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Abstract

Many brain disorders and diseases exhibit heterogeneous symptoms and imaging characteristics. 

This heterogeneity is typically not captured by commonly adopted neuroimaging analyses that 

seek only a main imaging pattern when two groups need to be differentiated (e.g. patients and 

controls, or clinical progressors and non-progressors). We propose a novel probabilistic clustering 

approach, CHIMERA, modeling the pathological process by a combination of multiple regularized 

transformations from normal/control population to the patient population, thereby seeking to 

identify multiple imaging patterns that relate to disease effects and to better characterize disease 

heterogeneity. In our framework, normal and patient populations are considered as point 

distributions that are matched by a variant of the coherent point drift algorithm. We explain how 

the posterior probabilities produced during the MAP optimization of CHIMERA can be used for 

clustering the patients into groups and identifying disease subtypes. CHIMERA was first validated 

on a synthetic dataset and then on a clinical dataset mixing 317 control subjects and patients 

suffering from Alzheimer's Disease (AD) and Parkison's Disease (PD). CHIMERA produced 

better clustering results compared to two standard clustering approaches. We further analyzed 390 

T1 MRI scans from Alzheimer's patients. We discovered two main and reproducible AD subtypes 

displaying significant differences in cognitive performance.
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I. Introduction

In neuroimaging, group analyses are carried out for revealing differences between 

populations. Such analyses have been conducted for describing disease effects by comparing 

patients and controls [1], for characterizing aging effects by comparing old and young 

subjects [2], for describing brain development, by comparing subjects of different ages [3], 

amongst many other studies. Statistical group analyses are ubiquitous throughout studies 

using diverse types of images, including functional MRI [4], structural MRI [5]–[7], and 

diffusion tensor imaging [8].

Most of the group analyses assume that the members of a group share a common imaging 

pattern that differentiates them from the other group. For example, they assume that there is 

a unique disease effect that is found by comparing patients and controls. However, various 

clinical studies have highlighted the heterogeneity of pathological phenotypes presented by 

many diseases, such as Alzheimer's disease [9], Schizophrenia [10], Autism spectrum 

disorder [11], Attention-deficit hyperactivity disorder [12] and Cancer [13], [14]. Current 

approaches, by ignoring the heterogeneity of the disease phenotype, miss crucial information 

when modeling disease effects.

Disease heterogeneity can be addressed by partitioning the population of patients with 

clustering methods [15]–[18]. However, direct clustering of patient images puts emphasis on 

the similarities/distances between individuals, rather than on heterogeneity of the disease 

effect itself. Hence, they produce clusterings reflecting the largest contributors of data 

variability such as brain sizes, participant sex, and scanner/protocol discrepancies, and may 

fail to cluster the individuals according to their pathology subtypes.

In this work, we propose to address this issue with a novel, regularized, clustering method 

based on mapping of statistical distributions. We assume that there is a reference 

distribution, such as normal controls, cognitively stable, normal brain development, etc., and 

that there is a patient distribution caused by heterogeneous effects that we would like to 

describe: heterogeneous disease effects, or pathologies leading to cognitive decline, 

deviations from normal brain development, etc. As shown in Fig. 1, we model the 

heterogeneous effects as a set of transformations from the reference to the patient 

distribution, where each transformation corresponds to one pathology subtype. The 

transformations are found by matching patient and reference distributions while taking 

covariates such as age, sex, scanner, etc. into account. (Which exactly covariates are to be 

used depends highly on the specific application/study.) Specifically, given that a 70-year-old 

male Alzheimer disease patient would have been a 70-year-old male control had he been 

spared from the disease, the transition between these two states is considered to be the 

disease effect. This covariate-informed matching reduces the confounding influence of the 

covariates, which leads to a better description of the disease effects.
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The remainder of this paper is organized as follows. In section II, we explain how our 

clustering method CHIMERA was derived from the Coherent Point Drift algorithm [19] and 

how the proposed objective can be optimized in an Expectation-Maximization framework 

[20], [21]. The method was first validated by carrying out simulations and then used for 

processing two large clinical datasets (317 and 390 T1 MRI scans). The results presented in 

section III demonstrate the superiority of CHIMERA, compared to K-means, hierarchical 

clustering and two of their variations. The subtypes of AD revealed by our method using a 

large collection of Alzheimer's Disease MRI data are discussed in section IV, along with 

discussion of the merits and limitations of CHIMERA for the study of complex brain 

diseases.

II. Method

Let us assume that the dataset contains M normal control (NC) samples X = {x1, …, xm} 

and N patient samples Y = {y1, …, yN}. Let us assume that the samples are described by 

two sets of features: a set of D1-dimensional imaging features: ; and a set of 

D2-dimensional covariate features (these are known variables, such as age, sex, tumor type, 

treatment type): . For the sake of simplicity, we will denote the samples in the 

compact vector forms: , .

We adopt a generative probabilistic framework. Considering the samples as points in the 

imaging space (Fig. 1), the pathology can be viewed as the difference between Y (patient) 

and X(NC) point distributions. Here, we model the pathological transition between the two 

groups as a transformation T from NC to patient distribution. When enough NC points have 

been collected for describing the NC population, we could assume that the estimated 

anatomy of patients, had they been spared of the disease, is covered by the NC distribution. 

Assuming that all the patients can be associated with NCs and that, conversely, the 

transformed NC points cover the entire set of patients, the transformation T is found by 

matching patient and NC distributions. Covariates are introduced into the distribution 

matching criteria by combining imaging and covariate-specific distances in a multi-kernel 

way [22].

The maximum a posteriori(MAP) optimization of the model leads to minimize the following 

energy ε:

(1)

where Θ denotes the parameters of our model, such as transformations that are applied to X 
for generating Y, ℒ the log-likelihood of the distributions X and Y given the parameters and 

a regularization/penalty ℛ improves the stability/reliability of the estimation. These two 

parts are presented in detail in the next two sections.

A. Log-likelihood Term

Due to the heterogeneity of the effects of a given disease, the pathological transition might 

take several directions. Therefore, T consists of multiple possible transformations, each of 
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them representing a pathological direction of imaging change. The transformed NC samples 

are denoted as , where the imaging feature  is transformed to  and 

the covariate feature  remains the same.

(2)

Based on the hypothesis that the origins of patient samples are covered by the NC sample 

space, we assume that if we apply the pathological process to the NC samples X, the 

transformed NC point distribution X′ will cover the patient point distribution Y, as shown in 

Fig. 1(b).

The matching of distributions Y and X′ is found by a variant of Coherent Point Drift [19]. 

Each point  is considered as a centroid of a spherical Gaussian cluster. All the clusters are 

assumed to have the same variance σ2 that is optimized by the method. Points yn are treated 

as i.i.d. data generated by a Gaussian Mixture Model (GMM) with equal weight 

for each cluster. The similarity between the two distribution is measured by the data 

likelihood of this mixture model, as presented in Equation (3).

In order to take covariate features into account, we adopt a multi-kernel setting. The distance 

between two points are measured by RBF kernels, where the kernel size of covariate features 

is r times larger than the kernel size of the imaging features. As a result, the likelihood of 

data Y generated by centroids X′ can be described as follows:

(3)

During our experiments, r was determined by the ratio of total variance of these two 

features.

We assume that there are K pathology directions T1, …, Tk for a given disease. We define 

the transformation for one NC point to the patient space as:

(4)

Ideally, if the disease subtypes were distinct, ζkm should take value 1 for the transformation 

corresponding to the disease subtype that affects xm, and value 0 otherwise. In this work, we 

assume that patients with different pathologies might correspond to the same point in the 

space of NC distribution and we relax the variable ζkm to sum up to 1 for each m. This 

relaxation leads us to consider the transformation T for each NC point xm as a convex 

combination of all possible transformations Tk.
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For the Tk, linear transformations were chosen, in order to derive analytical solutions for the 

distribution matching. Each Tk was described by a pair of parameters (Ak, bk) ∈ (ℝD1×D1, 

ℝD1):

(5)

where Σkζkm = 1 and ζkm ≥ 0 for all m.

During our experiments, three different kinds of Ak matrices were chosen: (1) full matrices 

(CHIMERA-affine), (2) diagonal matrices, in order to restrict the transformations to the 

combinations of scaling and translations (CHIMERA-duo) and (3) the identity, in order to 

consider only the translations bk (CHIMERA-trans).

Introducing this definition of the Tk into Equation (3) leads to the following expression for 

the log-likelihood of the data:

(6)

B. Model Regularization

In an imaging feature space of dimension D1, the dimension of parameter space of 

CHIMERA-affine is to the order of , while for CHIMERA-duo and CHIMERA-trans 

to the order of (D1). In the low sample size settings that are typically observed in medical 

imaging studies, this large dimension yields ill posed problems. This issue is commonly 

mitigated by regularizing/penalizing the parameters of the transformations [23], [24]. We 

have adopted this approach, which improves also the generalization and the robustness of 

our model. In order to derive an analytical solution, we have chosen to penalize the 

Frobenius norm of Ak – I and the ℓ2 norm of bk, where I is an identity matrix. This 

regularization, is equivalent to posing Gaussian priors for the parameters.

(7)

Beside the explicit regularization term ℛ, our model can also be considered as being 

“implicitly” regularized. Instead of focusing on the points at the border between the different 

groups, like support vector machine [25] and relevance vector machine [26], our model 

always consider the entire point distributions. We aim, in that way, to reduce the sensitivity 

of clustering produced with respect to the individual subject variability.

The next section describes the MAP estimation strategy that was adopted for optimizing our 

model.
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C. Optimization

In this work, we have used an Expectation-Maximization algorithm [20], [21] for optimizing 

the parameters Θ = (A, b, ζ, σ2) of our model, where A = {A1, · · ·, AK} and b = {b1, · · ·, 

bK}. The algorithm introduces latent variables z indicating the posterior probability of data 

point for each mixture component, . By doing so, it provides a lower 

bound of the log-likelihood [21].

(8)

The energy ε is minimized via an iterative scheme. In each iteration t, the algorithm 

alternates calculating the expected value of q with respect to parameter obtained in last 

iteration Θ(t–1) in E-step, and updating Θ(t) by minimizing the objective function (Equation 

(10)) in M-step.

During our experiments, at the initialization, the parameters σ2 was set to the mean distance 

between dataset X and Y, ζ to be uniform distributed for each xm, each Ak to be identity 

matrix I, and the translation term bk was sampled from a normal distribution (0, 1). The 

E-step and M-step were performed as follows.

E-Step—Using parameters Θ(t–1) evaluated in previous M-step, Equation (8) was optimized 

at :

(9)

M-Step—We constructed our objective energy function ℱ(Θ) as an upper bound of our 

energy function ε. The minimization of ℱ(Θ) leads to the minimization of ε, which is proved 

in [27].
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(10)

subject to

The objective function is not globally convex but jointly convex in each parameter. Hence 

we propose an iterative procedure by minimizing the objective sequentially with respect to 

σ2, ζ, A and b. We derived closed form solution for σ2, A and b by setting derivative of 

objective function to zero. ζ was optimized using an advanced projected gradient descent 

algorithm that preserves the sum of the ζkm [28]. The detailed parameter updating 

procedures are presented in Appendix A. During our experiments, we stopped the iteration 

when the objective difference between two iterations reached a predefined tolerance, that 

was set to 0.01. Because the EM algorithm only guarantees a local minimum solution, we 

ran the optimization several times and we kept the solution with the smallest energy value.

The next section explains how a clustering can be derived from the coefficients ζkm and the 

posteriors qnm found during the optimization, and how a new sample can be assigned to 

these clusters.

D. Clustering

The coefficients ζkm can be considered as the probability, for the NC sample xm, to undergo 

the transformation Tk. Let P(yn|xm) be the likelihood of a patient sample yn to be associated 

with xm. Then, the likelihood of a given patient sample, yn, to have been generated by the 

transformation Tk can be estimated by:

(11)

Because the posteriors qnm are proportional to P(yn|xm), with a common denominator for 

each n (Equation (9)), they can be used for partitioning the patient samples according to their 

main transformation, by choosing for each patient yn the label ln corresponding to the largest 

likelihood:
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(12)

As long as the ζkm are stored, the label can be estimated for a novel data s by: (1) computing 

the likelihood P(s|xm) based on distances between the novel sample s and the transformed 

controls X′, (2) computing Pk(s) and obtaining the label ls = argmaxk Pk(s). This strategy 

was adopted for clustering clinical data during our experiments.

III. Experiments and Results

This section presents the experiments that were conducted for validating our approach. We 

compared first our approach with two standard clustering methods, K-means [15] and 

hierarchical Ward clustering [17], and two variants of these methods, on synthetic data and a 

real dataset of dementia patients with known subtypes. The promising results obtained 

incited us to analyze a clinical dataset where the ground truth is unknown.

We used CHIMERA for clustering a population of AD patients extracted from the ADNI 

dataset1. Our analysis revealed two stable/reproducible subtypes that are strongly specific of 

AD according to prior clinical studies, while exhibiting distinct imaging patterns and clinical 

profiles, as if they were corresponding to distinct pathological trajectories. Detailed 

investigations that are outside the scope of this paper will be carried out in the future for 

elucidating all the medical implications of this finding.

A. Simulated Data

Our method was first validated using synthetic data simulating the effect of age and disease 

on brain volume.

The brain was divided into 20 regions (ROIs), where the atrophy was described by a 

normalized volume between 0 (the most serious atrophy) and 1 (largest possible ROI 

volume).

The simulated data was generated as follows:

1. 1000 samples were generated independently. For each sample, 20 ROI volumes 

were sampled randomly from a normal distribution, (1, 0.1). In addition, each 

sample was associated with a random age, sampled from a uniform distribution 

between 55 and 85.

2. Age effect was introduced for each ROI volume and every sample, by subtracting 

the atrophy volume. The ROI volume atrophy was simulated by a normal 

distribution (0.01(t – 55), 0.005(t – 55)), where t is the age. This simulation 

corresponds to a linear volume decrease with age of slope 0.01 per year; and a 

variance increase of slope 0.005 per year.

1As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not 
participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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3. The samples were randomly separated into two 500-sample groups, a control group 

and a patient group. The patient group was further divided into two sub-groups of 

250 samples. In each patient group we introduced an atrophy pattern induced by a 

15% decrease in volume in pre-selected regions. Some of the regions selected were 

common across the subgroups while some others were distinct. This was done to 

simulate the effect of two distinct but overlaping variants of a same 

neurodegenerative disease. The two atrophy patterns are presented in Fig. 2.

4. The ROIs volumes were then normalized independently, by scaling them between 0 

(the most atrophied sample ROI volume) and 1 (the largest sample ROI volume).

The simulated data with age effect is plotted in Fig. 3. For both groups, the normalized total 

volume decreases as age increases. Patient group has smaller total volume due to the disease 

effect. But as the variance increases, the disease effect is overwhelmed by the age effect.

We compared our model with K-means [15] clustering and Ward hierarchical clustering 

[17]. However, standard clustering methods do not have access to the information of control 

group as CHIMERA does. For fair comparison, we considered therefore two supplementary 

variants of these clustering methods. Similar to pattern-based morphometry [29], we 

computed a “profile” for each patient subject: we computed the difference vector between 

each patient point and its Euclidean nearest neighbor in the control group. These profiles 

were clustered instead of the original patient data. In these analysis, a general linear 

regression(GLM) [30] was performed on the imaging features for removing the age effects 

prior to the clustering. The three variants of our method were applied to the synthetic data. 

We set model parameters as follows, CHIMERA-affine: (λ1, λ2) = (10,100); CHIMERA-

duo: (λ1, λ2) = (10,10); CHIMERA-trans: λ1 = 10.

The simulation was repeated 100 times independently. All the methods were applied on each 

simulated data set, with K = 2. The Dice score [31] of overlap between the ground truth and 

the clustering labels were generated for each run, and the box plots for different methods are 

presented in Fig. 4. Given that the dice score is 0.5 when the labels are assigned randomly, 

our method performs better than clustering methods and their profile-based variations. 

CHIMERA-duo outperformed the other CHIMERA variants. This result indicates that 

CHIMERA-duo model contains enough degrees of freedom for capturing the differences 

between patient and control groups that cannot be expressed as a pure translation. In the 

meantime, the model is much smaller than the affine model, that is hard to regularize.

B. Dementia Dataset

Before using our method for exploring unknown heterogeneous imaging patterns, we 

validated our approach on a dementia dataset containing patients suffering from different 

diseases generating distinct imaging patterns. We used a dementia clinical dataset of 317 T1 

structural MRI scans corresponding to 148 Alzheimer's Disease (AD) patients, 91 

Parkinson's Disease (PD) patients and 78 Normal Controls (NC). The images were skull-

stripped, co-registered and Multi-Atlas ROIs were generated [32] [33]. The volumes of 80 

ROIs were calculated, as well as the volume of brain lesions that they contain [34]. Age and 

gender of each subject were utilized as covariate features.
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The performances of the seven methods described in section III-A were estimated by 

performing one hundred 10-folds cross-validations on the dataset. For each cross-validation, 

the patient samples were partitioned randomly into 10 folds. For each fold, the clustering 

was first established by using normal control samples and the remaining 90% patients. The 

10% test samples of the fold were then assigned clustering labels. For K-means and 

Hierarchical clustering, the assignment was based on the distance to cluster centers; for our 

approach, the assignment procedure is explained in section II-D. After this assignment, the 

dice score between the known subtype labels and the labels produced by the clustering 

methods was computed for the samples of the fold. A dice score for the entire cross-

validation was obtained by averaging the dice scores obtained for the ten folds. Running the 

cross-validation one hundred time with different partitions of the patient data produced the 

distribution of dice scores shown in Fig. 5. There is a significant performance gap between 

our approach and standard clustering methods. CHIMERA-duo and CHIMERA-trans 

worked comparably well, while the performance of the CHIMERA-affine model were a little 

lower.

This experiment confirms that our approach can identify distinct imaging patterns 

corresponding to clinically heterogeneous populations using real imaging data. We finally 

used CHIMERA for investigating the existence of subtypes of Alzheimer's Disease. We used 

CHIMERA-duo for this task, because this variant has the best trade-off between model 

complexity and generalization performances.

C. Alzheimer's Disease Dataset

We analyze the heterogeneity of Alzheimer's Disease by applying CHIMERA-duo to ADNI 

dataset of 390 T1 structural MRI scans with 177 AD patients and 213 Normal Controls. 

Similar to the preprocessing in section III-B, the volumes of 80 ROIs were calculated. Age 

and gender information were utilized as covariate features.

The model parameters, K (number of sub-clusters) and λ1, λ2 (parameters of the 

regularization term), were selected according to the reproducibility and data fit of the 

clustering outputs. We observed that when the ratio between λ1 and λ2 is too large, the 

transformations are relatively unconstrained, which leads to poor convergence. Small ratio, 

on the contrary, let the transformation degenerate into a pure translation, which is not 

desirable either. We empirically fixed this ratio as follows: λ1 = λ2 = λ.

The reproducibility was measured by the Adjusted Rand Index(ARI) [35] (Appendix B), 

which were extensively cross-validated. We ran experiments for K = 2, 3, 4 clusters, λ = 5, 

7, …, 31 and 35. For each combination of K and λ, 100 runs of leave-10%-out clusterings 

were performed. During each clustering, a random subset of 90% of the patient samples and 

all the normal control samples were used for generating the transformations and defining the 

patient clusters. The remaining 10% patient samples were assigned to the group found, 

based on their proximity with the transformed control, as explained in the section II-D.

We measured the ARI between all the pairs of the 100 clusterings obtained for each 

parameter value, and averaged the ARI for each clustering. The complete results are shown 

in Fig. 6. When K increases, more transformation parameters are required (2KD1). Small λs 
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lead to ill-conditioned optimization that do not converge. This is for instance the case when 

λ < 11 and K = 4. On the other hand, large λ result in null/small transformations that are 

close to the identity, which is not desirable. For these reasons, smaller λ are preferable when 

the reproducibilities are comparable.

We finally selected (K = 2, λ = 15), a set of parameters corresponding to a high 

reproducibility for a reasonable good data fit. In order to analyze the subtypes found by our 

method in detail, we selected the clustering providing the highest sum of ARI with the other 

clusterings, among the hundred clusterings associated with this set of parameters. This 

clustering is the medoid of the clusterings produced, and therefore the most reliable.

In this clustering, 177 AD patients are clustered into two subgroups: subgroup 1 with 91 

subjects and subgroup 2 with 86 subjects. In order to reveal detailed disease signatures, we 

performed ROI-wise t-test for each subgroup against the control group, as well as the 

subgroups against each other. In Fig. 7, the t-stats for the ROIs are displayed in a heat map, 

thresholded at level of FDR adjusted p-value 0.01. Red color indicates when the first group 

has more volume than the last group. The opposite is indicated with blue color. The 

correspondence between the ROIs' names and labels is displayed in Table I [33].

As shown in Fig. 7 row (a) and (b), both patient subgroups present brain volume loss 

compared to normal controls, in regions including the temporal and limbic lobe, which are 

typical atrophy regions observed in Alzheimer's disease [36]–[39]. Also, both subgroups 

have larger ventricle volumes as compared to the control group. However, as shown in row 

(c), these two subgroups present significant between group differences in the following 

regions:

1. Subgroup 1 has more gray matter atrophy in limbic lobe including amygdala and 

hippocampus (5,6,15,16), and frontal insular regions (52,67). This atrophy pattern 

has been related to AD by many clinical studies, such as [39].

2. Subgroup 2 exhibits unique parietal and occipital gray matter atrophy on both 

lateral and medial structures (59-62,74-77). These atrophy patterns have also 

previously been noted in the literature [38]–[40]. Some reports have linked 

posterior cingulate and precuneous atrophy to early onset AD [41], [42].

3. Subgroup 1 exhibits unique deep gray matter atrophy in basal ganglia 

(3,4,8,9,21-24), a region that was also related to AD, for instance by Teipel et al. 

[43].

We performed a Voxel-Based Morphometry [44] on gray matter for each subgroup against 

the control group using the RAVENS maps that were generated during the co-registration 

[32]. RAVENS maps measure the tissue density of a brain with respect to a template [45], 

[46]. The t-stats map thresholded by FDR adjusted p-value 0.01 are presented in Fig. 8. We 

have circled out the significant different regions as discussed.

A statistical analysis was carried out for determining if the two subgroups exhibit different 

clinical cognitive performance. We used MMSE score [47], ADAS-cog 11 score and ADAS-

cog 13 score in this analysis. The score distributions, that are not Gaussian, were compared 
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by a rank sum test [48]. The results are displayed in Table II. The subgroup 1 performed 

significantly worse than subgroup 2 in ADAS-cog test. The difference is less noticeable for 

the MMSE test. We performed a rank sum test for comparing the age distribution in the two 

groups. Subgroup 1 appeared to be slightly older than subgroup 2, but the test does not reach 

significance at the α = 0.05 level.

These findings indicate that our method has extracted distinct patterns of atrophy that have 

been previously implicated in Alzheimer's disease. Interestingly, the posterior cingulate/

precuneous atrophy has been previously hypothesized to relate to early rather than late onset 

AD [41], which might imply that our identified 2 clusters also differentiate early vs. late 

onset patients.

IV. Discussion

We have proposed a new approach, CHIMERA, for identifying disease subtypes of 

heterogeneous diseases. Our approach relies on a point distribution mapping, while allowing 

the to reduction of the influence of nuisance covariates. The approach adopted overcomes 

several methodological limitations of existing methods for the analysis of disease 

heterogeneity. We discuss here three main aspects that have not been presented in detail in 

the previous sections. We also discuss a way to address the main limitation of our current 

framework.

First, the soft assignment performed by our model provides a rich information about the 

pathology. Each normal/control point is transformed with a probability distribution ζ by all 

possible transformations. This notion implies that a healthy subject might transition to a 

diseased state via various pathological patterns/processes. The clustering of patients is based 

on the posterior probability q and ζ. Instead of a hard assignment for clustering outputs, our 

approach produces probability soft assignment which might better describe the disease 

effects.

Second, the framework is modular. In this work, we have used a linear transformation with 

scaling and translation that has (D) degrees of freedom. Since the sample sizes of most 

neuroimaging studies are relatively small, we might improve the performance of the model 

by choosing a more constrained transformation. For instance, the transformation could be 

represented by the displacement of a few reference samples [19]. Such transformation would 

exhibit much fewer degrees of freedom, which would improve the robustness of the 

optimization/clustering. Hierarchical transformations could also be implemented, similarly 

to [32], for reducing the computational burden and/or better constraining the transformation.

Thirdly, we integrate the covariate features in a multi-kernel way. Our framework does not 

make explicit assumption on the effect of covariates where GLM assumes that covariates 

have a linear relationship with the imaging features. With this strategy, our framework 

mitigates the effect of covariates softly, rather than a hard threshold in stratification which is 

an alternate way of solving this issue.

The large dimension of the transformations involved in our current framework constitutes its 

main limitation. The optimization instability induced was partially addressed by penalizing 
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the transformations. However, this approach would not be suitable for high dimensional data 

such as voxel-level image maps [45] or voxel-wise transformations. The use of sparser 

transformations, as explained above, will help reducing the dimension of our model. Stricter 

penalties, such as ℓ21 and ℓ1 penalties, can be investigated in the future. However, we think 

that dimensionality reduction will probably remain necessary, in order to maintain the 

stability of the optimization and reduce the number of local optima. Another limitation of 

our current linear transformation formulation is that it doesn't take into account the 

covariance structure of the data, such as covariation between left and right side of the brain. 

Though we already got symmetric results in Fig. 7, it might be beneficial to introduce this 

constraint into the framework. Lastly, the Euclidean distance adopted in the framework 

implicitly treats features with the same weight. This limitation could be addressed by 

introducing Mahalanobis distance. These aspects will be further investigated in the future.

V. Conclusion

In this paper, we have presented a novel clustering framework, CHIMERA, that addresses 

some of the challenges raised by the heterogeneity of many diseases, especially 

neurodegenerative and neuropsychiatric diseases. In our approach, patients and controls are 

treated as point distributions and disease effects are represented by a set of transformations 

applied to them, each transformation standing for a different pathology subtype. Another 

critical contribution of our work is the integration of covariates. Our framework performs a 

matching between patients and controls based on these covariates in addition to the imaging 

features, by combining multiple distance/kernels. This matching mitigates potentially 

confounding effects of covariates that might not be relevant to the disease effect.

CHIMERA was validated on simulated data and on a clinical dataset where different 

dementia were mixed. The promising results obtained incited us to explore the heterogeneity 

of a patient group extracted from the ADNI database. CHIMERA recognized two patient 

groups, corresponding to distinct pathological brain atrophy patterns. These groups were 

found to present distinct cognitive abilities. This result illustrates the potential of our method 

for helping to refine the phenotyping of neurodegenerative diseases, and could potentially 

reflect early vs. late onset AD subtypes.
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Appendix A

Optimization M-step Details

With the following notations:
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• : D1 × M matrix, mth column is 

• Xc : D2 × M matrix, mth column is 

• Yv : D1 × N matrix, nth column is 

• Yc : D2 × N matrix, nth column is 

• ζ : K × M matrix, [ζ]km = ζkm, ith row is ζi·, mth column is ζ·m

• Q : N × M matrix, [Q]nm = qnm

• d(u) : matrix with its diagonal elements from vector u

• d−1(U) : vector contains diagonal elements of matrix U

• tr(U) : trace of matrix U

• 1 : column vector with all elements to be 1

• ○ : element-wise division

For each i = 1, …, K:

•
 : D1 × M matrix, mth column is 

•  : D1 × M matrix, mth column is 

•  : D1 × M matrix, mth column is 

•  : D1 × M matrix, mth column is 

1. The updating rule for σ2 is:

(13)

2. The updating rule for each Ai, i = 1 · · · K, When Ai is arbitrary matrix:

(14)

When Ai is diagonal matrix:

(15)

When Ai is identity matrix, skip optimizing for A.

3. The updating rule for each bi, i = 1 · · · K is:
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(16)

4. To update ζ·m, we use a projected gradient descent scheme. First we move ζim for i 
= 1, · · ·, K with Newton's method:

Then we projected the new vector  back to the feasible set (ℓ1 simplex) using 

method proposed in [28].

Appendix B

Definition of Adjusted Rand Index

The Adjusted Rand Index was proposed by Hubert and Arabie [35]. Suppose that a set of 

sample was labeled/clustered twice, and let denote the two labelings with X = {x}, Y = {y}. 

The matrix mx,y = |x∩y| is defined, where |x∩y| is the number of subjects labeled x in X and 

y in Y. With the following notations ax = Σymx,y and by = Σxmx,y, the Adjusted Rand 

Index(ARI) is calculated as:
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Fig. 1. 
(a) The problem setting: X is the reference distribution and Y is the patient distribution. (b) 

Our model assumption: X is transformed into a distribution X′ covering the distribution Y, 

by a set of K different transformations.
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Fig. 2. Atrophy patterns introduced (in red)
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Fig. 3. 
Simulated age effect on the normalized total volume. As age increase, the total volume 

linearly decreases and the variance of the ROI volumes increases.
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Fig. 4. 
Box plot of dice scores on synthetic data between ground truth labels and outputs of 

clustering methods: (a) K-means, (b) K-means with profile, (c) Hierarchical clustering, (d) 

Hierarchical clustering with profile, (e) CHIMERA-affine, (f) CHIMERA-duo and (g) 

CHIMERA-trans.
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Fig. 5. 
Box plot of dice scores on dementia dataset between ground truth labels and outputs of 

clustering methods: (a) K-means, (b) K-means with profile, (c) Hierarchical clustering, (d) 

Hierarchical clustering with profile, (e) CHIMERA-affine, (f) CHIMERA-duo and (g) 

CHIMERA-trans.
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Fig. 6. 
Reproducibility measured by the average Adjusted Rand Index [35], for all the number of 

cluster K tested, and all the sparsity parameter λ. The median average ARI corresponding to 

a same K were connected for improving the visualization of the trends.
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Fig. 7. 
ROI-wise t-test results of: (a) Subgroup 1 v.s. Control group, (b) Subgroup 2 v.s. Control 

group, (c) Subgroup 1 v.s. Subgroup 2, for all the 80 ROIs. The t-stats thresholded by FDR 

adjusted p-value at level of 0.01 for the ROIs are shown. Red color indicates when the first 

group has more volume than the last group. The opposite is indicated with blue color. The 

names of these ROIs are displayed in Table I.
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Fig. 8. 
Voxel-based Morphometry [5] performed on gray matter RAVENS maps [45] between (1) 

Subgroup 1 and Control group; (2) Subgroup 2 and Control group. The t-stats, thresholded 

by FDR adjusted p-value at level of 0.01 are presented, overlaid on the registration template 

image. Red color indicates volume loss and blue color volume increase. The green circles 

highlight the differences between the subgroups.
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Table I

Names of 80 ROIs1,2

# Name # Name

1 3rd Ventricle 41 Parietal Lobe WM L

2 4th Ventricle 42 Temporal Lobe WM R

3 Accumbens Area R 43 Temporal Lobe WM L

4 Accumbens Area L 44 Fornix R

5 Amygdala R 45 Fornix L

6 Amygdala L 46 Anterior Limb Intern. Capsule R

7 Brain Stem 47 Anterior Limb Intern. Capsule L

8 Caudate R 48 Posterior Limb Intern. Capsule R

9 Caudate L 49 Posterior Limb Intern. Capsule L

10 Cerebellum Exterior R 50 Corpus Callosum

11 Cerebellum Exterior L 51 Frontal Inferior GM L

12 Cerebellum WM R 52 Frontal Insular GM L

13 Cerebellum WM L 53 Frontal Lateral GM L

14 CSF 54 Frontal Medial GM L

15 Hippocampus R 55 Frontal Opercular GM L

16 Hippocampus L 56 Limbic Cingulate GM L

17 Inf Lat Vent R 57 Limbic Medialtemporal GM L

18 Inf Lat Vent L 58 Occipital Inferior GM L

19 Lateral Ventricle R 59 Occipital Lateral GM L

20 Lateral Ventricle L 60 Occipital Medial GM L

21 Pallidum R 61 Parietal Lateral GM L

22 Pallidum L 62 Parietal Medial GM L

23 Putamen R 63 Temporal Inferior GM L

24 Putamen L 64 Temporal Lateral GM L

25 Thalamus Proper R 65 Temporal Supratemporal GM L

26 Thalamus Proper L 66 Frontal Inferior GM R

27 Ventral DC R 67 Frontal Insular GM R

28 Ventral DC L 68 Frontal Lateral GM R

29 Vessel R 69 Frontal Medial GM R

30 Vessel L 70 Frontal Opercular GM R

31 Cere. Vermal Lob. 1-5 71 Limbic Cingulate GM R

32 Cere. Vermal Lob. 6-7 72 Limbic Medialtemporal GM R

33 Cere. Vermal Lob. 8-10 73 Occipital Inferior GM R

34 Basal Forebrain L 74 Occipital Lateral GM R

35 Basal Forebrain R 75 Occipital Medial GM R

36 Frontal Lobe WM R 76 Parietal Lateral GM R
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# Name # Name

37 Frontal Lobe WM L 77 Parietal Medial GM R

38 Occipital Lobe WM R 78 Temporal Inferior GM R

39 Occipital Lobe WM L 79 Temporal Lateral GM R

40 Parietal Lobe WM R 80 Temporal Supratemporal GM R

1
GM: gray matter; WM: white matter; R: right; L: left.

2
The ROIs are extracted as in Doshi et al. [33].
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Table II
Cognitive score difference between the subgroups

MMSE ADAS-cog 11 ADAS-cog 13

Mean difference1 −0.5284 1.9454 2.5913

p-value2 0.0787 0.0144 0.0183

1
Score mean of subgroup 1 subtracted by that of subgroup 2

2
p-value is based on Ranksum test.
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