. Interestingly, loss or gain of EphB1 
reduces or increases ipsilateral targeting, respectively, whereas 
changes in EphB2 and EphB3 are relatively ineffective, even though 
these receptors are co-expressed to varying degrees in retinal gan-
glion cell axons51,52. Analysis of the effectiveness of overexpressed 
chimeric receptors suggests that unique sequences in both the jux-
tamembrane and the extracellular domains of EphB1 work together 
to direct axons ipsilaterally. The selective role for EphB1 might 
result from differences in its ability to engage downstream sign-
aling pathways. Additionally, crossing axons might express addi-
tional proteins that normally overcome this ipsilateral cue. In this 
study, the authors overexpressed the zinc finger transcription factor 
Zic2, which is expressed in retinal ganglion cells and which acti-
vates EphB1 and regulates numerous other genes as well. They 
found that early exogenous expression of Zic2 was significantly 
more effective at inducing ipsilateral projections than EphB1, con-
sistent with the view that a network of genes is needed to balance 
responses to ipsilateral versus contralateral cues. The identification 
of these genes and the integration of their roles in target selection, 
which may require a computational modeling approach, will greatly 
facilitate our understanding of how Eph-ephrin signaling leads to 
precision in axon targeting.

Several other studies highlight the broad significance for Eph-ephrin 
signaling in determining whether axons cross the midline53–56. 
Eph family molecules play key roles in establishing the crossed 
projections of the central nervous system54,57. Repulsion from 

ephrins expressed at the midline may serve to limit crossing 
projections spatially58 or temporally53. Eph-ephrin signaling is 
a significant factor in determining whether axons make ipsilat-
eral or contralateral synaptic target selections. This role has been 
demonstrated in the auditory brainstem pathway from the 
cochlear nucleus to the medial nucleus of the trapezoid body, a 
strictly contralateral projection in the normal brain. Mutations 
that reduce reverse signaling through ephrin-B proteins59 and null 
mutations in ephrin-A2 or ephrin-A5 (or both) similarly reduce 
the specificity of this pathway, resulting in a significant ipsilateral 
projection50. The similarity in these phenotypes suggests crosstalk 
between the classes and redundancy in cues for generating the 
crossed projection. Unlike the optic chiasm, in which a subset of 
axons is selectively targeted ipsilaterally by EphB1, this auditory 
projection uses multiple Eph-ephrin signaling molecules to prevent 
the formation of any ipsilateral projections. In this case, down-
stream signaling molecules might be similarly engaged by both 
classes of Eph proteins.

Recent studies of motor neuron axon guidance have shed new 
light on the molecular mechanisms by which Eph-ephrin signaling 
coordinates distinct choices. Two groups of motor neurons of the 
lateral motor column (LMC) in the spinal cord innervate the limb. 
The medial LMC (LMC

M
) motor neurons innervate ventral limb 

muscles, whereas the lateral LMC (LMC
L
) motor neurons innervate 

the dorsal limb muscles60. The axons of the LMC motor neurons 
grow out of the spinal cord together in one fascicle and make a 
dorsal versus ventral choice as they enter the limb. Another group 
of motor neurons in the medial portion of the medial motor column 
(MMC

M
) at the level of the hindlimb initially project axons together 

with the LMC axons but abruptly change course toward dorsal axial 
muscle targets. Both LMC

L
 and MMC

M
 axons express EphA4 and 

encounter ephrin-A5 along their trajectories. In ovo electroporation 
studies in chick embryos revealed that the two populations have 
opposite responses to ephrin-A5: LMC

L
 axons avoid ephrin-A5 in 

the limb, whereas MMC
M

 axons grow through ephrin-A5-positive 
somite regions61.

The distinct responses of these EphA4-positive axons are further 
complicated by the fact that these axons also express ephrin-A 
proteins. EphAs and ephrin-As in LMC

L
 motor axons are maintained 

in separate membrane compartments62, so that trans interactions 
are favored, whereas in LMC

M
 motor axons, EphAs and ephrin-As 

can reside in the same membrane compartments and interact in 
cis21. LMC

M
 motor neurons are also guided by EphB signaling63.

In the trans signaling guiding LMC
L
 motor neurons, the effects of 

forward signaling through EphA receptors are repulsive, whereas 
reverse ephrin-A signaling is attractive62,64. Both forward and reverse 
signaling are necessary to target LMC

L
 axons to the dorsal limb. 

Using co-immunoprecipitation assays to identify novel ephrin-A 
co-receptors, Bonanomi and colleagues64 found that the selective 
attraction of LMC

L
 axons through ephrin-A reverse signaling is 

mediated by Ret, a tyrosine kinase. Ret also interacts with GFRα1, 
a GPI-linked receptor for glial-derived neurotrophic factor, which 
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is secreted in the limb. Ret thus integrates signals from these two 
sources and generates a synergistic interaction that promotes axon 
attraction. This study highlights the significance of combinatorial 
codes in establishing diversity and precision in neuronal contacts.

Midline specializations
Corpus callosum
Eph proteins play a key role in establishing midline structures. In 
humans, mutations in EFNB1, the gene coding for ephrin-B1, leads 
to craniofrontonasal syndrome (CFNS). This syndrome is charac-
terized by abnormally large distance between the eyes, a central 
nasal groove, cleft palate, and skeletal/sternum abnormalities, 
along with other midline distortions in the body. CFNS is also 
associated with agenesis of the corpus callosum, a large neural tract 
that interconnects the cerebral hemispheres65,66.

The mouse model for CFNS parallels many of the cranial 
deformities and also exhibits incomplete formation of the corpus 
callosum65, which depends on ephrin-B1 reverse signaling67. 
Deeper examination of corpus callosum formation in several Eph 
family mutant mice revealed axon outgrowth defects near the mid-
line, after axons have progressed out of cortical layers and traveled 
medially toward their contralateral journey. These axons coalesce 
and turn to project longitudinally, not medially via the commissure, 
similar to the human CFNS phenotype54. Axon guidance across 
the midline is largely dependent on ephrin-Bs and EphBs, which 
are expressed in growing callosal fibers. Furthermore, abnormal 
glial proliferation at the midline in mutant mice brains suggested 
that Eph family proteins regulate this population through growth 
suppression54. These studies suggest that agenesis of the corpus 
callosum in CFNS results from defects in axon guidance regulated 
by Eph-ephrin signaling.

Neural crest
Owing to the large morphological impact of the EFNB1 mutation 
in CFNS, investigations into the mechanisms have focused on ear-
lier developmental stages. Indeed, in vivo manipulation of ephrin-
B1 expression in the developing mouse results in perturbations of 
cephalic neural crest cell precursors68, which give rise to the bone 
and cartilage of the head. Whereas neural crest cell migration is 
known to be regulated by Eph proteins69, craniofacial defects in 
ephrin-B1 mutants largely arise from impaired cell proliferation 
in the developing palate68 as well as from impaired cell survival70. 
Craniofacial development relies on ephrin-B1 reverse signaling67. 
Interestingly, loss of ephrin-B1 in the developing palate leads to 
increased expression of EphB3, as forward signaling normally 
modifies EphB3 so as to promote endocytosis and degradation68. 
Together, these studies show that loss of ephrin-B1 affects several 
aspects of central and peripheral development through multiple 
molecular interactions.

New research directions
Apart from CFNS, an understanding of the impact of mutations 
affecting Eph-ephrin signaling on human brain conditions is in its 
very early stages. Genetic studies have linked these mutations with 
neurodevelopmental disorders, including autism spectrum disorder 
(ASD)71, characterized by dysfunction in social interactions, repeti-
tive behaviors, and sensory abnormalities. Some of these behav-
iors can be identified in simplified form in mouse models of ASD. 
To explore the potential link with Eph proteins, Wurzman and 
colleagues72 performed a comprehensive series of behavioral tests 
on ephrin-A2/A3 double-knockout mice. In a three-chamber social 
interaction test, the knockout mice spent significantly less time than 
wild-types did in a chamber exposed to a novel mouse, indicating 
social aversion. Compared with wild-type mice, the ephrin-A2/A3 
mice exhibited significantly greater repetitive and self-injurious 
grooming behavior. They also showed decreased acoustic startle 
response and increased prepulse inhibition of the startle reflex. 
These behavioral phenotypes are similar to those in other mouse 
models of ASD. This work, though still in its early stages, expands 
the relevance of developmental Eph-ephrin signaling in establish-
ing normal sensory function and behavior.

Summary
A large body of work on the roles of Eph proteins and the mech-
anisms underlying their versatility has emerged. Recent work 
demonstrates the breadth of roles throughout development and the 
significance for assembly of sensory, motor, and cognitive neural 
systems. Determining how these multiple functions are coordinated 
remains a significant challenge. The recent studies highlighted here 
have begun to shed light on this complex issue, showing that spe-
cificity arises from differential clustering, forward and reverse sig-
naling, and unique combinations of protein family members that 
engage distinct signaling pathways.
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