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Introduction
Cancer is driven mostly by somatic mutations. Eff iciently 
identifying the driver mutations from a vast majority of pas-
senger mutations, which do not contribute to cancer, is a dif-
ficult task. The gene STK11 is a tumor suppressor gene and 
encodes for serine–threonine kinase, which has a critical role 
in regulating cell growth and apoptosis.1,2 Inactivation of 
this gene leads to development of cancer. Many mutations 
in STK11 are small deletions or point/missense mutations 
that are present in the STK11 catalytic kinase domain, and 
a few of them occur within the noncatalytic COOH- ter-
minal, thereby resulting in STK11 protein reduction, loss, 
or inactivation.3,4 Mutations in the STK11  gene also cause 
Peutz–Jeghers syndrome, a condition characterized by the 
development of noncancerous growths called hamartomatous 
polyps in the gastrointestinal tract.5

The catalytic kinase domain (residues 43–347) of STK11 
associates with the pseudokinase STe20-related adaptor 
(STRAD; residues 59–431) and full-length scaffolding mouse 
protein 25 (MO25) in a 1:1:1 heterotrimeric complex in the 
cell.6–10 In contrast to the majority of the protein kinases 
that are regulated by phosphorylation, STK11 is activated  
by binding to STRAD and MO25 through an unknown,  
phosphorylation-independent molecular mechanism. Although 

STK11 lacks phosphorylation of the activation loop, it 
adopts an active conformation. The αC-helix of STK11 is  
rotated into the canonical closed conformation, by forming 
the conserved salt bridge between Lys (78) and Glu (98). This  
active conformation of STK11 appears to be achieved through 
contributions of both STRAD and MO25. The C-terminal  
lobe of STRAD interacts with both N- and C-terminal lobes 
of STK11 kinase domain. Mutations in STK11 can lead to its 
inactivation without affecting this complex assembly.6

Compared to our previous study,10 we have suggested 
a distinct computational approach to analyze the functional 
impacts of selected mutations of STK11  in pathogenesis. 
Molecular dynamics simulation protocol and thermal anneal-
ing process were used to compare the native and mutants, viz., 
D194N, E199K, L160P, and Y49D. Mutant D194N has been 
reported in lung cancer11; E199K, reported in large intestine 
cancer12; L160P, reported in cervical cancer13; and Y49D, 
reported in skin cancer.14 The computational method followed 
here might distinguish the driver mutations of cancerous genes 
from a vast number of passenger mutations.

Materials and Methods
Datasets. The protein sequence and variants of STK11 

were obtained from the Swiss-Prot database15,16 available at 
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http://www.expasy.ch/sprot/. The 3D Cartesian coordinates 
of the protein STK11 were obtained from Protein Data Bank 
(PDB Id: 2 WTK) for in silico mutation modeling and dock-
ing studies. 17

Modeling missense mutation on protein structures 
and energy minimization. SWISSPDB viewer18 was used 
for performing mutant modeling on STK11, and NOMAD-
Ref server was used for performing the energy minimization 
for 3D structures.19 GROMACS force field embedded in 
NOMAD-Ref was used for energy minimization, based on 
the steepest descent, conjugate gradient, and limited-memory 
Broyden-Fletcher-Goldfarb-Shanno methods. It creates a 
GROMACS topology using the GROMOS96 vacuum force 
field.20

Prediction of disease-causing mutations by artificial 
neural network predictor, NetDiseaseSNP, and valida-
tion by Catalog of Somatic Mutations in Cancer database. 
For the prediction of disease-causing mutations, we used the 
tool NetDiseaseSNP,21 a sequence conservation-based pre-
dictor of the pathogenicity of mutations, which exploits the 
predictive power of artificial neural networks. This method 
derives sequence conservation from position-specific scoring 
matix (PSSM), based on the alignment algorithm of sorting 
intolerant from tolerant (SIFT), which is complemented with 
the calculation of surface accessibility by the predictor Net-
SurfP.22 This approach provides NetDiseaseSNP the poten-
tial to extract all relevant information directly from protein 
sequences. NetDiseaseSNP encodes the SIFT score (normali
zed probability) for the SNP amino acid in one input neuron. 
SIFT predicts the effects of all possible substitutions at each 
position in the protein sequence. This server is available at 
http://www.cbs.dtu.dk/services/NetDiseaseSNP/. The artifi-
cial neural networks of this predictor will generate an output 
value close to 1 if the combination of features describing that 
particular mutation suggests that it might be involved in dis-
ease, and close to 0 for neutral mutations.

The database Catalogue of Somatic Mutations in Cancer 
(COSMIC)23 is the largest and ample resource for exploring 
the impact of somatic mutations in human cancer. In order 
to gain a deep sense of knowledge on the key cancer genes, 
many appropriate literatures were identified for each gene 
and then subjected to manual curation. This manual cura-
tion allows this database to capture very high detail across 
mutation positions and disease descriptions. The variants 
were subjected to a COSMIC search to extract the infor-
mation of primary tissue affected. The COSMIC dataset 
can be assumed to be enriched for cancer driver mutations 
when compared with large-scale somatic mutation discovery 
datasets, which were expected to contain a fair number of 
passenger mutations.23

Ensemble analyses through normal mode-based simu
lation. Conformation sampling approach was used to generate 
ensembles to expand the chances of identifying an energetic 
landscape that closely matched the input structures.24 The 

Normal Mode-based Simulation (NMSim) approach25 has 
been shown to be a computationally efficient alternative to 
molecular dynamics simulations for conformational sampling 
of proteins and performs three types of simulations, viz., unbi-
ased exploration of conformational space, pathway generation 
by a targeted simulation, and radius of gyration (RoG)-guided 
simulation. This Web server implements a three-step approach 
for multiscale modeling of protein conformational changes. 
Initially, the protein structure is coarse-grained, followed 
by a rigid cluster normal mode analysis that provides low-
frequency normal modes, and finally, these modes are used 
to extend the recently introduced idea of constrained geo-
metric simulations by biasing backbone motions of the pro-
tein, whereas, side chain motions are biased toward favorable 
rotamer states (NMSim). This program is accessible through 
http://www.nmsim.de. The RoG-guided simulation type was 
used here to generate the ensembles of native and mutant 
structures. The parameters used for the rigid cluster decom-
position were as follows: energy cutoff for hydrogen bonds 
(−1.0 kcal/mol), method for placing hydrophobic constraints 
(3), cutoff for including hydrophobic constraints (0.35 Å). The 
method chosen for the normal mode analysis was rigid clus-
ter normal mode analysis, and the distance cutoff for interac-
tions between C-alpha atoms was set to 10 Å. The parameters 
for the simulation were as follows: number of trajectories (1), 
number of simulation cycles (500), number of NMSim cycles 
(1), frequency of writing out conformations (1), side chain dis-
tortions (0.3), normal mode range (1–50), ROG mode (1), and 
step size (0.5 Å). The structural diversity of native and mutant 
ensembles, obtained through NMSim program, was evaluated 
by their root-mean-square deviation (RMSD) and root-mean-
square fluctuation (RMSF). Geometrical and conformational 
deviations of native and mutant ensembles were studied 
through RMSD.26 RMSF was used to study the fluctuation of 
residues present in native and mutant structures, which repre
sents their atomic mobility.27,28 RoG is indicative of the level 
of compaction in the structure29 and calculated using VEGA 
ZZ package,30 which implements trajectory visualization and 
numerous calculations. Packing defects and folding patterns 
of native and mutants were studied through solvent-accessible 
surface area (SASA),31 which was computed using VEGA 
ZZ package.30 Changes in SASA are caused due to changes 
in their tertiary structures, which in turn are affected by the 
folding patterns of native and mutants.32

Furthermore, native and mutant ensembles were ana-
lyzed for their energetic contributions through Bayesian 
Analysis Conformation Hunt (BACH) algorithm (http://
bachserver.pd.infn.it/in) in which the all-atom energy score 
was computed based on 1091 parameters. The BACH score 
was also used to discriminate the global minima of native and 
mutant ensemble.33,34

Analysis of protein integrity by computing interac-
tions, hydrogen bond analysis, simulated thermal dena-
turation, and secondary structure analysis. Protein stability 
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relies on various strong and weak interactions.35 Protein inter-
actions calculator (PIC) program,36 a structure-based algo-
rithm was used to compute the interactions stabilizing native 
and mutant structures. The program was used to compute the 
disulfide bridges, interactions involving hydrophobic, ionic, 
aromatic–aromatic residues, aromatic–sulfur residues, and 
cation–π interactions, which contributed to the overall integ-
rity of native and mutant structures. In addition, the hydrogen 
bond analysis was done, as they stabilize secondary structure 
elements.37 HB Plot (http://virtuadrug.com/products/hb-
plot/index.html) is a tool for exploring the protein structure 
and function by describing the structure as a network of 
hydrogen bonding interaction. This Web server plots three 
classes of hydrogen bonding by color coding: type 1 – short 
(distance smaller than 2.5  Å between donor and acceptor), 
type 2 – intermediate (between 2.5 Å and 3.2 Å), and type 
3 – long hydrogen bonds (greater than 3.2  Å).37,38 Besides, 
the native and mutant structures were subjected to simulated 
thermal denaturation through Proflex, embedded in Stone-
Hinge program available at http://stonehinge.bmb.msu.edu/ 
to describe the folding patterns.39 This Web server simulated 
incremental thermal denaturation of the structure, as the cal-
culated temperature rises, and hydrogen bonds weaker than 
the current energy level were broken. Hydrophobic interac-
tions were maintained throughout the process, as the strength 
of these interactions increased somewhat with a modest 
increase in temperature.40 Furthermore, secondary structure 
elements were analyzed through STRIDE program, which 
assigns the secondary structure based on combined use of 
hydrogen bond energy and statistically derived backbone tor-
sional angle information.41 Changes in α helix, β sheets, and 
coils of native and mutants were compared and visualized, as 
structural deterioration might cost the functional properties 
of structures.

Analysis of interaction of native and mutant with 
STRAD. We subjected the native and mutants for docking 
studies by using PatchDock42,43 in order to understand their 
functional activity with the binding partner, STRAD. Patch-
Dock is a geometry-based molecular docking algorithm, and 
it is aimed at finding docking transformations that yield good 
molecular shape complementarity.42 Such transformations, 
when applied, induce both wide interface areas and small 
amounts of steric clashes. A wide interface ensured that seve
ral matched local features of the docked molecules that have 
complementary characteristics were included. The PatchDock 
algorithm divides the Connolly dot surface representation43,44 
of the molecules into concave, convex, and flat patches. Then, 
complementary patches were matched to generate candidate 
transformations. Each candidate transformation was further 
evaluated by a scoring function that considered both geome
tric fit and atomic desolvation energy.44 PatchDock is available 
at http://bioinfo3d.cs.tau.ac.il/PatchDock/. The 10 best solu-
tions of PatchDock analysis were selected for further flexi
ble refinement and rescoring analysis through fast interaction 

refinement in molecular docking (FireDock) algorithm.31,45 
This method targets the problem of flexibility and scoring 
of solutions produced by fast rigid-body docking algorithms. 
The output provided a list of refined complexes, sorted by a 
binding energy function, and a 3D visualization for observ-
ing and comparing the refined complexes.45 FireDock is avail-
able at http://bioinfo3d.cs.tau.ac.il/FireDock/firedock.html. 
The docked complexes of native and mutants were analyzed 
for binding energies, followed by visualization of binding sites 
using PyMol (http://www.pymol.org).

To identify the binding residues between STK11 and 
STRAD, we submitted the native and mutants to the pro-
tein interface recognition server, solvent accessibility based 
protein–protein interface identification and recognition 
(SPPIDER).46 This server integrates enhanced relative solvent 
accessibility predictions with high-resolution structural data. 
This Web server is available at http://sppider.cchmc.org/.

Results and Discussion
Retrieval of STK11structure and mutant modeling. The 

native structure (2 WTK) was obtained from PDB database, 
followed by in silico mutation modeling to generate structures 
for D194N, E199K, L160P, and Y49D mutants, and sub
sequently, all the mutant structures were energy minimized.

Identification of disease-causing missense mutations 
and validation. The four mutants, viz., D194N, E199K, L160P, 
and Y49D, were identified as disease causing through the score 
of 0.97, 0.91, 0.94, and 0.95, respectively, obtained from Net-
DiseaseSNP (Table 1). Since the output values were close to 1, 
all the four selected mutants were considered as disease caus-
ing. The mutant D194N changed its amino acid from polar 
negatively charged to polar neutral, E199K changed from acid 
to basic, Y49D changed from polar neutral to polar negatively 
charged, and the mutant L160P retained its basic property.

For the validation of this result, we derived the data of 
corresponding mutation from COSMIC and identified the 
primary tissue affected by each mutation. The primary tissues 
affected by the four mutants, viz., D194N, E199K, L160P, 
and Y49D, were lung, large intestine, cervix, and skin, 
respectively,11–14 as illustrated in Table 1. The CDS mutation 
for the above mutants were also obtained from COSMIC, 

Table 1. Scoring of mutants by using NetDiseaseSNP and total 
energy calculation.

STK11 NetDiseaseSNP 
score

Total energy  
KJ/mol

Primary 
tissue  
affected 

Native – −16734.766 –

D194N 0.97 −12314.974 Lung 

E199K 0.91 −12326.152 Large intestine 

L160P 0.94 −10595.924 Cervix 

Y49D 0.95 −13090.824 Skin 

Note: “–” indicates Not applicable.
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and it was found to be 580G . A, 595G . A, 479T . C, 
and 145T . G correspondingly.

Ensemble analysis of native and mutant structures. 
Divergence of the mutant structure from the native structure 
could be caused by substitutions, deletions, and insertion,47 
and the deviation between the two structures could alter the 
functional activity48 with respect to binding efficiency of the 
binding partner, which was evaluated by their RMSD, RMSF, 
and RoG values. The stability of secondary structure elements 
and conformational changes were assessed by plotting these 
values obtained from trajectory. To analyze the deviations in 
conformational space and rigidity of the ensembles, RMSD 
plot of Cα atoms was computed for native and mutant (D194N, 
E199K, L160P, and Y49D) structures. The mean RMSD 
of native was found to be 1.9 Å. On the other hand, all the 
mutants possessed a higher mean value of RMSD as presented 
in Table 2 and Figure 1. These results suggested that mutant 
ensembles comprised structural deviations when compared 
with native. In addition, RMSF was studied to understand 
the overall flexibility of the residues of native and mutant. The 
mean RMSF of native was found to be 0.66 Å, whereas all 
the mutants possessed increased flexibility in their residues 
(Table 2 and Fig. 2). Increase in flexibility creates a large loss 
in enthalpy (weakened native contacts) that is unfavorable for 
the protein.49 The analysis of RMSF exposed that the residues 

47–97 and 250–276 possessed a comparatively high flexibility 
change than the other residues in all the mutants. The region 
47–97 had involved the5 binding residues, viz., Leu (67), Thr 
(71), Leu (72), Cys (73), and Arg (74)6 for the native–STRAD 
interaction. Furthermore, RoG analysis disclosed that the 
three mutants, viz., D194N, E199K, and Y49D, had a less RoG 
of 18.2918 Å, 18.3645 Å, and 18.3630 Å, respectively, when 
compared with native 18.4733  Å. Mutant L160P possessed 
higher value than the native, and it was found to be 18.8869 Å; 
this could have resulted because of the increase in the flexibi
lity of this mutant (Table 2 and Fig. 3). This, in turn, showed 
the distinct compactness of mutant structures. Besides, SASA 
was analyzed, in which, the native exhibited 29,810.50 Å2 as 
an average SASA. Three mutants, viz., D194N, E199K, and 
Y49D, exhibited decreased SASA compared with native, and it 
was found to be 29,726.60 Å2, 29,730.12 Å2, and 29,686.71 Å2, 
respectively (Table 2 and Fig. 4), whereas, the mutant L160P 
showed an increased SASA of 30,070.69 Å2. This could have 
also resulted due to the high RMSF possessed by the mutant 
L160P, since there is correlation between the flexibility of 
the residue and SASA.50 As the flexibility increases, SASA 
will also increase, which in turn affects the stability of the  
protein unfavorably.

Analyzing structural events of global minima of native 
and mutants. Various types of intramolecular interactions,51 
more specifically hydrogen bonds52 influence protein fold-
ing,40 which in turn play a major role in the structural prop-
erty of a protein. The following analyses were carried out 
between native and mutants using global minimized struc-
tures. Hydrophobic, cation–π, and other interactions were 
contributed in stabilizing proteins.38 Therefore, intramolecular 
interactions for native and mutant structures were studied 
using the PIC program.36 Different interactions were used to 
study the variations in structural integrity of the structures, 
and the results were represented type wise in Table 3. From 
this result, it was noted that the native structure had a total of 
999 interactions, while all the mutants had reduced number of 
interactions, among which L160P mutant had the lowest with 

Table 2. Trajectory analysis of native and mutants.

STK11 Average  
RMSD
(Å)

Average 
RMSF
(Å)

Average 
Surface  
area
(Å)

Average 
Radius of 
Gyration
(Å)

Native 1.9 0.66 29810.50 18.47

D194N 2.18 1.05 29726.60 18.29

E199K 2.53 0.95 29730.12 18.36

L160P 2.79 1.10 30070.69 18.87

Y49D 2.24 0.70 29686.71 18.36
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Figure 1. RMSD variation of native and mutants.
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779 interactions. Reduction in the number of interactions in 
mutant structures might alter their structural integrity and 
folding patterns. Therefore, hydrogen bond analysis and dilu-
tion patterns were studied in detail to understand the folding 
patterns of native and mutant structures. Furthermore, ener-
getic contributions of native and mutant structures were ana-
lyzed to explore the possible deviations, where the total energy 
possessed by the native was −16,734.766 kJ/mol, and that of the 
mutants, viz., D194N, E199K, L160P, and Y49D, were found 
to be −12,314.974 kJ/mol, −12,326.152 kJ/mol, −10,595.924 kJ/
mol, and −13,090.824  kJ/mol, respectively (Table  1). This 
analysis clearly portrayed that all the four mutants showed 
increased total energy as compared with native STK11, thus 
showing alteration in the stability of mutants as compared  
with native.

Identifying the strength of hydrogen bonds, pattern of 
simulated thermal denaturation, and elements of secondary 
structure of native and mutants. The pattern of hydrogen 
bond distribution affects secondary and tertiary structures of 
proteins.52 Besides, residues which are far apart in sequence 
are brought closer by protein folding, as aided by hydrogen 
bonds.53 Moreover, changes in folding patterns are known to 

affect the outline structures of proteins and arrangements of 
secondary structure elements.54 Therefore, native and mutant 
structures were subjected to hydrogen bond analysis and sim-
ulated thermal denaturation to analyze the number of hydro-
gen bonds present in the structure and check how hydrogen 
bonds were diluted on the application of various energy 
ranges. The total number of hydrogen bonds present in the 
native was 284, and most of them (282) reside in the inter-
mediate range, and only 2 were in the long range. Of note, 
the three mutants, viz., D194N, E199K, and L160P, had less 
number of total hydrogen bonds of about 273, 283, and 225, 
respectively, than the native (Table 4). The intermediate range 
of hydrogen bonds was less in these three mutants, and also, 
more number of long-range hydrogen bonds was present, 
when compared with native. The mutant Y49D exhibited 
more number (292) of hydrogen bonds than the native. Of 
the 292 hydrogen bonds, about 13 were in the long range and 
279 were in the intermediate range. This portrayed that the 
native possesses strong hydrogen bonds than the mutants, as 
the length of the hydrogen bonds correlates with the strength 
of the bond.37 Native and mutant structures exhibited dif-
ferent patterns of hydrogen bond dilution as noticeable from 
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Figure 2. RMSF of native and mutants. (A) Highly fluctuated region (residues 47–97). (B) Highly fluctuated region (residues 250–276).

20

19

18

17

0

Native D194N E199K L160P Y49D

200 400 600 800

Number of conformation

R
o

G
 Å

1000 1200 1400

Figure 3. RoG of native and mutants.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Lopus et al

40 Cancer Informatics 2016:15

Table  5 and Figure  5. When the energy of −1  kJ/mol was 
applied to native and mutants, the remaining hydrogen bonds 
present in native was 276, whereas the mutants, viz., D194N, 
E199K, L160P, and Y49D, possessed 265, 274, 226, and 
278 hydrogen bonds, respectively. For the energy of −5.8 kJ/
mol, the mutant L160P showed complete dilution of hydro-
gen bonds, whereas the native and the three mutants, viz., 
D194N, E199K, and Y49D, had remaining hydrogen bonds 
of 74, 65, 81, and 64, respectively, which, in turn, suggested 
variations in their folding patterns. In addition, secondary 
structure elements of native and mutants were visualized and 

Table 4. Hydrogen bond analysis of native and mutant STK11.

STK11 Short HB
(,2.5 Å)

Intermediate HB
(2.5 $3.2 Å)

Long HB
(.3.2 Å)

Total HB

Native 0 282 2 284

D194N 0 265 9 273

E199K 0 276 7 283

L160P 0 213 12 225

Y49D 0 279 13 292

Abbreviation: HB, Hydrogen Bond.
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Figure 4. SASA of native and mutants.

Table 3. Intra molecular interactions of native and mutants.

STK11 HI M-M M-S S-S II Ar-Ar Ar-S C-π Total No. of 
interactions

Native 257 390 180 127 29 7 4 5 999

D194N 257 384 177 112 30 7 5 3 975

E199K 258 381 177 110 28 7 6 2 969

L160P 244 319 103 68 29 7 4 5 779

Y49D 281 382 184 105 29 8 5 3 997

Abbreviations: HI, Hydrophobic Interactions; M-M, Main chain-Main chain 
hydrogen bond;  M-S , Main chain- Side chain Hydrogen bond;  S-S , Side 
chain-Side chain hydrogen bond;  I-I , Ionic Interactions;  Ar-Ar , Aromatic– 
Aromatic interaction; Ar-S , Aromatic–Sulphur interaction;  C-π , Cation-π 
interaction.

Table 5. Simulated thermal denaturation of native and mutants.

Energy  
(KJ/mol)

Remaining Hydrogen bonds

native D194N E199K L160P Y49D

−1 276 265 274 226 278

−1.2 238 248 257 196 243

−1.4 228 233 236 187 237

−1.6 222 225 228 179 229

−1.8 210 215 221 175 220

−2 202 206 211 167 203

−2.2 196 204 203 160 201

−2.4 188 194 191 150 194

−2.6 183 185 182 140 190

−2.8 178 180 175 144 186

−3 173 174 172 140 174

−3.2 169 169 168 139 171

−3.4 160 164 163 135 168

−3.6 157 157 157 130 165

−3.8 150 152 149 127 157

−4 143 142 141 114 147

−4.2 132 141 137 112 145

−4.4 122 136 130 110 131

−4.6 119 120 115 106 127

−4.8 115 108 114 98 114

−5 109 103 104 87 106

−5.2 102 97 96 80 92

−5.4 90 80 92 73 87

−5.6 84 83 92 59 80

−5.8 74 65 81 0 64

−6 71 57 64 0 61

−6.2 54 47 55 0 50

−6.4 53 41 50 0 45

−6.6 38 33 33 0 28
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Figure 5. Thermal denaturation of native and mutants with intervals of applied energy.

compared with the observed position level variations. It was 
noted that mutants showed variations in terms of second-
ary structure elements when compared with native (Fig. 6). 
These variations could have occurred due to the mutations 
that might rearrange the packed secondary structure54 of 
STK11. The position level variations in secondary structure 
elements of the mutants were as follows: mutant L160P com-
prised variations at positions 23–26 (three residues) where, 
helix was converted to coil. All the mutants showed variations 
from helix to coil at positions 170–173 (three residues), except 
Y49D, which showed variation from helix to coil at positions 
193–196 (three residues). Three mutants, viz., E199K, L160P, 
and Y49D, showed variation from coil to helix at positions 
203–204, while D194N and E199K showed variations from 
coil to helix at positions 281–284 (four residues) and L160P 
showed variation from coil to helix at positions 282–284 
(three residues).

On the whole, the strength of hydrogen bonds, changes 
in folding patterns, and variations in secondary structure 

elements gave an idea about the structural changes in the 
mutant structures. These changes might alter the functional 
properties of mutant structures that could result in the patho-
genesis of the disease, and therefore, functional properties 
were assessed through docking studies.55

Computation of binding affinity between native and 
mutants. Native and mutant structures were analyzed for 
their binding affinity toward the partner STRAD. Docking 
was performed using the PatchDock between STRAD and 
the global minima of native and mutants of STK11 by speci-
fying the receptor-binding sites such as Arg (74), Cys (73), 
Leu (72), Thr (71), and Thr (186) and the ligand-binding sites 
such as Leu (241), His (231), Phe (233), and Gln (251) to 
determine the binding efficiency in the form of the atomic 
contact energy (ACE). The 10 best solutions of PatchDock 
analysis were selected and further analyzed for flexible 
refinement and rescoring by FireDock. From the analysis, 
the ACE between STRAD and native STK11 was found 
to be −3.30  kJ/mol and all the mutants demonstrated low 

1. Native    2. D194N   3. E199K   4. L160P   5. Y49D H Alpha-Helix G 3–10 Helix

CoilB isolated beta bridgeE extended configuration (Beta-sheet)

Figure 6. Secondary structure analysis of native and mutants.
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altered RMSF values of binding residues that were present in 
the highly fluctuated region. Changes in flexibility of these 
residues might have resulted in improper STRAD binding 
and eventual loss of functional activity of mutants, which 
could lead to cancer.

Conclusion
Single-nucleotide polymorphism is the most common form 
of genetic variation,56 and missense mutations lead to substi-
tution of amino acids, which eventually affected the function 
of STK11 and were often responsible for causing various types 
of cancer.11–14 Ensemble analysis of mutants, viz., D194N, 
E199K, L160P, and Y49D, substantiated considerable varia-
tions in terms of RMSD. RMSF of mutants showed varia-
tion, especially at the region between 47 and 97, where five 
binding residues were present, which suggested increased 
flexibility of residues as compared with native. RoG analy-
sis throughout the ensembles substantiated that the mutants 
exhibited RoG in the range of 18.2918–18.8869  Å. The 
SASA analysis of mutants also showed variation from native, 
possessing SASA in the range of 29,726.60–30,070.69  Å. 
Furthermore, global minima of native and mutants were 
used for further analysis. Variations were observed between 
the native and mutant structures in terms of intramolecular 
interactions, number of hydrogen bonds, simulated thermal 
denaturation, and secondary structure elements. Therefore, 

Figure 7. Docked structures of (A) native (magenta) and STRAD (green), (B) D194N (yellow) and STRAD (green), (C) E199K (violet) and STRAD 
(green), (D) L160P (orange) and STRAD (green), (E) Y49D (brown) and STRAD (green).

Table 6. Energy contribution of ACE, attractive and repulsive Vdw 
and HB in the docked structure of native and mutants with STRAD.

STK11 ACE
 
KJ/mol

Attractive 
Vdw 
KJ/mol

Repulsive 
Vdw 
KJ/mol

HB
 
KJ/mol

Native −3.30 −16.50 6.57 −2.99

D194N 3.76 −25.34 7.84 −2.00

E199K 4.21 −17.99 6.25 −2.61

L160P −2.29 −27.24 8.28 −1.92

Y49D −2.78 −22.03 7.29 −2.20

Abbreviations: ACE, Atomic Contact Energy; Vdw, Van der waals force;  
HB, Hydrogen Bond.

ACE when compared with the native (Table  6). Also, the 
energy contribution from hydrogen bonding, van der waals 
force of attraction, and repulsions to the complexes (Fig. 7) 
of all mutants were varying when compared with native as 
represented in Table 6. SPPIDER was used to calculate the 
contacts between the binding residues of native and mutant 
STK11 with STRAD, and the binding residues were Leu 
(67), Thr (71), Leu (72), Cys (73), Arg (74), Cys (151), Thr 
(186), Lys (191), Pro (315), Pro (317), Ile (318), Pro (320), 
Arg (323), Trp (324), Val (327), Leu (330), and Glu (331). 
Reduced ACE of mutants toward STRAD might be due to 
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it was obvious that mutants would have variations in affin-
ity toward partner, which was analyzed through docking 
studies, where all four mutants had reduced ACE compared 
with native. This could have eventuated due to the change 
of flexibility in binding residues and changes in the sec-
ondary structure elements. Therefore, it was concluded that 
mutants, viz., D194N, E199K, L160P, and Y49D, have det-
rimental effects contributing to the pathogenesis of disease. 
The study gains interest since the deleterious effects that 
remained latent within the mutant structures were explored 
using conformational sampling method that could serve as 
an alternate to classical molecular dynamics and structural 
variations of these mutants, which were not reported yet, 
were explored and might shed more light onto the cancer 
research community.
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