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Arterial spin labeled perfusion magnetic resonance imaging (ASL MRI) provides non-invasive quantification of
cerebral blood flow, which can be used as a biomarker of brain function due to the tight coupling between cere-
bral blood flow (CBF) and brain metabolism. A growing body of literature suggests that regional CBF is altered in
neurodegenerative diseases. Here we examined ASL MRI CBF in subjects with amnestic mild cognitive impair-
ment (n = 65) and cognitively normal healthy controls (n = 62), both at rest and during performance of a
memory-encoding task. As compared to rest, task-enhanced ASLMRI improved groupdiscrimination,which sup-
ports the notion that physiologic measures during a cognitive challenge, or “stress test”, may increase the ability
to detect subtle functional changes in early disease stages. Further, logistic regression analysis demonstrated that
ASL MRI and concomitantly acquired structural MRI provide complementary information of disease status. The
current findings support the potential utility of task-enhanced ASL MRI as a biomarker in early Alzheimer's
disease.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Over 5 million people in the United States carry a diagnosis of
Alzheimer's disease (AD) and this number will rise to 13.5 million by
the year 2050 due to our aging demography (Thies and Bleiler, 2013).
The search for disease modifying medications, which halt or delay pro-
gression, remains the central goal of AD research. It is generally ac-
cepted that interventions are likely to be most effective early in the
disease course when symptoms are minimal, if present at all. As such,
a parallel endeavor has been the development of biomarkers that are
sensitive to the early manifestations of the disease and its treatment.
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While considerable progress has been made in the development of
biomarkers that are sensitive to the molecular pathology of AD [e.g.
CSF (cerebrospinal fluid) Aβ/tau amyloid PET], these measures appear
to be less sensitive to clinical status and disease progression (Engler
et al., 2006; Jack et al., 2008, 2009, 2010; Jagust et al., 2009, 2010;
Vemuri et al., 2009a, 2009b).Measures that are able to track progression
in the early stages of disease would be particularly valuable as outcome
measures in clinical trials and, eventually, clinical practice.

Measures of brain structure (e.g. volumetric MRI) and function [e.g.
flourodeoyglucose positron emission tomography (FDG PET)] have
been conceptualized as markers of the ‘downstream’ effects of the mo-
lecular pathology of AD and are thought to reflect neurodegeneration.
Consistent with this notion, changes detected with these modalities
tend tomore closely parallel disease progression and clinical phenotype
(Jack et al., 2009, 2010; Jagust et al., 2009; Vemuri et al., 2009b). FDG
PET may be particularly sensitive to the early consequences of the AD
pathologic process. A theoretical basis for this claim is that the glucose
metabolismmeasured by thismodality is largely a reflection of synaptic
activity (Schwartz et al., 1979; Attwell and Laughlin, 2001). These syn-
aptic changes are thought to precede neuronal death and are possibly
mediated, in part, by soluble Aβ (Walsh and Selkoe, 2004); whereas
the structural changes measured by MRI are dependent on neuronal
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and neuropil degeneration. Further, the sensitivity of FDG PET to synap-
tic functionmakes it well-positioned to track disease course, as synapse
loss appears to be the best correlate of cognitive function relative to
other pathologic markers (Terry et al., 1991).

Arterial spin labeled perfusion MRI (ASL MRI) provides a quantita-
tive measure of regional cerebral blood flow (CBF), which is generally
thought to be tightly coupled to regional brain metabolism (Raichle,
1998). ASLMRI uses magnetically labeled arterial blood water as an en-
dogenous ‘tracer’ for blood flow. CBF can be reliably quantified in abso-
lute terms (Alsop et al., 2010), and has been validated against 15-O PET
CBF (Ye et al., 2000; Xu et al., 2010; Zhang et al., 2014).While the infor-
mation obtained from this modality is likely to overlap with the infor-
mation yielded from FDG PET, ASL MRI has the advantages of being
less expensive, less invasive, and easily acquired during routine MRI
scans. Moreover, in addition to resting state ASL MRI, short task-
related sequences can be easily implemented during scans, potentially
providing more sensitive functional information.

Prior investigations have assessed resting state ASL MRI in neurode-
generative populations (Xu et al., 2007; Alsop et al., 2008; Chao et al.,
2009; Dai et al., 2009; Chen et al., 2011;Wang et al., 2013). Several stud-
ies in patients with AD have found areas of hypoperfusion which have
been broadly consistent with the parietotemporal pattern of
hypometabolism shown in the FDG PET literature (Alsop et al., 2000,
2010; Dai et al., 2009; Yoshiura et al., 2009; Hu et al., 2010; Chen
et al., 2011). A more limited number of ASL MRI studies of patients
with amnestic mild cognitive impairment (a-MCI), a group commonly
conceptualized as enriched in patients with the early clinical changes
of AD (Petersen et al., 2009), have produced similar findings (Xu et al.,
2007; Chao et al., 2009; Dai et al., 2009; Zhang et al., 2011).

Perfusion changes in medial temporal lobes (MTL) in AD and a-MCI
have been inconsistent. Bangen et al. (2012) reported decreased perfu-
sion in MTL among a-MCI patients, parallel to studies of FDG PET that
have found MTL hypometabolism (Minoshima et al., 1997; De Santi
et al., 2001; Mevel et al., 2007; Chételat et al., 2008; Mosconi et al.,
2008). On the other hand, there have also been a few reports of
hyper-perfusion in the MTL of patients with AD and a-MCI (Alsop
et al., 2008; Dai et al., 2009) after correcting for underlying atrophy.
This finding resonates with work utilizing blood oxygen level depen-
dent functional MRI (BOLD fMRI), which has also foundMTL hyperacti-
vation in a-MCI relative to cognitively normal adults (Dickerson and
Sperling, 2009; Yassa et al., 2010; Das et al., 2013). However, the in-
creased MTL recruitment reported in these BOLD fMRI studies have
been in the context of active memory encoding relative to control con-
ditions with the exception of the Das et al. study which described in-
creased MTL subregion connectivity at rest.

Task-related measurements of brain function may increase sensitiv-
ity for detecting regional alterations in brain function by requiring acti-
vation of specific networks that may be dysfunctional, resulting in
accentuation of group differences. Additionally, task performance may
simply minimize variation of subjects` brain activity relative to uncon-
strained resting stated to thereby enhance discrimination between pop-
ulations. This may be particularly true for the case of MTL activation,
since these structures may be engaged in resting states (Stark and
Squire, 2001). Only one prior study has analogously examined task-
related ASL measurements relative to rest in a-MCI (Xu et al., 2007).
That study reported that CBFduring task accentuated discrimination be-
tween a-MCI and healthy control groups, but only included a relatively
small cohort (12 a-MCI patients).

To further assess the value of both rest and task-related CBF for
distinguishing a-MCI from normal aging, the current study compared
CBF measured by ASL in patients with a-MCI and cognitively normal
healthy controls (HC), both at rest and during performance of a scene-
encoding memory task previously demonstrated to be associated with
modulation of MTL function (Fernández-Seara et al., 2007;
Mechanic-Hamilton et al., 2009). To measure CBF, we employed
pseudo-continuous ASL (pCASL), which appears to have significant
signal-to-noise and test-retest reliability advantages relative to the
more widely available pulsed ASL (PASL) used in most prior studies of
these populations (Wu et al., 2009; Chen et al., 2010). We predicted
that task-related CBF would accentuate group differences relative to
ASL measured at rest and that these differences would likely be most
prominent in MTL structures, as a reflection of the task and the clinical
population. We were particularly interested in determining whether
CBF measures were increased or decreased in a-MCI given prior incon-
sistencies in the literature.

2. Materials and methods

2.1. Participants

Sixty-five patients with a-MCI [age: 74.0 ± 6.2 (standard deviation)
years; education: 15.8± 3.0 (standard deviation) years; 24 female] and
62 HC subjects [age: 70.5 ± 8.8 (standard deviation) years; education:
16.6 ± 2.7 (standard deviation) years; 39 female] participated in the
study. All participants were recruited from the Penn Memory Center, a
National Institute of Aging supported Alzheimer`s disease center and a
memory disorders specialty clinic. As part of their evaluation at the
Penn Memory Center, each patient and HC participant underwent an
extensive evaluation, including medical history and physical examina-
tion, neurological history and examination, and psychometric assess-
ment. All patients had at least the following neuropsychological
measures: Mini-Mental Status Exam (MMSE) (Folstein et al., 1975);
Digit Span subtest of the Wechsler Adult Intelligence Scale III
(Wechsler, 1987); Category fluency (animals) (Spreen and Strauss,
1998); Consortium to Establish a Registry for AD Word List Memory
test (Morris et al., 1989); Trail Making Tests A and B (Reitan, 1958);
and a 30-item version of the Boston Naming Test (Kaplan et al., 1983).
Additionally, relevant blood work and brain imaging studies were eval-
uated. Clinical diagnosis was determined by review of the above data at
a consensus conference attended by neurologists, neuropsychologists,
and psychiatrists.

Diagnosis of amnestic MCI was made following the criteria outlined
by Petersen and others (Petersen, 2004; Winblad et al., 2004; Petersen
et al., 2009). Patients had to have a memory problem, generally intact
cognitive functioning and activities of daily living, objective evidence
of memory impairment on cognitive testing, and not qualify for a diag-
nosis of dementia. There was no strict cut-off for the degree of memory
impairment, but generally these patients performed greater than 1.5
standard deviations below our age-adjusted means on verbal and/or
non-verbal memory tests. Rather than a strict cut-off, clinical judgment
accounting for the premorbid status of the patient and performance on
other cognitive tests weighs into decisions of objective impairment
(Petersen, 2004). Controls were defined by an absence of significant
cognitive complaints, normal performance on age-adjusted cognitive
measures, and consensus conference designation as ‘normal.’ Inclusion
criteria included age between 50 and 85, N7 years education, and En-
glish speaking at an early age. Participants were excluded if they had a
history of clinical stroke, significant traumatic brain injury, alcohol or
drug abuse/dependence, prior electroconvulsive therapy, and any sig-
nificant disease or medical/psychiatric condition that was felt to impact
neuropsychological performance. The study was approved by the Insti-
tutional Review Board of the University of Pennsylvania.

2.2. Scene-encoding memory task

A ~6 minute visual scene-encoding task was administered during
ASL MRI scanning, as has been previously described (Fernández-Seara
et al., 2007; Mechanic-Hamilton et al., 2009). The task involved the pre-
sentation of 72 complex visual scenes selected from a Photodisc
(PhotoDisc, Inc., Seattle, WA, USA) photographic archive of real-world
scenes. Pictures were presented as three blocks of 24 pictures each. Par-
ticipants were instructed to try to remember these visual scenes for a
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later memory test. To enhance the likelihood of ‘deep’ semantic
encoding, subjects were instructed to make a subjective judgment as
to whether or not the picture was meaningful to them and respond by
button press. Interposed were three short ‘rest’ blocks in which an un-
recognizable, pixelated image was repeated six times. A shaded ‘X’ or
‘T’ was embedded in these images at random location on the screen
and subjects had to indicate which letter they observed. All images
were presented for 3500 ms with a 500 ms interstimulus interval. A
brief practice session was performed prior to entering the scanner.
The behavioral task paradigm was implemented in E-prime (Psychol-
ogy Software Tools, Pittsburgh, PA, USA) running on a PC laptop. In-
scanner responses were made using a fiberoptic response system
(FORP, Current Designs, Philadelphia, PA, USA). Images were back-
projected onto a Mylar screen that the subject viewed through a mirror
mounted on the head coil.

The task was performed as the last sequence of the scanning session
and was followed immediately by a recognition memory test outside of
the scanner. 40 visual scenes (20 studied; 20 unstudied) were pre-
sented on a laptop. Participants were instructed to make an ‘old/new’

decision depending on whether or not they thought the item had
been previously studied. This assessment was self-paced. To account
for false alarms to non-studied items, we derived a measure of discrim-
inability, d-prime (d′),whichwas calculated in a standard fashion based
on classic signal detection theory (Snodgrass and Corwin, 1988). Addi-
tionally, because d′ is undefined when either proportion is 0 or 1, we
used standard formulas to convert these values: Hits =
(#Hits+ 0.5) / (#studied items+1) and FA= (#FA+0.5) / (#unstud-
ied items + 1). Due to experimenter error in collection of recognition
memory data, 16 subjects (4 HC and 12 a-MCI) could not be analyzed.

2.3. MRI acquisition

All imaging was performed on a 3T Siemens Trio MRI scanner (Er-
langen, Germany) equipped with either a product eight-channel or
thirty-two-channel array coil. High-resolution structural images were
acquired with 3D-MPRAGE (Mugler and Brookeman, 1990) at 1 mm3

isotropic resolution (TI = 950 ms, TE = 3 ms, TR = 1620 ms). A
pCASL sequence (Wu et al., 2007; Dai et al., 2008) was used for the per-
fusion scans and was acquired using 2D gradient-echo echo planar im-
aging (GR-EPI). Imaging parameters included: TR/TE/FA = 4 s/19 ms/
90°, 6 mm slice thickness, 1 mm inter-slice gap, 16 slices acquired in as-
cending order, 3.5 × 3.5 × 7 mm3 resolution. Arterial spin labeling was
implemented with mean Gz of 0.6 mT/m and 1640 Hanning window
shaped RF pulses for a total labeling duration of 1.5s (RF duration
500 μs with 360 μs gap in between). The labeling plane was positioned
80 or 90 mm below the center of the imaging region and post-labeling
delay was set to 1.5 s. All participants were scanned during a ‘rest’ and
‘task’ sequence, each sequence lasts ~6 min. Since scanning protocol
changed during the course of the study (32 HC and 27 a-MCI scans
were acquired with the original protocol and 34 HC and 35 a-MCI
were acquiredwith the subsequent protocol), the number of pairs of in-
terleaved label and control images for each sequence is variable. On av-
erage, 48 pairs were acquired for signal averaging. Due to technical
issues or subject fatigue, ‘task’ scans for three subjects were cut short
(only 37, 37 and 29 pairs were acquired, but the data quality was suffi-
cient for inclusion in the study) and nine participants’ ‘task’ scans (4 HC
and 5 a-MCI) were not acquired.

2.4. Image processing and analysis

2.4.1. CBF quantification
ASL data processing and analyses were carried out with Statistical

Parametric Mapping software (SPM8, Wellcome Department of Cogni-
tive Neurology, UK) implemented in MATLAB 2013a (Math Works, Na-
tick, MA) and FSL (http://www.fmrib.ox.ac.uk/fsl/). In house SPM add-
on scripts (ASLtbx, available at http://www.cfn.upenn.edu/perfusion/
software.htm, (Wang et al., 2008)) were used to quantify CBF values
and reconstruct CBF maps for perfusion analysis. For each subject, ASL
time series data were realigned to correct for head motion, co-
registered with the anatomical image and smoothed in space using a
three-dimensional, 4 mm full width at half maximum Gaussian kernel.
The perfusion-weighted image series were then generated by pair-
wise subtraction of the label and control images, followed by conversion
to an absolute CBF image series based on a modified single compart-
ment continuous ASL perfusion model (Wang et al., 2003).

Graymatter, whitematter, and CSF probabilitymaps for each subject
were generated from the anatomical images. The high-resolution struc-
tural images were first subsampled to the resolution of the functional
images. Then, tissue segmentation algorithm provided in SPM8 was
used to generate the gray matter, white matter and CSF probability
maps for the subsampled structural images.

In order to remove motion-degraded ASL MRI data and increase
the reliability of CBF maps, the CBF image series were de-noised
using a Structural Correlation based Outlier REjection (SCORE) algo-
rithm. First, CBF pairs, whose mean gray matter CBF is not within
physiologically possible range of [0, 150] (ml/100 g tissue/min), are
discarded. Then, the pair that is most correlated (Pearson Correla-
tion) with the current mean CBF image, estimated by using the re-
maining CBF image series, is iteratively removed. The stopping
criteria for the iterative process are as follows: (1) only one CBF
image left; or (2) the weighted CBF variance within the three tissue
types (weighted by number of voxels of each tissue type) between
successive iteration increases. SCORE is based on the assumption
that the variance of the mean estimation should decrease when out-
lier pairs are removed, but increase when non-outlier pairs are re-
moved. As such, when removal of the most correlated pair to the
mean decreases variance, this suggests that this pair was dispropor-
tionately contributing to themean and likely associatedwith artifact.
Fig. 1 shows a detailed procedure of the SCORE algorithm.

The “cleaned” CBF maps were then normalized to 2 × 2 × 2 mm3

Montreal Neurological Institute (MNI) template in a two-step manner:
(1) a group-specific template were generated using the iterative unbi-
ased template building algorithm (Avants et al., 2008) from all the ana-
tomical images; (2) the template was then registered to the MNI
standard space using ANTS deformable registration (Avants et al.,
2008). With these two transformations, each cleaned CBF image was
normalized to MNI space for statistical analysis.

For each subject, one rest CBF image and one task CBF image (if
available) were generated. All the CBF images went through a final
visual inspection for quality control. CBF images with non-
physiological negative CBF clusters in gray matter, indicating
MRI artifacts or instability of spin labeling, were excluded from
the study.

In order to correct for global perfusion variations between different
subjects, relative CBF (rCBF) images were also generated. The rCBF
map of each subject was generated by dividing the CBF map by the av-
erage CBF within gray matter and white matter voxels. For clarity, we
will refer to the original CBF maps as absolute CBF (aCBF).

2.4.2. Normalized hippocampal volume
To provide context to any observed group effects with ASL, we also

measured hippocampal volume, a well-established biomarker for AD
and a-MCI, derived from the anatomical image of each subject using
the multi-atlas label fusion technique described in Wang et al. (2012).
To correct for whole brain volume variability between subjects, intra-
cranial volume, computed from brain mask (generated using FSL BET
tool), was used to normalize hippocampal volume by applying the fol-
lowing equation:

Normalized hippocampal volume ¼ Mean ICV of all the subjects�Hippocampal volume
Subject0s ICV

:

http://www.fmrib.ox.ac.uk/fsl/
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http://www.cfn.upenn.edu/perfusion/software.htm


Fig. 1. A flow chart for the Structural Correlation based Outlier REjection (SCORE)
algorithm.

Table 1
Demographic and neuropsychological data.

a-MCI (n=65) HC (n=62)

Age 74.0* (6.2) 70.5 (8.8)
Education 15.8 (3.0) 16.6 (2.7)
Female:male 24:41** 39:23
MMSE 27.4** (1.7) 29.2 (1.0)
Trails A (seconds) 40.9** (22.7) 30.6 (10.8)
Trails B (seconds) 130.9** (72.5) 71.1 (29.6)
Digits forwards maxa 8.6 (2.0) 9.1 (1.9)
Digits backwards maxa 6.5** (2.0) 7.7 (2.3)
10-item word list immediate recall 16.8** (4.4) 23.4 (3.8)
10-item word list delayed recall 3.7** (2.0) 8.0 (2.0)
Category fluency (animals) 16.1** (5.2) 22.7 (5.3)
Boston naming test total 26.6** (3.1) 28.5 (1.7)
Scene recognition memory (d’)b 1.56** (0.81) 2.30 (0.80)

Note: Standard deviations are in parentheses. * = p b 0.05, ** = p b 0.01, compared with
the HC, tested by contingency χ2 test (gender) or two-sample t-test (the other items).

a 5 a-MCI patients and 2 HC subject did not have Digits Forwards and Digits Backwards
data available.

b 12 a-MCI patients and 4 HC subjects did not have Scene Recognition Memory data
available.

391L. Xie et al. / NeuroImage: Clinical 11 (2016) 388–397
2.4.3. Statistical analysis
The normalized CBF maps were entered into the whole brain voxel-

wise general linear modeling analysis using the SPM8 PET model. For
the direct comparisons at rest or task between the two groups, Analysis
of Covariance (ANCOVA) was performed on the rCBF maps with age,
gender and education as covariates. Paired t-testswere conducted to ex-
amine the task-induced CBF changes (task vs. rest) in HC and a-MCI
groups using the aCBF maps. Note that aCBF was used here given that
differences in global CBF is mitigated by the within subject comparison.
Task activation differences between HC and a-MCI groups were exam-
ined using ANCOVA on the aCBF difference maps (task aCBF − rest
aCBF) with age, gender and education as covariates as well. The para-
metric maps were enhanced by threshold-free cluster enhancement
(Smith and Nichols, 2009) using the “randomize” package (Winkler
et al., 2014). 10,000 permutations were run to convert the maps to
voxel-wise p-value (both uncorrected and corrected for whole brain
multiple comparison). Areas of activation were identified at a signifi-
cance level of whole brain corrected p b 0.05 and cluster size larger
than 20. A more liberal threshold of uncorrected p b 0.001 or p b 0.01
with cluster size larger than 20 voxels was applied to explore regional
activation or CBF differences that did not survive the corrected
threshold.

In addition to voxel-wise analysis, quantitative Region of Interest
(ROI) analyses were performed to explore CBF changes at regions of in-
terest. The ROIswere extracted from theAnatomical Automatic Labeling
(AAL) template (Tzourio-Mazoyer et al., 2002),which includedposterior
cingulate cortex (PCC), precuneus, hippocampus and parahippocampal
gyrus from both sides of the brain. Parietal and MTL ROIs were chosen
because they have consistently been reported to be affected early in AD
at rest in PET and other ASL studies (Petrie et al., 2009; Filippini et al.,
2011). MTL regions were included in light of prior reports of either
hypo- or hyper-perfusion associated with MCI/ AD and the fact that per-
formance on the task (scene memory task) is likely dependent on these
regions. All of these regions often associated with memory and default
mode network. Each ROI`s mean CBF values of the left and right hemi-
spheres were averaged. In addition, quantitative ROI analysis was also
performed using a functionally defined ROI based on the between group
voxel-wise rCBF difference map at scene-encoding task (HC N a-MCI,
p b 0.01 after correcting for whole-brain multiple comparisons). Similar
to thewhole brain voxel-wise analyses, ANCOVAwas applied to examine
the between group effects (using rCBF)with age, gender and education as
covariates. A 2 (groups: HC, a-MCI) × 2 (conditions: rest, task) mixed-
effects ANOVA with these covariates, was conducted to look at the inter-
action between group and condition (using aCBF) and within group
effects.

ANCOVAwas also used to test the between group effects of normal-
ized hippocampal volumewith age, gender and education as covariates.
To investigate whether normalized hippocampal volume and ASL mea-
surements provide independent information concerning disease status,
a two-level hierarchical logistic regression analysis was performed. Age,
gender and education entered the model in the first step as fixed vari-
ables. Normalized hippocampal volume and mean relative CBF of all
the ROIs from AAL template (including rest and task rCBF) were in-
cluded in a step-wise manner (forward conditional step-wise) in the
second step of the model. Noted that the functionally defined ROI was
excluded from the model, which is because the ROI was defined post
hoc. It wouldn't be appropriate to include the functionally defined ROI
in the logistic regression analysis.

Comparisons of psychometric and demographic were determined
by contingency χ2 test (gender) or two-sample t-test (the other
items). All statistical analyses were two-sided. Corrections for multiple
comparisons were done using familywise error rate (FWER). The
above statistical analyses were performed using standard methods in
SPSS 20.0 (Chicago, IL).

3. Results

3.1. Psychometric and demographic data

Demographic and psychometric data for the a-MCI and HC groups
are shown in Table 1. Age of the a-MCI patients was significantly higher
than HC group (t125 = 2.6, p b 0.05), but there was no significant differ-
ence in education (t125 = 1.6, p N 0.1). There are significantly more
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males present in the a-MCI group (χ21 = 8.6, p b 0.005). The a-MCI
group demonstrated significantly poorer Mini Mental Status Exami-
nation (MMSE; t125 = 7.5, p b 0.001). As expected, the groups also
differed on a number of psychometric measures with a-MCI patients
performing particularly poorly on tests of episodic memory. How-
ever, other cognitive domains were also impaired consistent with
the fact that our a-MCI category included both single and multiple
domain participants.

Recognition memory on the test phase of the scene-encoding
task also significantly differed between the two groups with the
a-MCI group displaying poorer discrimination (t109 = 4.8,
p b 0.001). Nonetheless, patients with a-MCI were far from floor
on the task and this performance was consistent with their over-
all memory function. Thus, it is unlikely that any difference be-
tween the groups on the task-related ASL measures was due
primarily to differences in effort.
Fig. 2. Between group rCBF differencemaps (A) at rest baseline and (B) at scene-encoding task.
are shown in 3D glass brain (top) and selected slices (bottom).
3.2. Neuroimaging data

10 out of 127 rest baseline CBF maps and 11 out of 118 task CBF
maps were excluded from the analysis because of inadequate image
quality. The number of remaining CBF measurements was 117 (59 HC
and 58 a-MCI) for rest and 107 (55 HC and 52 a-MCI) for task. 103 sub-
jects (53 HC and 50 a-MCI) had adequate rest and task CBF maps
allowing for task activation analyses. The 3D glass brain and selected
slices in the figures were generated using MRIcroGL (http://www.
mccauslandcenter.sc.edu/mricrogl/) and ITK-SNAP (http://www.
itksnap.org/pmwiki/pmwiki.php, (Yushkevich et al., 2006)).

3.2.1. CBF differences during rest baseline
We directly compared regional CBF differences between groups in

the rest condition using a liberal threshold of p b 0.001 (uncorrected).
Compared to HC, a-MCI patients displayed reduced rCBF in the bilateral
The figure shows that scene-encoding task accentuates functional abnormality. The effects

http://www.mccauslandcenter.sc.edu/mricrogl/
http://www.mccauslandcenter.sc.edu/mricrogl/
http://www.itksnap.org/pmwiki/pmwiki.php
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anterior cingulate cortex, left precuneus, left angular gyrus, left hippo-
campus, left fusiform gyrus and left temporal pole whereas HC demon-
strated reduced rCBF in the right inferior parietal lobe (Fig. 2A). None
of these effects survived after correcting for whole brain multiple
comparisons.

3.2.2. CBF differences during scene-encoding task
Because CBF is a quantitative measure, we can directly compare re-

gional CBF differences between groups during task without reference
to baseline or other condition. Note that this type of comparison is not
available in functional MRI made using BOLD measurements. Using
the same threshold of p b 0.001 (uncorrected) (Fig. 2B), we found
group differences between the a-MCI patients and HC that were much
more extensive during task than rest, with a-MCI patients displaying re-
duced rCBF in multiple areas, including bilateral medial temporal lobes,
bilateral temporal pole, bilateral precuneus/PCC, left lingual gyrus, left
fusiform gyrus, left cuneus, and left superior occipital lobe. These effects
appeared greater in the left hemisphere than in the right hemisphere.
Indeed, most of the left hemisphere clusters remained significant after
correcting for multiple comparisons (Fig. 3).

3.2.3. Task versus rest CBF differences
We also measured task activation in reference to rest CBF maps. As

shown in Fig. 4A, robust activations were found in the bilateral visual
cortex, bilateral fusiform gyrus, bilateral parahippocampal gyrus, cere-
bellum, bilateral parietal lobe and right frontal lobe in the HC group.
The pattern for the a-MCI patientswas similar (Fig. 4B) except for stron-
ger frontal activation (including additional recruitment of bilateral
insula, left frontal lobe) and weaker partial lobe activation, as well as
MTL effects (including no activations in bilateral MTL and left parietal
lobe). A direct comparison of task versus rest activation difference be-
tween groups is displayed in Fig. 4C. Using a liberal uncorrected thresh-
old of p b 0.01, we found higher HC task activation in bilateralMTL, right
Fig. 3. Between group rCBF difference maps for scene-encoding task after correcting for multip
selected slices (bottom).
inferior temporal gyrus and higher activation at bilateral anterior cingu-
late gyrus, right superior temporal gyrus in a-MCI.

3.2.4. ROI analysis of CBF and hippocampal volume
As displayed in Fig. 5, measurements of rCBF in a priori ROI's, HC

displayed significantly greater rCBF in the hippocampus (F1,112 = 8.9,
p b 0.01) during rest than a-MCI. Similarly, using the functionally de-
fined ROI, defined as the FWER-corrected cluster (HC N a-MCI,
p b 0.01) that discriminated groups in the task condition, HC's had
higher rCBF than a-MCI patients in this region also at rest (F1,112 =
7.5, p b 0.01). On the other hand, during task, a-MCI patients displayed
significantly decreased perfusion in PCC (F1,102= 10.1, p b 0.01), hippo-
campus (F1,102 = 23.0, p b 0.001), parahippocampal gyrus (F1,102 =
19.7, p b 0.001) and in the functionally defined ROI (F1,102 = 33.9,
p b 0.001) than HC. ANOVA showed that task activation of HC was sig-
nificantly higher than a-MCI in parahippocampal gyrus (F1,98 = 4.8,
p b 0.05) and functionally defined ROI (F1,98 = 9.2, p b 0.005). In
follow-up paired t-tests, parahippocampal gyrus (t52 = 2.7, p b 0.01)
and functionally defined ROI (t52 = 2.5, p b 0.05) showed significantly
higher mean task aCBF than rest aCBF in HC group, while these differ-
ences did not reach significance in a-MCI group (Fig. 6). No within sub-
ject or interaction effects were significant for the other ROIs. For a fair
comparison of group effects on normalized hippocampal volume, only
subjects that were included in the task ROI analysis were included. A
significant group difference with smaller volume in the a-MCI group
(F1,102 = 14.6, p b 0.001) was observed, as expected.

3.2.5. Relationship of ROI-based CBF and hippocampal volume with group
status

As described above, both hippocampal CBF in the task condition and
hippocampal volume displayed similar effect sizes for discriminating
between HC and a-MCI patients. However, we were interested in the
degree to which they provided complementary information in predic-
tion of disease status. To test this, we developed a two-step, hierarchical
le comparisons using FWER correction. The effects are shown in 3D glass brain (top) and



Fig. 4. Scene-encoding task activation (task aCBF− rest aCBF)maps (A) for HC and (B) for a-MCI. (C) Task activation difference betweenHC and a-MCI groups. The effects are shown in 3D
glass brain (top) and selected slices (bottom).

Fig. 5. Comparisons of rest baseline and scene-encoding task ROI rCBF results. ANCOVAwas applied to exam the between group effects (using rCBF) for the five ROIs in rest/task condition,
with age, gender and education as covariates. Overall, the group differences were stronger when performing scene-encoding task.
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Fig. 6. Interaction effects of groups and conditions on CBF for parahippocampal gyrus and
functionally defined ROI. A 2 (groups: HC, a-MCI) × 2 (conditions: rest, task)mixed-effects
ANOVA, with age, gender and education as covariates, was applied to look at interaction
between group and condition (using aCBF).
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logistic regression with age, gender and education entered in the first
step and then CBF ROIs at rest and task (PCC, precuneus, hippocampus,
and parahippocampal gyrus) and normalized hippocampal volume in-
cluded in the second step for prediction of group status (HC versus a-
MCI). Task hippocampal rCBF (β = −6.4, p b 0.005) and normalized
hippocampal volume (β = −0.002, p b 0.05) were included in the
model yielding the highest predictive value (χ26 = 43.3, p b 0.0001).

4. Discussion

In the current study, both voxel-based and ROI analyses have dem-
onstrated that memory-encoding-task-enhanced ASL MRI increased
sensitivity for discriminating a-MCI, memory impaired patients with a
relatively high likelihood of developing clinical AD, from HC comparing
to rest ASL MRI. Additionally, the results showed that ASL MRI provides
explanatory power beyond standard structural MRI biomarker mea-
surement (i.e. hippocampal volume), and the combination of the two
has promising potential to be a biomarker for AD. Overall, the rest and
task CBF findings are consistent with findings that have previously
been reported in the literature.

4.1. Memory encoding task accentuates functional abnormality

Compared to the findings at rest, much stronger group differences
were observed during performance of the visual scene memory
encoding task in which HC had generally increased rCBF relative to
the a-MCI group. Among all the regions, HC had most significantly in-
creased CBF in the MTL relative to a-MCI, which accentuated a weaker
effect in this region at rest. ROI analyses further confirmed this finding
and demonstrated significant CBF increases in parahippocampal gyrus
and the functionally defined ROI in the HC group with, if anything,
mild decreases in CBF in the a-MCI group, thus resulting in greater dis-
crimination during the task condition. This result echoes the findings re-
ported by Xu and colleagues, which is the only prior study that has
examined the effect of task using ASL MRI in patients with a-MCI (Xu
et al., 2007). The Xu et al. study also employed a visual scene memory
encoding task, but despite the much smaller sample size (MCI: n =
10; HC: n = 12) and more limited brain coverage of that study, the re-
sults were quite similar to that found here. While cognitively normal
older adults demonstrated an increase in right parahippocampal gyrus
CBF relative to a control condition (22.7%), patients with a-MCI
displayed no evidence of increased perfusion duringmemory encoding.
In fact, there was a tendency for decreased CBF (−5.2%) with task. That
study did not report resting CBF in the MTL, but a voxel-wise analysis
did not find significant differences between the groups at rest in this re-
gion. As a general finding and similar to the present data, Xu and col-
leagues reported that task-related ASL measures appeared to enhance
discrimination between the groups relative to rest. Indeed, our task
CBFmeasures producedmuchmore robust group differences than com-
parisons made at rest. These findings support the idea that ASL MRI ac-
quired during task activation could potentially be implemented as a
type of physiologic ‘stress test’, which might best bring out functional
differences in early disease stages.

BothHC and a-MCI displayed regions of increased CBFduringperfor-
mance of the scene-encoding task relative to rest. Indeed, the present
findings of increased perfusion in visual association cortex extending
into the inferior temporal lobe andMTL, is quite consistent with an ear-
lier ASL study in young adults using this same task (Fernández-Seara
et al., 2007). Nonetheless, there were differences in task relative to
rest CBF in the two groups studied here.While a-MCI patients displayed
evidence of deficient capacity to modulate MTL CBF during memory
encoding, they did appear to demonstrate some areas of additional re-
cruitment relative to the HC counterparts. While these findings outside
the MTL are more tentative, as they did not survive correction for mul-
tiple comparisons, they are consistent with some prior work with BOLD
fMRI and PET, which have also reported extra-MTL neocortical areas of
increased recruitment in individuals at genetic risk for AD or those
with AD (Becker et al., 1996; Bookheimer et al., 2000; Stern et al.,
2000; Sperling et al., 2003; Bondi et al., 2005). It has been argued that
this additional recruitment may reflect compensatory activation in the
service of an inefficient or dysfunctional episodic memory network. In-
terestingly, anterior cingulate, one of the areas of increased CBF in the a-
MCI relative to HC, is a node of the so-called “salience network”, which
was recently reported to display increased functional connectivity in ε4
carriers in the context of decreased default mode network connectivity
(Machulda et al., 2011).

4.2. ASL and structural measurements track disease status

Our ROI analyses demonstrate that the ability of task ASL to discrim-
inate a-MCI from HC is comparable to hippocampal volume measured
by T1-weighted structural MRI, which is one of the most well
established neuroimaging biomarkers in these populations (Jack et al.,
2010). Furthermore, logistic regression analysis suggested that ASL
and structural MRI provide complementary information in predicting
disease status. This result echoes a recent study by Tosun et al. (2014),
which reported that combined structural and CBF MRI measures in
early MCI contributed to the best prediction of amyloid status in this
population. Further, this group previously demonstrated dissociations
between volumetric and CBF alterations dependent on disease stage
(Mattsson et al., 2014). Given the ease of acquiring rest, task and struc-
tural measurements in the same scanning session (total time here of
~17 min), the combination of these measurements has promising po-
tential utility as a biomarker for monitoring disease course in neurode-
generative conditions for clinical practice and trial use.

4.3. Rest CBF comparisons

While the effects were relative modest both in ROI and voxel-wise
comparisons, our findings at rest support the notion that CBFmeasured
by ASL MRI largely recapitulates the pattern of hypometabolism mea-
sured by FDG PET in similar populations (Xu et al., 2007; Alsop et al.,
2010; Chao et al., 2010; Musiek et al., 2012). Similar to the report of
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Dai et al., our a-MCI group also displayed hypoperfusion to the posterior
cingulate and precuneus in the voxel-wise analysis. Hypometabolism in
these structures is frequently reported as one of the earliest functional
alterations seen in AD populations (Petrie et al., 2009; Filippini et al.,
2011). Additionally, our finding of relative hypoperfusion in the a-MCI
relative to HC in anterior cingulate was also recently reported with
ASL MRI (Filippini et al., 2011). Furthermore, consistent with FDG PET
studies, which have generally reported hypo- (De Santi et al., 2001;
Mevel et al., 2007; Mosconi et al., 2008) or preserved metabolism
(Minoshima et al., 1997; Chételat et al., 2008) in MTL in early AD, our
a-MCI group also showed lower rest CBF in both voxel-wise and ROI
analyses. A similar result was reported in prior ASL studies by Bangen
et al. (2012) and Mattsson et al. (2014). However, in the ASL MRI liter-
ature a couple of studies have reported the opposite effect, i.e. hyperper-
fusion in the MTL (Alsop et al., 2008; Dai et al., 2009; Fleisher et al.,
2009). The reason for the contradictory results is unclear, but might be
due to the complex alternation of MTL perfusion at the course of early
disease progression. Hyper-perfusion in MTL may occur at the earliest
stage to compensate altered metabolism (Alsop et al., 2008; Dai et al.,
2009) followed by hypo-perfusion when the compensatory system
fails at the later stages. The findings in the Bangen et al. study (Bangen
et al., 2012)might give support to this hypothesis, where they observed
hyper-perfusion in cognitively normal apolipoprotein E ε4 carriers, who
are individuals at high risk of preclinical AD (Morris et al., 2010), and
hypo-perfusion in a-MCI. Alternatively, Mattsson et al. reported relative
hypoperfusion in early MCI patients with evidence of amyloid although
this result did not reach significance (Mattsson et al., 2014). It is possible
the relationship of perfusion changes to early pre-symptomatic andpro-
dromal phases of disease may vary across individuals and cohorts, de-
pending on age, education, and other factors that may alter cognitive
reserve. Additionally, a-MCI is generally a heterogeneous groupwith re-
gard to etiology and this may contribute to contradictory findings in the
literature.
5. Conclusions and future work

The current work provides support for the potential utility of ASL
MRI as a biomarker for AD, in addition to providing insight into the func-
tional changes associated with memory decline in this population. The
enhanced groupdiscrimination associatedwith taskASL relative to rest-
ing ASL supports the general notion that physiologic measures during a
cognitive challenge or “stress test” may enhance the ability to detect
subtle functional changes in early disease stages. Further, the finding
that both ASL and structural MRI provide complementary information
of disease status demonstrates the potential of multi-modal MRI-
based approaches. Increasingly available background-suppressed ASL
MRI pulse sequences (Alsop et al., 2014) should further increase the
sensitivity and reliability of this approach, which is readily combined
with structural MRI during the same noninvasive imaging session.

The current study has several limitations. a-MCI is a heterogeneous
population and use of molecular biomarkers of AD (e.g. CSF Aβ) or lon-
gitudinal follow-up to determinewho in the group likelywas in the pro-
dromal phase of AD would allow for determination of the specificity of
the current findings. Additional longitudinal follow-up with recruit-
ment of a larger cohort are planned for future analyses. Also, the inter-
action of cerebrovascular disease or its risk factors with CBF
alterations at rest and during task was not pursued, but is an important
area of future enquiry in these populations.
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