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Abstract

Significant progress has been made in the understanding of embryonic competence and 

endometrial receptivity since the inception of Assisted Reproductive Technologies (ART). The 

endometrium is a highly dynamic tissue that plays a crucial role in the establishment and 

maintenance of normal pregnancy. In response to steroid sex hormones, the endometrium 

undergoes marked changes during the menstrual cycle that are critical for acceptance of the 

nascent embryo. There is also a wide body of literature on systemic factors that impact ART 

outcomes. Patient prognosis is impacted by an array of factors that tip the scales in her favor or 

against success. Recognizing the local and systemic factors will allow clinicians to better 

understand and optimize the maternal environment at the time of implantation. This review will 

address the current literature on endometrial and systemic factors related to impaired implantation 

and highlight recent advances in this area of reproductive medicine.

Keywords

implantation; endometrium; thyroid; vitamin D; immune factors; IVF

Corresponding author: Bruce A. Lessey, MD, PhD, Department of Obstetrics and Gynecology, Division of Reproductive 
Endocrinology and Infertility, 890 W. Faris Rd, Ste 470, Greenville SC 29605. blessey@ghs.org. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Fertil Steril. Author manuscript; available in PMC 2017 April 01.

Published in final edited form as:
Fertil Steril. 2016 April ; 105(4): 873–884. doi:10.1016/j.fertnstert.2016.02.018.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IMPAIRED EXPRESSION OF ENDOMETRIAL FACTORS CORRELATES WITH 

REDUCED IMPLANTATION

Introduction

The human endometrium is a hormone responsive mucosa that lines the uterine cavity and 

undergoes cyclic proliferation and differentiation to support embryo implantation (1). 

During the proliferative phase, the endometrium grows in response to estrogen, arising from 

the remaining basalis layer that remains after menstruation. A dynamic transition from 

proliferation to a secretory morphology occurs after ovulation (2), orchestrated directly and 

indirectly by the sex steroids estrogen and progesterone (1) and is further mediated by a 

complex array of secondary autocrine and paracrine factors including cytokines and 

chemokines and their receptors and second messengers (3, 4).

Endometrial development after ovulation normally culminates with a defined period of 

endometrial receptivity. The secretory phase is divided into three recognized stages. The 

early secretory phase from post-ovulatory days 1 to 5, is characterized histologically by 

initiation of secretory products and characterized by the presence of sub-nuclear vacuoles 

that traverse the cells by post-ovulatory day 6 (5). The mid-secretory phase, representing the 

window of implantation and time of maximal endometrial receptivity, occurs from post-

ovulatory day 6 to 10. During this period stromal cells are undergoing pseudo-

decidualization reactions and epithelial cells develop specialized structures known as 

pinopodes (6) and cell adhesion molecules (7–9). The third phase in non-conception cycles 

represents the late luteal phase (post-ovulatory days 11–14), during which preparation for 

menstruation occurs. In the absence of the nidatory hCG signal from the embryo, 

endometrial break down occurs associated with apoptosis and an orchestrated inflammatory 

response that leads to an orderly and brief episode of menstrual shedding in anticipation of 

the next cycle (10). When pregnancy occurs, decidualization of the endometrial stroma 

transforms into a specialized epithelialized mesenchymal structure, essential for pregnancy 

(11, 12).

The mid-secretory phase coincides with the entry into the uterine cavity of the pre-

implantation blastocyst, with the differentiation of trophectoderm by post-ovulatory day 5. A 

defined period of endometrial receptivity during the mid-secretory phase also corresponds 

well to prime responsiveness of the corpus luteum to hCG (13, 14). In fact, evidence from 

the 1999 Wilcox study shows that late implanting embryos are at higher risk for miscarriage 

than those that implant during the window of implantation (WOI), between post ovulatory 

days 6 to 10 (15). One interpretation for these interesting findings is that a sustained rescue 

of the corpus luteum occurs best at the time of normal implantation. This hypothesis is 

supported by early studies that examined CL rescue in response to early or late 

administration of hCG (13). The CL has a more robust response to hCG administered on 

post-ovulatory days 8–10 compared to post-ovulatory days 11–14, and progesterone may fall 

more quickly in early losses or implantation failure than after pregnancy is established (16). 

Our intention in this review will be to focus, however, not on the CL, but rather on uterine 

factors that contribute to a delay in implantation that then contributes to both pregnancy loss 

and implantation failure.
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The efficiency of human reproduction is relatively low compared to other mammalian 

species. As summarized by Macklon (17) (Figure 1), there are many more implantation 

failures and early clinical and pre-clinical losses than successful pregnancies. While this is 

obvious to the clinician who treats infertility, our understanding of the basis for defects in 

endometrial receptivity has remained fragmented. A failed pregnancy can be the result of 

many diverse factors, including chromosomal defects in the nascent embryo, mechanical 

causes in the reproductive tract or inflammatory changes associated with disease. Assigning 

cause and effect in terms of the embryo or endometrial defects has been problematic. In this 

era of preimplantation genetic screening (PGS), answers may be forthcoming. In a report on 

a large series of euploid blastocysts, the proportion of euploid embryos failing to implant 

was approximately 40% (18). For those who study endometrial receptivity defects, those 

data may be a smoking gun regarding the importance of the endometrium.

Do Endometrial Receptivity Defects Exist?

Historically, Georgianna Seegar Jones might have been the first investigator to show that 

defects in the endometrial histology could be associated with infertility (19). Using the then 

newly identified morphological changes in the secretory phase endometrium (5), she noted 

for the first time that women with infertility could have a lag in predicted endometrial 

histological development, a term she coined as “luteal phase deficiency” or LPD. It is worth 

noting that the existence and impact of LPD has come under question (20, 21). Nevertheless, 

the concept of a shifting WOI has been shown to have continued importance. In a landmark 

study by Wilcox et al., in 1999 (15) it was noted that women who implant beyond the 

normal window had an increasing chance for pregnancy loss. Biochemical defects have also 

been described that support a concept of a delayed WOI and retarded histology, including 

the use of placenta protein-14 (PP14; aka Glycodelin), integrins, MUC-1, pinopods, 

leukemia inhibitory factor and many others (22–26). In addition, cycles without histological 

lag have been described that display defects in key biomarkers of endometrial receptivity as 

well (27, 28).

Regulation of Endometrial Receptivity

The endometrium undergoes well-defined and regulated gene expression in preparation for 

implantation (1). The timing of endometrial receptivity coincides with the down-regulation 

of epithelial estrogen receptor alpha (ESR1) in normal mid-secretory endometrium (29), as 

seen in other mammals studied at the time of implantation (30). Progesterone and its 

receptor (PR) is essential for successful embryo implantation, but there is a shift in PR out of 

the epithelium to the stromal compartment that also occurs during the WOI (29). Persistence 

of ESR1 and PR in the glandular epithelium is associated with infertility and suspected 

implantation defects (31, 32). Aberrant over-expression of ESR1 and PR at the time of 

implantation is a sign of progesterone resistance, as progesterone normally down-regulates 

both endometrial ESR1 and its own receptor (PR) (33). P-resistance is associated with luteal 

phase deficiency, pregnancy loss or infertility due to endometriosis.

Progesterone also limits estrogen action through the induction of 17β-hydroxysteroid 

dehydrogenase-type 2 (HSD17βII) in the endometrium which converts estradiol to the less 

active estrone (34). Through these complex mechanisms of induction and inhibition of gene 
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expression, there is a shift during the WOI from direct actions of progesterone (endocrine 

factors) to indirect actions (via paracrine and autocrine factors) (3, 35, 36). Failure to make 

this transition is likely a cause of implantation failure.

Disorders associated with implantation failure

Individual uterine factors associated with some implantation failures in the setting of 

infertility, recurrent loss and IVF have previously been reported. These include mechanical, 

inflammatory, and systemic factors (26, 37, 38). Mechanical factors encompass both 

congenital uterine anomalies and acquired intracavitary conditions. Congenital uterine 

anomalies including uterine septae have been linked to early miscarriages. One study 

comparing IVF outcomes between women with untreated septate uteri versus women who 

had undergone hysteroscopic metroplasty found that untreated women had worse IVF 

outcomes (39). Acquired intracavitary conditions such as submucosal fibroids, endometrial 

polyps, and intrauterine adhesions depending on size and location have also been linked to 

poor obstetric outcomes and may also contribute to recurrent implantation failure (RIF) (40). 

Available evidence suggests that surgical correction of these intrauterine pathologies may 

improve pregnancy outcomes (41, 42).

Inflammatory factors associated with implantation failure include endometriosis, 

adenomyosis, hydrosalpinges, and endometritis (1). A meta-analysis in 2002 of IVF success 

rates in patients with endometriosis found not only pregnancy rates were decreased 

compared to control patients, but fertilization rates, implantation rates, and number of 

oocytes retrieved were significantly reduced (43). Hydrosalpinx, or a blocked fallopian tube 

is also associated with implantation failure (44), with improvement noted after 

salpingectomy (45–48). Endometritis, an inflammation of the endometrium, is also 

associated with infertility and obstetrical complications (49). Endometritis is associated with 

aberrant inflammatory cytokine expression and has been associated with endometriosis (50). 

Polycystic ovary syndrome, a common cause of infertility and the most common 

endocrinopathy affecting reproductive-aged women, is associated with reduced endometrial 

receptivity (51, 52). Progesterone resistance, which is associated with inflammatory changes 

in the endometrium (36), has been observed in both endometriosis and PCOS by DNA 

microarray analysis (53, 54) and both conditions exhibit increased estrogen receptor 

dominance during the secretory phase (32, 55). Collectively, all of these conditions share an 

inflammatory component, increasingly considered to be a root cause of impaired 

implantation (38, 56).

Endometrial Factors as Biomarkers of Receptivity

Pinopodes are protrusions of the endometrial epithelium first identified in mice in 1958 (57) 

and later identified in human endometrium by electron microscopy (EM) (58). Since that 

time, pinopodes have been identified as markers of endometrial receptivity (59), due to their 

putative expression coinciding with the WOI (6). Blastocyst attachment has been shown to 

occur at the site of endometrial pinopode expression in vitro (60), and pinopodes are the site 

of expression of uterine receptivity including ανβ3 integrin and osteopontin (9, 24). 

Although the detection of pinopodes have been employed for assessment of uterine 

receptivity, clinical usefulness is limited by technical factors due to the need for EM, the 
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brief time of expression, and the subjective nature of scoring them (61). In addition, three 

prospective studies have failed to confirm a precise association between the temporal timing 

of pinopode expression and the WOI (23, 62, 63), raising substantive doubts related to this 

endometrial feature as a biomarker of receptivity in humans.

Numerous molecular mediators of early feto-maternal interface have been identified in the 

literature. These include adhesion molecules, cytokines, growth factors, lipids, and other 

factors (37, 38). One of the better-described endometrial biomarkers associated with the 

WOI is the ανβ3 integrin (7, 24, 64). Integrins are a class of cell-adhesion molecules 

(CAMs) that interact with extracellular matrix (ECM) ligands, other CAMs, and matrix 

metalloproteinases (MMPs). Studies have documented how integrin expression is aberrant in 

many of the same inflammatory conditions associated with implantation failure, including 

endometriosis, hydrosalpinges, PCOS (27, 46, 65, 66) and endometritis (unpublished 

results). Reduced ανβ3 integrin expression has been associated with unexplained IVF failure 

(67, 68), whereas positive integrin expression has been found to predict future IVF success 

(69). Additional CAMs have been investigated to play a role in endometrial receptivity 

including CD 44 (70), trophinin (71), and cadherin-11 (72).

Glycodelin, formerly referred to as placental protein 14 (PP14), is a major secretory protein 

from the glandular endometrium expressed during and after the window of implantation (1). 

It is an immune modulator with a putative role in prevention of maternal immune rejection 

of the fetal allograft (73). Glycodelin has been investigated as a marker of endometrial 

receptivity with conflicting results (74–76).

Mucin 1 (MUC-1) is another glycoprotein localized to the luminal surface epithelium of the 

receptive endometrium. In primates and mice, MUC-1 appears to function as a barrier to 

implantation during the non-receptive phase and must be removed at the time of 

implantation (77, 78). In humans, MUC-1 localizes on the luminal surface, but is excluded 

from cells with pinopodes suggesting the anti-adhesive molecule may allow the blastocyst to 

preferentially attach to these specialized structures on the apical surface (79).

Several cytokines and growth factors have been identified whose expression in the 

endometrium is temporal with implantation and have been suggested as biomarkers for 

uterine receptivity. These include leukemia inhibitory factor (LIF), heparin binding-

epidermal growth factor-like factor (HB-EGF), insulin-like growth factor II (IGF-II) (1). LIF 

appears to play a role in events between the endometrium and the blastocyst and is expressed 

in the endometrium at the time of implantation. In mouse models, female homozygote mice 

with a LIF null mutation demonstrate complete lack of implantation (80, 81). Normal 

appearing blastocysts were found within the uteri of these mice lacking LIF, but successfully 

implanted when placed into LIF positive controls. Interestingly, administration of exogenous 

LIF resulted in a partial reversal of the defect, demonstrating the implantation abnormalities 

resulted from a defect of the endometrial protein and not the blastocyst. Examination of LIF 

in human samples suggests LIF maintains importance in the human endometrium as well 

(82, 83). HB-EGF and IGF-II are expressed during the window of implantation and appear 

to play an important role in successful implantation (84, 85). Other potential markers include 
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calcitonin (86, 87), HOXA-10 transcription factor (88, 89) and L-selectin and L-selectin 

ligand (8).

Aromatase (p450arom) is over-expressed in inflammatory conditions involving the 

endometrium, including endometriosis (90). Aromatase over-expression shows promise as 

an important predictor of implantation failure in ART cycles (68, 91). An over-expression of 

this enzyme coupled with a decreased expression of the estrogen metabolizing enzyme (17-

hydroxysteroid dehydrogenase II) (90, 92, 93), increases bioavailable estrogen in the 

endometrium, potentially accounting for aberrantly high ESR1 and proliferation (32, 34, 94, 

95). Estrogen is a potent inhibitor of endometrial ανβ3 integrin (96), a prime cell adhesion 

molecule involved in embryo attachment and invasion (7, 97–100). Alterations in eutopic 

endometrial metabolism of estrogen in endometriosis is regulated by complex changes in 

autocrine and paracrine signaling associated with inflammation (36, 94, 101–104), driven in 

part by prostaglandin E2 (PGE2) (105, 106), produced in response to estrogen-regulated 

cycylooyxgenase 2 (COX-2) (107) and hypoxia induced factor-1 (HIF1α) (108). HIF1α is 

stabilized by activation of STAT3 that we recently showed are both over-expressed in 

women with endometriosis and infertility (109). COX-2 and STAT3 expression have been 

linked to inflammatory cytokines such as IL-17 and IL-6 (109–111), which are also elevated 

in women with endometriosis (109, 112). Inhibitors of aromatase can reverse the negative 

effects of endometriosis in general (113) and improves outcomes in IVF for patients with 

suspected defects in endometrial receptivity (68).

While STAT5 is central to progesterone-mediated signaling (114), STAT3 appears central to 

progesterone resistance (115). One of the proteins induced by activated STAT3 is B-cell 

lymphoma protein 6 (BCL6), while is also inhibited by STAT5 (116). BCL6 appears to be a 

reliable single biomarker for the detection of endometriosis (117). BCL6 targets GLI1(118), 

a signaling factor involved in the Indian Hedgehog pathway, making it a prime candidate 

driving the progesterone resistance observed in endometriosis. This relationship between 

inflammatory changes, estrogen dominance and progesterone resistance represents a 

unifying theory of the link between inflammation, estrogen dominance and progesterone 

resistance (Figure 2).

Progesterone resistance is a hallmark of implantation failure and associated with measurable 

changes in endometrial gene expression (115, 119). With the advent of transcriptome 

microarrays, the signatures of gene expression throughout the menstrual cycle have been 

well-documented in normal women (120, 121) and in those with gynecological disorders 

(53, 54, 122, 123). New panels of selected biomarkers are now becoming available with the 

potential to screen for a receptive and non-receptive endometrium. A commercialized test 

based on transcriptomics (Endometrial Receptivity Assay or ERA) has been offered from the 

IVI group in Valencia, Spain (124–127). Interestingly, while the ERA test is accurate at 

assigning histological stage (128), this array of biomarkers in aggregate does not differ 

significantly in women with endometriosis (129), a known cause of endometrial receptivity 

defects and progesterone resistance (54).

Individual tests for endometrial receptivity, including the Etegrity test based on integrin 

expression (EtegrityTest.Com), are also available. As discussed above, the presence or 
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absence of the ανβ3 integrin indicates potential defects in endometrial receptivity. This 

specific integrin is highly specific to the initiation of the window of implantation on post-

ovulatory day 5 to 6, and is always absent in histologically delayed endometrium prior to the 

opening of the WOI (19). This test could be complemented by additional uterine factors that 

do not depend as heavily on histology, including LIF (25).

Another commercialized endometrial function test (EFT) from Yale University, is based on 

alterations in cyclin E, and p27 expression (130, 131). These biomarkers are associated with 

cell proliferation, as seen in eutopic endometrium of women with endometriosis (95) and 

therefore, reacting to estrogen dominance. In aggregate, the evidence showing benefit or 

utility for any of these tests remains relatively weak, and validation of these and future tests 

as predictors of IVF outcomes or implantation failure need to be rigorously studied in 

prospective, randomized trials to fully evaluate their performance and reliability.

Future Directions

Implantation concerns arise frequently in couples with infertility, especially in the setting of 

ART cycles. Implantation rates have been relatively stagnant over the past 10 years 

(www.sart.org), suggesting that progress in solving implantation problems may have slowed. 

IVF failure in more than half of all cases in women across all age groups appears to be 

concentrated in specific subgroups of patients, including those with unexplained causes. 

Future directions are now focused on identifying new biomarkers that alone or together 

reliably predict implantation success or failure. In an era where the underlying causes of 

infertility are increasingly not being identified or surgically addressed, availability of such 

biomarkers could be a key to identifying and better treating these women. Until such a time 

when reliable endometrial receptivity tests are available and adequately tested, that subset of 

women with implantation failure will continue to go largely unrecognized. In the future, our 

goal should be to make repetitive implantation failure an exceedingly rare occurrence.

THE EFFECT OF SYSTEMIC FACTORS ON IMPLANTATION AFTER IN VITRO 

FERTILIZATION

Introduction

Implantation rates after IVF have increased over the past 30 years as a result of advances in 

the basic understanding of reproductive science and the implementation of new technologies 

and practices. However, the primary focus of research aimed at improving IVF outcomes has 

focused on two areas: assessment of embryonic competence and optimization of endometrial 

receptivity. Research in embryonic competence has led to advanced diagnostics that have 

enhanced embryo selection and substantially improved implantation rates (132). 

Investigative efforts focused on the endometrium have uncovered the concept of embryo-

endometrial synchrony, and led to the characterization of the transcriptomic signature of the 

receptive endometrium (133).

However, despite our progress, a substantial portion of patients fail to become pregnant 

following IVF. Many of these patients fail even after the transfer of a euploid embryo into a 

seemingly receptive endometrium. A portion of these failures undoubtedly reflects the 
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limitation of current diagnostic tools to select the most competent embryo. However, many 

of these failures are due to systemic factors that affect the maternal environment and 

negatively impact an embryo’s ability to implant. While research into these systemic factors 

has received less focus than the preimplantation embryo and the perinidatory endometrium, 

many have been clearly demonstrated to affect IVF success. While a factor in isolation may 

not preclude a successful pregnancy, the combination of deleterious effects decreases the 

chance that an individual embryo transfer results in a pregnancy. Thus, it is essential these 

factors are optimized to give each patient the best chance at success.

Thyroid Dysfunction

Thyroid hormones influence the feto-maternal interface through interactions with thyroid 

hormone receptors and thyroid stimulating hormone (TSH) receptors present in the 

endometrium and trophoblast during implantation. This interaction is mediated by a variety 

of downstream effects – including altered transcription and translation of essential cellular 

proteins during implantation (134). Thyroid dysfunction has been mostly studied in the 

context of ART, in terms of pregnancy success as well as miscarriage. However, the 

threshold TSH values that confer implantation success and those that predispose patients to 

adverse outcomes may be different. Thus, when attempting to isolate the effect of thyroid 

function on implantation the threshold values used in the study must be noted.

The upper limit of the reference range for TSH levels was established by the National Health 

and Nutritional Examination Survey to be 4.5 – 5 mIU/L (135). Thus, the classical definition 

of subclinical hypothyroidism (SCH) is a TSH level greater than 4.5 mIU/L, with normal 

free thyroxine (T4) levels. Using this definition, Kim et al. (136) performed a randomized 

controlled trial of 64 patients to assess the effect of levothyroxine on IVF patients with SCH. 

In this study, patients were randomized to either levothyroxine 50mcg or no treatment. The 

implantation rate was significantly higher in the treatment arm than the control group 

(26.9% vs. 14.9%, p=0.044). A similar study used a TSH cutoff of 4.2 mIU/L to diagnose 

SCH, and randomized 70 patients to levothyroxine (50–100mcg daily) or placebo. In this 

study, the clinical pregnancy rate was significantly higher in the treatment group (35% vs. 

10%, p = 0.02) (137). Thus, there is high quality data demonstrating that untreated 

subclinical hypothyroidism negatively impacts the implantation rate following ART.

In practice, most ART programs use 2.5 mIU/L as a threshold for initiating levothyroxine 

treatment. Green et al, by evaluating TSH levels under 2.5 with 1599 euploid transfers, 

determined that no level under that cut-off is more favorable (138).This strategy follows 

recommendations of the Endocrine Society to maintain TSH levels below 2.5 mIU/L during 

the first trimester of pregnancy. However, no studies have evaluated whether treatment of 

TSH levels between 2.5 mIU/L and the upper limit of normal impacts implantation rates or 

miscarriage following IVF, although in one study levels between 2.5 and 5 mIU/L in the first 

11 weeks of pregnancy were associated with a significant increase in pregnancy loss (6.1 vs 

3.6%, p = 0.006) (139). However, this investigation did not control for the chromosomal 

status of the embryo. As a result, it is possible that lower hCG levels associated with 

aneuploid gestations may have contributed to the failure of TSH to fall below 2.5 mIU/L in 

this group. Thus, the ideal TSH level within the normal range for optimizing implantation 
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success is unclear, but levels over 2.5 mIU/L during early pregnancy appear to increase 

miscarriage.

Additionally, multiple studies have assessed the effect of thyroid autoimmunity (either anti-

thyroperoxidase or anti-thyroglobulin antibodies) on IVF success. A meta-analysis of seven 

studies including 330 thyroid antibody positive patients and 1430 controls, demonstrated no 

difference in clinical pregnancy rate following IVF (OR = 0.67, 95% CI 0.36–1.4, p=0.67) 

(134). One prospective, randomized controlled trial evaluated empiric treatment with 

levothyroxine in euthyroid patients with evidence of thyroid autoimmunity. In that study, 

there was no difference in clinical pregnancy rates between the treated and untreated patients 

(56% vs. 49%, p=0.71), however, transfer order was not reported, limiting the conclusion 

(140). Available evidence does not support the notion that thyroid autoimmunity 

significantly impacts implantation, although a systematic review and a randomized study of 

levothyroxine therapy suggested that thyroid autoimmunity increased miscarriage and 

premature delivery (134) (141), which could be prevented by replacement therapy (141). If a 

decision is made to not treat women with TSH levels between 2.5 and 5.0 mIU/L, it may be 

prudent to measure thyroid peroxidase antibodies in those women and to treat if positive.

Vitamin D deficiency

The current Vitamin D (25OHD) deficiency epidemic in the developed world has led to 

increased interest in the role of 25OHD in ART. This interest is based on evidence that 

calcitriol, the active form of 25OHD, is secreted by the endometrium and regulates 

expression of target genes that are essential for implantation. In an attempt to control for the 

effect of 25OHD on the oocyte and resultant embryo, multiple studies have examined the 

association between 25OHD levels in donor oocyte recipients, with conflicting results. 

Rudick et. al. (142) performed a retrospective cohort study of 99 recipients and found that 

clinical pregnancy rates were lower among 25OHD deficient patients than 25OHD replete 

patients (37% vs. 78%, p = 0.004). A subsequent study by Fabris et. al. (143) retrospectively 

examined 267 oocyte donation cycles and found no difference in implantation rate among 

25OHD replete, deficient, or insufficient patients (61% vs. 63.4% vs. 65.2%, p=0.894).

The largest analysis was performed by Franasiak, et al. (144) and controlled for the 

chromosomal status of embryos by analyzing euploid transfers. In this study, the average 

serum 25OHD level was no different between women with and without ongoing 

pregnancies. A multivariate logistic regression demonstrated no association between 25OHD 

levels and pregnancy rates. Thus, while more attention to the 25OHD deficiency epidemic in 

reproductive age women is warranted given its impact on a general health, it does not appear 

to be a significant determinant of success following IVF.

Prolactin

Circulating levels of prolactin (PRL) are elevated during ovarian stimulation cycles in some 

women. Limited investigations regarding PRL levels and IVF outcomes have reported 

associations of higher PRL levels with an improved ovarian response and pregnancy (145) 

(146), while others have failed to demonstrate this association (147) (148) (149) (150). Doldi 

et al (151) treated a group of women with dopamine agonists and observed a higher ovarian 
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response and improved oocyte morphology and fertilization in an untreated control group, 

suggesting a beneficial effect of PRL on the ovary. Jinno et al (152) applied a 

“bromocriptine rebound” to elevate PRL levels and observed an increase in follicles, 

fertilized oocytes, embryo quality, clinical pregnancy and live birth. These investigations are 

important, due to evidence of decidual production of prolactin and the suggestion that it may 

mediate events associated with implantation. However, none of the above noted studies have 

sought to isolate the effect of prolactin levels on implantation rates. Future studies may 

benefit from measuring prolactin levels in the endometrial secretome, as the local effects of 

prolactin production may be more relevant in determining implantation success than 

circulating levels of the hormone.

Inflammatory Bowel Disease

Inflammatory bowel disease (IBD) has been linked to both endometriosis and subfertility. It 

is unclear whether this effect manifests itself as diminished ovarian reserve or an increased 

risk for implantation failure. To better characterize this association, Oza, et al. (153) 

published a retrospective cohort study comparing IVF outcomes in 120 patients with IBD to 

470 age-matched controls. While implantation rate was not calculated, the mean number of 

embryos transferred (two) was the same for each group. There was no difference in clinical 

pregnancy rate in the first cycle for each patient (40.9% in non-IBD patients vs. 46.7% in 

IBD patients, p=0.18). Furthermore, the cumulative live birth rate after up to 6 IVF cycles 

was equivalent between the groups (63% vs. 53%, p=0.13). Thus, while further research is 

needed, there is no current data to suggest that IBD negatively impacts implantation.

Obesity

The incidence of obesity in the United States has increased substantially since the inception 

of ART 35 years ago. Today, over 35% of reproductive age women are obese (body mass 

index [BMI] ≥ 30 kg/m2). Obese women are more likely to be infertile and have poor 

obstetric outcomes. Thus, obesity is a common and modifiable risk factor for poor 

pregnancy rates and maternal and neonatal morbidity following IVF.

The association between obesity and IVF outcomes has been widely studied. The most 

effective study design to isolate obesity’s effect on implantation rates following IVF 

examines donor oocyte recipients. Two large retrospective reviews have utilized this design. 

The largest examined the 2008–2010 SART Registry, and included 22,317 donor oocyte 

cycles (154). Recipients with BMIs between 30–34.9 kg/m2 had a lower implantation rate 

than normal range (BMI 18.5–24.9 kg/m2) patients (42.6% vs. 49.3%, p<0.001). However, 

this study did not provide information on the BMI of the oocyte donors, limiting the ability 

to isolate obesity’s impact on implantation. In contrast, Bellver et. al. (155) examined the 

effect of increasing recipient BMI on IVF outcomes utilizing only oocyte donors with BMI 

<25 kg/m2. In this study, the implantation rate for recipients with BMI ≥30 kg/m2 was 

significantly lower than those <30 kg/m2 (30.9 % vs. 40 % , p< 0.001). Thus, while 

prospective studies are needed to better characterize this phenomenon, the available 

evidence suggests that obesity negatively impacts the ability of good prognosis embryos to 

implant.
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Cigarette Smoking

Cigarette smoking represents another modifiable factor that substantially impacts 

reproductive success. Although the incidence of cigarette smoking has dropped substantially, 

one in five adults between the age of 25 and 44 still smoke cigarettes (156). The negative 

impact of cigarette smoking on ovarian function among smokers is well established. A 

number of studies have also addressed the effect of cigarette smoking on implantation 

following IVF.

Most studies that have examined the effect of cigarette use on ART outcomes are 

confounded by the positive correlation between cigarette use and maternal age. However, in 

their meta-analysis, Waylen et al. (157) identified 9 studies that controlled for maternal age. 

This pooled analysis of 1480 patients demonstrated that the odds of a clinical pregnancy 

following IVF were significantly lower for smokers than nonsmokers (OR = 0.51, 95% CI 

0.32–0.79, p<0.0001). In order to isolate cigarette smoking’s effect on endometrial 

receptivity, Soares et. al. (158) utilized the donor oocyte recipient model. In this 

retrospective study of 785 recipients, the authors compared heavy smoking recipients (>10 

cigarettes/day) to light smokers and nonsmokers after controlling for the tobacco use of the 

oocyte donors. The clinical pregnancy rate was significantly lower for heavy smoking 

recipients (34.1% vs. 52.2%, p=0.02).

Interestingly, the negative impact of cigarette smoke extends to nonsmokers who are 

exposed to secondhand smoke. Benedict at al. (159) found cotinine, a nicotine metabolite, to 

be present in the follicular fluid of 1909 nonsmoking women during IVF treatment. These 

patients had a 52% increased risk of implantation failure when compared to cotinine 

negative nonsmokers. Thus, chronic exposure to secondhand smoke also results in decreased 

implantation efficiency and patients should be counseled to avoid any exposure.

Autoimmunity

The potential role of autoimmune disorders in limiting ART outcomes has been extensively 

investigated. The established relationship with second trimester loss and antiphospholipid 

antibodies (APLAs) led some investigators to evaluate a potential role for these antibodies in 

failed implantation and early clinical losses. A meta-analysis of multiple studies 

demonstrated that the presence of APLAs does not impact pregnancy rates (160). Thus, 

clinical screening of APLAs in patients whose clinical diagnosis is infertility is not 

indicated.

Natural killer (NK) cells are prominent in the perinidatory and post-implantation 

endometrium. It is almost intuitive that abnormalities in NK cell activity might impact 

clinical outcomes. Unfortunately, the literature has been confused by efforts to measure NK 

cells in the peripheral circulation as a way of prognosticating NK cell density or function in 

the endometrium. There is no physiologic reason to assume that any such relationship exists 

(161). In fact, NK cell numbers in the peripheral circulation and the endometrium are 

unrelated (162). Prospective clinical studies have failed to demonstrate meaningful 

relationships with ART outcome and clinical screening of NK cells (either peripheral or 

endometrial) is not indicated (163).
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While simple studies of NK cell concentration have not been clinically useful, studies 

evaluating variation in their function are more intriguing. NK cells are involved in early 

remodeling of the maternal stromal and vascular compartments and play important roles in 

villous formation (164). The NK cells are activated by HLA-C which is expressed on the 

surface of the invading trophoblast. Combinations of killer immunoglobin receptor (KIR’s) 

types and the nature of HLA-C expression have been associated with increased risk of 

clinical pregnancy loss and placental insufficiency in the third trimester (165). Recent data 

have extended these findings to suggest that adverse combinations of the maternal KIR 

genotype and embryonic HLA-C genotypes prognosticate reduced outcomes in oocyte 

donation cycles (166). Clinical screening is not indicated at this time, but this remains an 

area of active investigation.

No marker of autoimmune dysfunction evaluated to date has demonstrated clinical value. 

However, some investigators remain concerned that impaired immune function adversely 

impacts clinical outcomes. Trials of empiric treatments using anticoagulants, intralipid, or 

IVIg have produced mixed but generally negative results (167) (168) (169). Empiric 

treatment is not indicated at this time.

Conclusions

Significant progress has been made in understanding many significant embryonic and 

endometrial factors that mediate ART success. While much work remains in optimizing 

embryo selection, we must not lose sight of the systemic factors that modulate the 

perinidatory environment. Even the transfer of a euploid embryo into a synchronous 

endometrium will fail in an inhospitable maternal environment. Thus, as clinicians, we must 

reduce the negative impact of systemic factors that decrease the odds of a given embryo 

implanting and progressing to a healthy delivery. As investigators, more research is needed 

to identify epidemiologic factors that affect IVF success and to better understand the 

molecular mechanisms that govern these relationships.
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Figure 1. 
The hidden impact of implantation failure.
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Figure 2. 
Schematic of inflammatory influences on the balance of estrogen and progesterone action in 

the endometrium of women with infertility and endometriosis.
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