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Abstract

Objective—To present audiometric data in three dimensions by considering age as an addition 

dimension.

Methods—Audioprofile surfaces (APSs) were fitted to a set of audiograms by plotting each 

measurement of an audiogram as an independent point in three dimensions with the x, y, and z 

axes representing frequency, hearing loss in dB, and age, respectively.

Results—Using the Java-based APS viewer as a stand-alone application, APSs were pre-

computed for 34 loci. By selecting APSs for the appropriate genetic locus, a clinician can compare 

this APS-generated average surface to a specific patient’s audiogram.

Conclusion—APSs provide an easily interpreted visual representation of a person’s hearing 

acuity relative to others with the same genetic cause of hearing loss. APSs will support the 

generation and testing of sophisticated hypotheses to further refine our understanding of the 

biology of hearing.

Introduction

For nearly a century the audiogram has remained essentially unchanged, reflecting a history 

that dates back to 1896 when the first audiometer was developed by Carl E. Seashore at the 

University of Iowa to measure the ‘keenness of hearing’ [1]. The device was limited to 

measuring the intensity of a single sound (clicks) generated by turning a knob that would 
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repeatedly open and close a mechanical contact. Later versions of the Seashore audiometer 

were used by the US Army and Navy to identify military recruits best able to listen for 

submarines or serve as radio-telegraphy operators[2]. Although the Seashore audiometer 

lacked a standard scale, it was one of the first devices built to register sound intensity 

logarithmically [3].

Thirty years later Harvey Fletcher and Robert L. Wegel developed the first commercially 

available audiometer, called the Western Electric A-1, an advance made possible by the 

invention of the vacuum tube[4]. It was the size of a small refrigerator and sold for 

$1,500[3]. At this time the audiogram as it is known today was formalized – a graphic 

representation of hearing thresholds at standardized frequencies depicted by intensity in 

decibels on the Y axis against frequency in hertz on the X axis. Acuity was plotted relative 

to a standardized curve of normal hearing in dB(HL) to accommodate frequency-specific 

differences in the threshold of hearing. Also included was the ‘threshold of pain’ at the 

measured frequencies.

In this study, we sought to achieve two objectives: first, in recognizing the heterogeneity of 

inherited deafness, we wanted to group similar genetic causes of hearing loss together to 

establish whether this type of grouping would be clinically informative; and second, we 

wanted to add a third dimension, age, to the typical audiogram to provide an easily 

interpreted visual representation of a person’s hearing thresholds relative to other persons 

with the same genetic cause of hearing loss.

To date, the standard approach to visualize progression of hearing loss in a genetically 

similar cohort has used age-related typical audiograms (ARTAs) [5]. An ARTA is a two-

dimensional plot that includes multiple audiograms generated by fitting linear equations to 

each frequency and then interpolating idealized audiograms from the linear equations for 

specific ages ranging from 0–70 years in 10-year increments. Our method improves upon the 

ARTA in two important ways. First, it fits a three-dimensional surface to the audiograms and 

therefore considers ages as a continuous variable during fitting, thereby converting a set of 

discrete audiograms into a continuous surface that can allow interpolation between measured 

ages. Second, by rendering the fitted surface in 3D and using a color gradient scheme based 

on dB HL, progression of hearing loss is easily visualized. If desired, the 3D surface can be 

rendered in 2D in the same manor as an ARTA. We believe this representation of genetically 

similar types of hearing loss represents an important advance with clinical and research 

implications.

Methods

Clustering

Audiograms from persons with genetically similar causes of hearing loss were clustered 

using AudioGene, a software system employing machine-learning techniques to extract 

phenotypic information from audiograms, as previously described [6].
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Audioprofile Surfaces

Audioprofile surfaces (APSs) were fitted to a set of audiograms by plotting each 

measurement of an audiogram as an independent point in three dimensions with the x, y, and 

z axes representing frequency (125 Hz, 250 Hz, etc), hearing loss in dB, and age, 

respectively. Each audiogram was transformed into 10 or fewer points in a three-dimensional 

space, depending on the number of frequencies measured. The x values, corresponding to 

frequencies, were transformed using a log scale such that 125 Hz is 1, 250 Hz is 2, and so 

on.

Using the points from a set of N audiograms, multiple surfaces were fitted using least 

squared regression with bi-squared robustness [7,8]. These surfaces were considered 

candidate audioprofile surfaces and then rank-ordered. The rank of a candidate APS was 

determined by its root mean squared error (RMSE) during k-fold cross-validation (CV). CV 

was performed by randomly splitting the dataset into k subsets or folds. Each fold was 

withheld in turn while the surfaces were fit to the remaining data. The RMSE of the 

withheld fold was then computed by using the fitted surface. These steps were repeated for 

each fold; the final RMSE value used was the average of the RMSE values across all folds 

(normalized RMSE). APSs were ranked from smallest to largest RMSE.

The equations for the candidate surfaces were chosen to capture the expected patterns of 

hearing loss, expanding the set of candidate surfaces at the discretion of the user. Hearing 

loss patterns that were commonly seen included ‘cookie-bite’, ‘down-sloping’, ‘up-sloping’ 

and ‘flat’. As an example, surface equation (1) represents a surface according to a second-

degree polynomial along the x-axis (frequency) and a third-degree polynomial along the z-

axis (age). Equations (2) and (3) obey the same degree polynomial along the x-axis as 

equation (1) but follow second and first-degree polynomials along the z-axis. The full set of 

equations used for fitting the different surfaces are shown here (equations 1–3):

(1)

(2)

(3)

Using the coefficients of the fitted surface equation, an audiogram can be generated for a 

specific set of ages by fixing the age (z-value) and then iterating over the x values 

(frequencies). These curves can be plotted in the same manner as the ARTA on a standard 

2D audiogram. Extrapolating surfaces outside of the age range used for fitting was not done 

and is not recommended.

Software Access

The Matlab scripts for fitting audioprofile surfaces and computing the cross-validation 

RMSE are available on github with an example dataset [9]. Scripts are also available for 
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plotting the resulting surfaces in 3D. For portability, a stand-alone Java application is 

available to view the surfaces of 34 different loci but this option does not include the ability 

to fit surfaces [10]. The Java application is compiled and can be run on Linux, Mac and 

Windows operating systems with Java installed. The source code for the viewer is also 

available on github [11].

An example of an audioprofile and APS with an intermediate rendering to illustrate the 

perspective change from two to three dimensions is shown in Figure 1. The four audiograms 

represent average audiograms for 20-year increments and are shown in 3D with their age 

values set to split the age range, i.e. 0–20 is 10 years. In the final rendering, the APS is 

shown with wire-mesh and colors to indicate progression of hearing loss, which when 

coupled together, allow progression to be clearly seen.

The standard audiogram with multiple audiograms at different ages can be thought of as a 

two-dimensional projection. In comparison, the APS can be thought of as a continuous 

representation of hearing loss with age, with each measurement representing a slice of the 

APS at a specific point on the age axis. This rendering represents the average thresholds for 

any specific point in time and therefore ignores transient effects that modulate hearing levels 

such as otitis media. With repeated measurements over time from multiple persons, the APS 

for each genetic type of hearing loss becomes more robust.

Results

The audioprofile and APS for DFNA2 (KNCQ4) are shown in Figure 2. Two perspectives 

for the APS are seen: one volumetric perspective showing both age and frequency axes 

extending outward toward the viewer and the other showing the frequency axis hidden. 

Using the Java-based live animation display tool, any arbitrary perspective can be chosen to 

allow the user to view various attributes of the APS. As compared to the two-dimensional 

audioprofile, this versatility has several advantages. For example, by hiding the frequency 

axis, one can see that age-related progression of DFNA2 hearing loss is greatest in the high 

frequencies. The APS also allows for any age-specific audiogram to be synthetically 

generated from the surface by fixing the z value (age) of the surface equation and iteratively 

setting the value of x to be the value of specific frequencies.

APS Viewer

The Java-based APS viewer is a stand-alone application that allows clinicians to view pre-

computed APSs for 34 loci and to manipulate the three-dimensional perspective without 

additional software (Java is required). By selecting APSs for different loci, the clinician can 

plot average-expected audiograms at specific ages and compare this APS-generated average 

to a specific patient’s audiogram. An example of a comparision between the APS for 

DFNA2A and a patient’s audiogram is shown in Figure 3. Both 3D and 2D views of the 

audioprofile can be seen, with the 2D view being the traditional audiogram at a specific age. 

The 2D reference audiogram was generated from the surface equation by fixing the age 

parameter and iterating over the frequency parameter. By comparing a patient’s audiogram 

at a specific age with both the APS and 2D audiogram, a clinician can determine how typical 

or atypical the patient’s progression is compared to the average for a given locus.
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Discussion

APSs and Their Clinical Application

In the era of precision medicine (also referred to as ‘personalized genomic medicine’), the 

APS offers two key benefits as compared to the traditional audiogram. First, by viewing 

hearing thresholds in the context of the APS, a patient can appreciate how their hearing 

compares to that of other persons with the same genetic cause of hearing loss. This 

information allows patients and doctors to make informed decisions regarding hearing 

healthcare. Second, as clinical trials are implemented to test novel hearing preservation 

therapies, gene-specific APSs can provide a metric against which to select patients for 

enrollment and against which to assess therapeutic efficacy.

APSs as a Research Tool

For the research community, the APS provides an invaluable tool with which to dissect 

complex interrelationships between genotypes and phenotypes. An example of the power of 

refinement is the phenotypic sub-classification of KCNQ4 (DFNA2) hearing loss. The APS 

is distinctly different depending upon mutation type, with truncating mutations exhibiting a 

more rapid decline in hearing thresholds at the high frequencies as compared to non-

truncating mutations [12]. The APS of DFNA2A together with the APSs for patients with 

non-truncating or truncating mutations are shown in Figure 4. The difference in progression 

and the attenuation at different frequencies can be clearly seen.

Integrating low-cost comprehensive genetic testing for hearing loss [13] and AudioGene-

based phenotype refinement permits researchers to explore hypotheses previously 

considered implausible to test. One germane example is in the identification of possible 

genetic modifiers. APSs can be used in a clustering technique called surface clustering to 

identify clusters of patients with similar patterns of hearing loss [14]. Applying this 

technique to patients with mutations in TECTA (DFNA8/12), two distinct clusters can be 

identified that are not dependent on mutation type, mutation domain, patient age or patient 

sex, raising the intriguing possibility that genetic modifiers may contribute to the observed 

differences. As a physical structure overlying the hair cells, the tectorial membrane is 

comprised of a limited number of proteins, variation in which may impact the ‘expected’ 

TECTA-associated hearing loss. The APS for TECTA and the associated sub-clusters are 

shown in Figure 4b.

Limitation of APSs

While the APS offers a unique improvement over the traditional audioprofile, it is not free 

from caveats. First, each gene-specific APS represents the average surface for the cohort of 

patients from which data have been collected. As such, all APS loci are dynamic and will 

change over time as more data are collected and as our understanding of genotype-

phenotype relationships grows. As in the case of TECTA, sub-clusters will emerge that 

reflect phenotypic differences driven by a variety of genetic and/or environmental modifiers. 

This level of enhanced granularity is highly likely to improve our understanding of the 

biology of hearing and deafness, and serve an as important foundation for hearing 

preservation and hearing restoration initiatives.
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Like audiograms, APSs only measure the attenuation of hearing at specific frequencies. 

Language understanding in association with specific audioprofiles is measured by the speech 

discrimination score (SDS) and the word recognition score (WRS), both of which will be 

incorporated into future versions of AudioGene to augment APS features and to determine 

whether specific genetic causes of hearing loss are associated with unique SDS and/or WRS 

findings.

Conclusion

APSs are three-dimensional representations of gene-specific average audiometric thresholds 

over time. They provide an easily interpreted visual representation of a person’s hearing 

acuity relative to others with the same genetic cause of hearing loss. For the clinician, this 

type of representation will be increasing valuable in providing patient-and-gene-specific 

outcomes as novel habilitation options for hearing loss are developed. For the research 

community, APSs will support the generation and testing of sophisticated hypotheses, such 

as the identification of genetic modifiers, further allowing us to refine our understanding of 

the biology of hearing.
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Figure 1. 
Comparing two-dimensional to three-dimensional audioprofiles. The relationship between 

audioprofiles and the audioprofile surface (APS) is shown, using simulated audiograms for 

illustrative purposes. The APS represents average thresholds as a function of frequency and 

age for a specific genetic type of hearing loss. By plotting the APS in three dimensions, 

differences in rate of change of thresholds with frequency and age are easily appreciated. As 

a clinical tool, by plotting an audiogram on an APS, it becomes possible to compare a 

specific patient’s data with average thresholds in the context of that particular genetic type of 

hearing loss. Prognostic information, such as rate of progression of hearing loss, is readily 

apparent and easily interpreted.
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Figure 2. 
Figure 2A. Comparison between a multi-age composite audioprofile and APS for DFNA2 

(KCNQ4). The color redundantly indicates the severity of hearing loss for the APS. Note 

that the two-dimensional representation of the three-dimensional APS clearly illustrates that 

KNCQ4 hearing loss is greatest in the high frequencies.

Figure 2B. Age distribution of patients used to generate the DFNA2A APS in 2A. Most age 

groups included audiograms on at least 20 persons, with a skew towards the younger age 

groups.
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Figure 3. 
Figure 3A. DFNA2 APS shown in 3D (left) and the corresponding audiogram generated 

from the surface at age 32 (right). 3B. Patient audiogram (red) at age 39 plotted in 3D space 

in relationship to the DFNA2A APS (left) and compared to average thresholds for DFNA2A 

at age 32 years (left).
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Figure 4. 
Figure 4A. DFNA2A APSs is shown on the left (i). After clustering, two surfaces are 

identifiable, one generated from persons segregating missense variants of KNCQ4 (ii), while 

the other is based on truncating variants of KCNQ4 (iii). Note the more rapid high frequency 

rate of decline associated with truncating mutations in this gene. B. The DFNA8/12 APS is 

shown on the left (i). Two APS subclusters are generated by cluster analysis of this dataset 

(ii and iii, which displays data from the frequency perspectice). Multivariate analysis shows 

that these two subclusters do not reflect mutation type, mutation location, patient age or 

patient sex, suggesting that the observed differences may reflect secondary genetic 

modifiers. Table 1 shows that this hypothesis is reasonable given the known variability in the 

protein constituents of the tectorial membrane.
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