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Inference for correlated effect sizes using
multiple univariate meta-analyses
Yong Chen,a*† Yi Cai,b Chuan Hongb and Dan Jacksonc

Multivariate meta-analysis, which involves jointly analyzing multiple and correlated outcomes from separate
studies, has received a great deal of attention. One reason to prefer the multivariate approach is its ability to
account for the dependence between multiple estimates from the same study. However, nearly all the existing
methods for analyzing multivariate meta-analytic data require the knowledge of the within-study correlations,
which are usually unavailable in practice. We propose a simple non-iterative method that can be used for the
analysis of multivariate meta-analysis datasets, that has no convergence problems, and does not require the use
of within-study correlations. Our approach uses standard univariate methods for the marginal effects but also
provides valid joint inference for multiple parameters. The proposed method can directly handle missing
outcomes under missing completely at random assumption. Simulation studies show that the proposed method
provides unbiased estimates, well-estimated standard errors, and confidence intervals with good coverage
probability. Furthermore, the proposed method is found to maintain high relative efficiency compared with
conventional multivariate meta-analyses where the within-study correlations are known. We illustrate the
proposed method through two real meta-analyses where functions of the estimated effects are of interest. © 2015
The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

Keywords: method of moments; multivariate meta-analysis; non-iterative method; singular estimated covariance
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1. Introduction

Meta-analysis, as the hallmark of evidence-based medicine, is a statistical procedure to combine evi-
dence from multiple studies. Conventionally, relatively simple methods for univariate meta-analysis are
used to investigate one outcome at a time. For example, the univariate DerSimonian and Laird proce-
dure is extremely popular because of its ability to provide straightforward estimation and account for
any between-study heterogeneity [1]. However, in situations where studies provide estimates that con-
tribute to more than one of the univariate meta-analyses in a systematic review, the quite common use of
many univariate meta-analyses is inappropriate when interest lies in making joint inferences for multiple
parameters or for functions of these parameters. This is because the univariate estimates will in general
be correlated and separate univariate meta-analyses do not describe these correlations. Assuming that the
modelling assumptions are appropriate, the results from multiple univariate meta-analyses will be only
valid for making inferences about each of the effects separately. To make valid joint inferences for mul-
tiple parameters, or functions of multiple parameters, we must take any correlation between the pooled
estimates into account [2, Sec. 5.2.2.].

In particular, there is often interest in a function of more than one pooled estimate. For example, in
meta-analyses of diagnostic test accuracy studies, the log diagnostic odds ratio is often used as a summary
of diagnostic test accuracy, which is a function of sensitivity and specificity [3]. For studies with survival
rates as outcomes, investigators may be interested in the difference between the overall survival rate
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and the disease-free survival rate [4, 5]. For comparative analysis of pharmacovigilance methods in the
detection of adverse drug reactions, the F score is often used to offer a trade-off between precision and
recall, which is a function of sensitivity and positive predictive value [6]. In many situations, multiple
outcomes such as these are correlated [7–9].

One strategy for the meta-analysis of correlated outcomes, which have received a great deal of attention
recently, is multivariate meta-analysis [2, 7, 10, 11]. This type of meta-analysis jointly analyzes multi-
ple and possibly correlated outcomes in a single analysis. Typically, a two-stage procedure is adopted.
At the first stage, the multivariate summary measures and their covariance matrices for all studies are
obtained. At the second stage, these reported summary measures are combined through an multivariate
meta-analysis model, such as the multivariate random-effects model [2, 12]. Inference can be performed
using maximum likelihood (ML) or restricted maximum likelihood (REML) estimation, where the like-
lihood is calculated using the marginal distribution of the summary measures. Although conceptually
straightforward, ML or REML estimation require iterative procedures and sometimes encounter conver-
gence or singular estimated covariance matrix problems [13, 14]. These estimation issues can lead to
biased estimates of standard errors, and consequently, the confidence intervals may be too wide or too
narrow [2, 11].

To avoid the computational difficulties of ML and REML estimation, several non-iterative multi-
variate methods for random effects meta-analysis have been proposed. Jackson et al. [15] proposed a
multivariate extension of DerSimonian and Laird’s univariate method. This multivariate method only
requires solving linear equations and standard matrix operations. In addition, in large samples, the infer-
ence is valid without the normality assumption. More recently, Chen et al. [16] proposed an alternative
matrix-based multivariate extension of Dersimonian and Laird’s method, which is also computation-
ally simple and has the additional advantage of being invariant to linear transformations of the data.
This matrix-based multivariate method has been extended to include studies with missing outcome data
and meta-regressions [17]. All of these non-iterative methods are computationally much less demanding
than ML or REML estimation and can resolve the problem of estimating a non-positive semi-definite
between-study covariance matrix by truncating any negative eigenvalues of this matrix to zero [15, 16].

The main difficulty that is common to all these multivariate methods is that they require the knowl-
edge of the within-study correlations, which are often not reported and are difficult to obtain even on
request [18, 19]. In other situations, the calculation of the within-study correlations may not be easy and
sometimes requires more computationally intensive methods [20]. Such a challenge is emphasized by
the review paper by Jackson et al. [2], ‘ … perhaps the greatest difficulty applying the multivariate meta-
analysis model in practice is that the within-study correlations are required by the model and are typically
unknown’. In order to avoid the difficulty of unknown within-study correlations, Riley et al. (2008) [21]
proposed a novel model using a single correlation parameter to describe the total marginal correlation
between outcomes. However, only likelihood based methods have been developed for fitting this model so
it too can suffer from convergence problems. Wei and Higgins [22] proposed a different strategy by esti-
mating the within-study covariances based on information about likely correlations between underlying
binary or continuous outcomes. Sensitivity analyses can also be performed with respect to the plausi-
ble correlations. In addition to these methods, other strategies have been considered, such as borrowing
within-study correlations from studies with individual participant data [5,23], assuming plausible values
for unknown correlation coefficients [7, 10] and using Bayesian framework with noninformative priors
on ranges of correlation coefficients [24]. However, none of these methods entirely resolve the common
practical difficulty that the within-study correlations are unknown.

The goal of this paper is to propose a simple and non-iterative method, which avoids all the afore-
mentioned difficulties. We propose to simply use standard methods for univariate meta-analysis to make
marginal inferences for each outcome. However, we augment the conventional separate univariate meta-
analyses by also estimating the covariances of the univariate pooled estimates. Our strategy is, therefore,
very similar to the type of approach that meta-analysts will already be familiar with and does not need the
often unknown within-study correlations. The proposed method does not suffer from any convergence
difficulties and provides valid inference for joint inferences and for functions of correlated effects.

As meta-analyses conventionally favor simple and robust procedures, the proposed method is expected
to be widely applicable to practical studies. By using univariate methods for meta-analysis to make
marginal inferences for the outcomes, our procedure does not make an attempt to allow any borrow-
ing of strength. Borrowing of strength refers to the potential for multivariate meta-analyses to provide
more precise point estimates than multiple univariate meta-analyses of the same outcome data [2]. The
borrowing of strength afforded by multivariate meta-analysis has in any case often been found to be small
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[25,26]. Perhaps most importantly, our proposal allows the consumers of systematic reviews that contain
many univariate meta-analyses to make appropriate joint inferences and inferences about functions of the
correlated pooled estimates that may be of interest. We emphasise this use of our methodology through
our second example, which comes from the Cochrane database.

This paper is organized as follows. In Section 2, we describe the standard ML and REML inferences
for multivariate meta-analysis and the method proposed by Jackson et al. [15]. In Section 3, we describe
the proposed non-iterative method. In Section 4, we conduct simulation studies to compare the proposed
method with the existing methods and investigate the bias, coverage probability and relative efficiency.
We apply the proposed method to two meta-analyses in Section 5. Finally, we provide a brief discussion
in Section 6. In addition, we provide the R code for implementing the proposed method in Appendix.

2. Methods for multivariate meta-analysis

In this section, we will briefly review the methods for multivariate meta-analysis that have recently been
proposed to make valid inference for correlated outcome data in meta-analysis.

2.1. Bivariate random-effects meta-analysis model

To simplify our presentation, we will describe the ,ultivariate meta-analysis methods for bivariate out-
comes, while acknowledging that these methods can be easily extended to situations with more than two
outcomes. We consider a meta-analysis with m studies and two outcomes of interest. For the ith study,
denote Yij and sij as the summary measure for the jth outcome of interest and the associated within-study
standard error respectively, i = 1,… ,m and j = 1, 2. Each summary measure Yij is an estimate of the
true underlying study specific effect size 𝜃ij. To account for heterogeneity in the underlying effect sizes
across studies, we assume 𝜃ij to be independently drawn from a common distribution with overall means
𝛽j, between study variations 𝜏2

j , j = 1, 2 and a between-study correlation 𝜌B.
Under the conventional normal distribution assumptions for Yij and 𝜃ij, the general bivariate random-

effects meta-analysis (BRMA) model can be written hierarchically as(
Yi1
Yi2

)
∼ MVN

((
𝜃i1
𝜃i2

)
,𝚫i

)
, 𝚫i =

(
s2
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s2
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)
,(

𝜃i1
𝜃i2

)
∼ MVN

((
𝛽1
𝛽2

)
,𝛀
)
, 𝛀 =

(
𝜏2

1 𝜏1𝜏2𝜌B
𝜏2

2

)
,

(1)

where 𝚫i and 𝛀 are the within-study and between-study covariance matrices respectively and 𝜌wi
and 𝜌B

are the within-study correlations and between-study correlation, respectively. The BRMA usually aims
at estimating 𝛽1 and 𝛽2. Functions of the pooled estimates (e.g. 𝛽1 − 𝛽2 or 𝛽1∕𝛽2) are then also often of
inferential interest [9, 21].

We follow the usual convention in meta-analysis of treating all sij as fixed and known. When the within-
study correlations 𝜌wi

are also known, inference for the overall effect sizes 𝛽1 and 𝛽2 are based on the
marginal distribution of (Yi1,Yi2).(

Yi1
Yi2

)
∼ MVN

((
𝛽1
𝛽2

)
,Vi

)
, where Vi = 𝚫i +𝛀 =

(
s2

i1 + 𝜏2
1 si1si2𝜌wi + 𝜏1𝜏2𝜌B

s2
i2 + 𝜏2

2

)
. (2)

We note that the variance of Yij is partitioned into two parts, s2
ij and 𝜏2

j , as in the analysis of variance
for univariate random effects model, and the covariance between Yi1 and Yi2, cov(Yi1,Yi2) = si1si2𝜌wi +
𝜏1𝜏2𝜌B, is also partitioned into two parts as the sum of within-study and between-study covariances. ML
estimation or REML estimation can be used to make inference on the model parameters.

Given the between-study covariance matrix𝛀, the best linear unbiased estimator (BLUE) of the overall
effect sizes 𝛽1 and 𝛽2 can be obtained through weighted least square estimation

𝜷̂ =
(
𝛽1

𝛽2

)
=

{
m∑

i=1

(
𝛀 + Δi

)−1

}−1{ m∑
i=1

(
𝛀 + Δi

)−1
(

Yi1
Yi2

)}
, (3)
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and the estimators (𝛽1, 𝛽2) are approximately normally distributed with covariance matrix

𝚺̂ =

{
m∑

i=1

(
𝛀 + Δi

)−1

}−1

. (4)

However, the between-study covariance matrix 𝛀 must be estimated in practice. ML estimation of all
parameters can be performed but maximum likelihood estimates of variance components such as 𝛀 are,
in general, biased downwards. REML estimation of 𝛀 has been proposed in order to reduce this bias and
is the default procedure for ‘mvmeta’ packages in R [27] and Stata [28]. The between-study covariance
𝛀 is estimated using REML by maximizing the restricted likelihood

−1
2

[
log

(|||||
m∑

i=1

(𝛀 + Δi)−1
|||||
)

+
m∑

i=1

{
log |𝛀 + Δi| + (Yi − 𝜷̂)T (𝛀 + Δi)−1(Yi − 𝜷̂)

}]
.

Once the between-study covariance matrix has been estimated, the standard procedure for performing
multivariate meta-analyses [2] replaces 𝛀 with 𝛀̂ in (3) and (4). We denote the estimates using the REML
estimator of 𝛀 as (𝛽1R, 𝛽2R).

2.2. Jackson’s method of moments

Meta-analysis methods have been intrinsically in favor of simple and robust procedures. For example,
the non-iterative method for univariate meta-analysis by DerSimonian and Laird [1] has been cited more
than 13 000 times to date according to Google Scholar. The case for preferring simple and robust methods
is perhaps even stronger in the multivariate case because likelihood based estimation of the variance
components becomes computationally challenging in high dimensions and multivariate meta-analyses
make stronger assumptions than univariate meta-analyses [2].

An alternative non-iterative method of moments for fitting the BRMA has been proposed by Jackson
et al. [15]. This is a natural and easily implemented multivariate extension of DerSimonian and Laird’s
method (hereafter referred to as Jackson’s method). Specifically, to incorporate the situation where some
studies only report one of the two outcomes, they denoted 𝐑Yj

as the set of studies reporting Yj and 𝐑Y1,Y2

as the set of studies reporting both Y1 and Y2. Jackson et al. proposed the following multivariate Q statistic
(or heterogeneity statistic)

Q =
[

Q1 Q12
Q2

]
=
⎡⎢⎢⎣
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2 )
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⎤⎥⎥⎦ , (5)

where Ȳj denotes the weighted mean of Yj over studies reporting Yj with weights 1∕s2
i1, and Ȳ∗

j denotes
the weighted mean of Yj over studies reporting both Y1 and Y2 with weights 1∕si1si2 (j = 1, 2),

Ȳ1 =

∑
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.

By equating the entries of the Q statistic with their expectations, Jackson et al. [15] solved the following
linear equations for parameters in the between-study covariance matrix 𝛀, namely the between-study
heterogeneity 𝜏2

1 and 𝜏2
2 and the between-study covariance 𝜌B𝜏1𝜏2,

⎧⎪⎨⎪⎩
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Q12 = E[Q12] = a + b𝜌B𝜏1𝜏2

(6)
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where mYj
is the number of studies with outcome Yj (j = 1, 2),

a =
{∑

i∈𝐑Y1 ,Y2

𝜌wi

}
−

∑
i∈𝐑Y1 ,Y2

𝜌wi∕(si1si2)∑
i∈𝐑Y1 ,Y2

1∕(si1si2)
and b =

{∑
i∈𝐑Y1 ,Y2

1
si1si2

}
−

∑
i∈𝐑Y1 ,Y2

1∕
(
s2

i1s2
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)∑
i∈𝐑Y1 ,Y2

1∕(si1si2)
.

(7)
Denote 𝜏2

1J , 𝜏2
2J and 𝜌̂2

BJ the solutions of Equation (6), and 𝛀̂J the corresponding estimated between-

study covariance matrix after truncation, where required, to ensure that 𝛀̂J is positive semi-definite. It is
worth mentioning that, in the bivariate case, the truncation of negative eigenvalues is a way to truncate
any negative estimated between-study variance to zero and also to truncate any estimated between-study
correlation to (−1, 1) inclusively. The estimators of overall effect sizes (𝛽1J , 𝛽2J) and their covariance
matrix take the same form as Equations (3) and (4) with 𝛀 replaced by 𝛀̂J .

The estimated between-study variances 𝜏2
1J and 𝜏2

2J are the same as the estimates from Dersimonian
and Laird’s univariate meta-analysis method. An advantage of Jackson’s method is that the non-iterative
estimation procedure avoids the convergence problems that can be encountered in ML and REML esti-
mation. Jackson’s method addresses the singular covariance matrix problem by constructing a ‘truncated’
symmetric and positive semi-definite estimate of 𝛀 by truncating any negative eigenvalues to zero; for
details, refer to Jackson et al. [15]. Finally, under missing complete at random assumption, for studies
with missing outcomes, a large within-study standard error, zero outcomes and zero within-study correla-
tions can be assigned to the missing effect sizes so that Equation (3) can be used to conveniently estimate
the overall effect sizes 𝛽1 and 𝛽2 [15]. For further details of the computational problems that can arise
when fitting the BRMA model, see Hamza et al. [14].

3. The proposed marginal method of moments

In this section, we will develop our proposal. Before truncation, Jackson’s method uses the univariate
estimates of the between-study variance in the multivariate meta-analysis. Our proposal also does this
and goes further by also using the univariate point estimates of the overall effect sizes.

3.1. Estimation

As we discussed in the introduction, one difficulty when using any method for fitting the BRMA model is
that the within-study correlations 𝜌wi

(i = 1,… ,m) are often unknown [2, 21]. Because the within-study
correlations are involved in model (2), the methods described previously in Section 2 are not immediately
applicable in situations when the within-study correlations are unknown.

To avoid this issue, we propose a simple and non-iterative method. Our method is conservative as it
allows no borrowing of strength, but it allows further inferences to be made that the usual univariate
methods do not allow. Our argument is that, without the within-study correlations, it is not clear how
much borrowing of strength is possible or appropriate, and so, we do not permit any. The strategy is
very simple: we use conventional univariate meta-analysis results for the marginal inferences for each
outcome, but we further estimate the covariances between these univariate point estimates in order to
make further inferences.

Specifically, we note that the univariate estimate of overall effect size 𝛽j takes the form of weighted
sum of Yij as

𝛽j =

∑
i∈𝐑Yj

wijYij∑
i∈𝐑Yj

wij

, (8)

where the weights wij = 1∕s2
ij if a fixed effect model is adopted and wij = (s2

ij + 𝜏2
j )

−1 if a random effects

model is adopted, where 𝜏2
j = max

{
0,

Qj−(mYj
−1)∑

i∈𝐑Yj
s−2

ij −
∑

i∈𝐑Yj
s−4

ij ∕
∑

i∈𝐑Yj
s−2

ij

}
and Qj is defined in Equation (5).

Alternative estimators of 𝜏2
j could also be used in (8). Marginal inference then proceeds using a normal

approximation for 𝛽j where

𝛽j ∼ MVN

(
𝛽j,

{∑
i∈𝐑Yj

wij

}−1
)

so that the usual univariate results are recovered for 𝛽j. This is an important advantage of our proposal:
we regain the univariate results that meta-analysts will already be familiar with for each of the estimated
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effects. Our methodology therefore recovers all the results from all the very many systematic reviews
conducted to date that use univariate meta-analysis techniques.

In situations where we wish to further perform joint inference for (𝛽1, 𝛽2) or to make inferences about
a function of the form f (𝛽1, 𝛽2), we must take into account the correlation between estimates that come
from the same study. To do this, we estimate the covariance between 𝛽1 and 𝛽2 as

cov(𝛽1, 𝛽2) =
∑

i∈𝐑Y1 ,Y2

wi1

w1+

wi2

w2+
cov(Yi1,Yi2) ≈

∑
i∈𝐑Y1 ,Y2

wi1

w1+

wi2

w2+
(Yi1 − 𝛽1)(Yi2 − 𝛽2), (9)

where wj+ is the sum of weights wij for outcome Yj over the studies where Yj is reported, that is, wj+ =∑
i∈𝐑Yj

wij. We note that in the last step of Equation (9), we approximate cov(Yi1,Yi2) by its empirical

counterpart (Yi1 − 𝛽1)(Yi2 − 𝛽2). This is a similar approach to the one suggested by Hedges et al. [29]. If
no study provides estimates of both 𝛽1 and 𝛽2, then we obtain an empty sum in (9) so that cov(𝛽1, 𝛽2) = 0.
This is appropriate because if disjoint sets of studies provide estimates of 𝛽1 and 𝛽2 then the pooled
estimates are independent.

We can therefore take the estimators 𝛽1 and 𝛽2 as approximately normally distributed, centred at 𝛽1
and 𝛽2, with covariance matrix

𝚺̃
∗
=
⎛⎜⎜⎝
(∑

i∈𝐑Y1
wi1

)−1 ∑
i∈𝐑Y1 ,Y2

wi1

w1+

wi2

w2+
(Yi1 − 𝛽1)(Yi2 − 𝛽2)(∑

i∈𝐑Y2
wi2

)−1

⎞⎟⎟⎠ . (10)

The proposed procedure is different to conducting two separate univariate meta-analysis using outcome
data on Y1 and Y2 because it accounts for the correlations between the outcomes Y1 and Y2 through the
off-diagonal element in 𝚺̃

∗
when making joint inferences about (𝛽1, 𝛽2) or functions of these parame-

ters. If the matrix 𝚺̃
∗

is not positive semi-definite, then we truncate any negative eigenvalues to zero
in the way proposed by Jackson et al. [15] for the estimated between-study covariance matrix [15].
We hereby refer to the proposed method as the marginal method of moments (MMoM) because we
obtain the usual univariate marginal results when using this method. An important difference between
the MMoM and Jackson’s method is that the within-study correlations 𝜌wi

are not required in the pro-
posed method (Equations (8), (9) and (10)) but are needed by Jackson’s method (Equations (3) and (4)).
The proposed marginal method of moments is implemented in the R software package ‘xmeta’, which is
freely distributed under GNU General Public License (GPL) and can directly be installed from CRAN
(http://cran.r-project.org/package=xmeta/), the official R package archive.

3.2. Functions of the estimated overall effect sizes

If the goal is to make inferences about linear functions of the effect sizes (e.g. 𝛽1−𝛽2), then the distribution
of any linear combination of 𝛽1 and 𝛽2 can be obtained from the approximation in the previous subsection
and used to make inferences. If the goal is to make inferences about a non-linear function (e.g. 𝛽1∕𝛽2),
then the delta method can be used as a further approximation. Therefore, the MMoM provides a non-
iterative procedure to obtain valid inference for any function of the effect sizes whilst correctly accounting
for the correlation among estimated effect sizes.

3.3. Missing outcome data

In practice, it is common that only a proportion of studies have all outcomes reported, and the remaining
studies have some of outcomes missing. Our methodology explains how to analyse datasets with missing
outcome data but, in this subsection, we discuss the implications of any missing data.

Our approach is a non-likelihood-based classical method, and so, we require the missing completely
at random (MCAR) assumption when encountering missing data and using the MMoM [30]. Although
this assumption may not be true in some applications, it is in any case instructive to consider MCAR as a
step toward missing at random (MAR) and then missing not at random (MNAR) modelling. Extensions
of the proposed method are, however, required to justify the weaker assumptions of MAR and MNAR,
and we return to this issue in the discussion.

Under MCAR, the computation with missing data can be conveniently performed using complete data
methods upon allocating very large within-study variances (e.g. 106) to the missing observations, where
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the missing study outcomes and the corresponding within-study correlations are set to zero. A proof of
the equivalence between this computationally convenient approach and the formula in Section 3.1 are
provided in the Supporting Information.

3.4. Extension to meta-regression

In many applications, study-level covariates are available, such as mean age, percentage female, and year
of publication. These covariates may be incorporated in the meta-analysis in order to explain some of
the between-study variation. In this subsection, we explain how we can extend our method to the meta-
regression setting. We assume the estimate of outcome j in the i-th study Yij has mean of XT

ij𝜷 j and variance
𝜎2

ij + 𝜏2
j for i = 1,… ,m and j = 1, 2, where Xij denotes for the pj × 1 covariates vector that may correlate

with the outcome Yij and 𝜷 j is the pj × 1 vector of regression coefficients.
The heterogeneity meta-regression Q statistic for outcome Yj, Qj, can be calculated as

Qj =
∑
i∈RYj

𝜎−2
ij

(
Yij − XT

ij 𝜷̂ j,fix

)2
, for j = 1, 2,

where 𝜷̂ j,fix =
(

XT
j 𝚲

−1
j Xj

)−1
XT

j 𝚲
−1
j Yj denotes the maximum likelihood estimate of 𝛽j under the fixed

effects assumption that 𝜏2
j = 0, Xj is the pj×m design matrix, Yj = (Y1j, ...,Ymj)T is the vector for outcome

j and 𝚲j = diag
(
𝜎2

1j,… , 𝜎2
mj

)
is the diagonal covariance matrix with the within-study variances of each

element of Yj as the diagonal elements.
By equating the empirical moments with their expectations, we can obtain the estimates of between-

study variance 𝜏2
j by solving

Qj = E[Qj] = (m − pj) +
[

tr
(
𝚲−1

j

)
− tr

{(
XT

j 𝚲
−1
j Xj

)−1
XT

j 𝚲
−2
j Xj

}]
𝜏2

j . (11)

Solving Equation (11) yields the DerSimonian and Laird moment estimator

𝜏2
j = max

⎡⎢⎢⎢⎢⎣
0,

Qj − (m − pj)

tr
(
𝚲−1

j

)
− tr

{(
XT

j 𝚲
−1
j Xj

)−1
XT

j 𝚲
−2
j Xj

}
⎤⎥⎥⎥⎥⎦

for j = 1, 2.

The estimate of the overall treatments effect are given by 𝜷̃ j =
(

XT
j 𝚲

∗
j
−1Xj

)−1
XT

j
𝚲∗

j
−1Yj, where

𝚲∗
j = diag

(
𝜎2

1j + 𝜏2
j ,… , 𝜎2

mj + 𝜏2
j

)
denotes the diagonal covariance matrix under the random effects

assumption with the sum of the within-study and between-study variances as the diagonal elements.
The meta-regression extension of the proposed MMoM can account for any correlation between the

outcomes. It can be shown that
(
𝛽1, 𝛽2

)
is approximately normally distributed with the mean

(
𝛽1, 𝛽2

)
and

the covariance matrix

𝚺̃
∗
=
⎛⎜⎜⎜⎝
(

XT
1
𝚲∗

1
−1X1

)−1

p1×p1

(
XT

1
𝚲∗

1
−1X1

)−1
XT

1
𝚲∗

1
−1cov

(
Y1,Y2

)
𝚲∗

2
−1X2

(
XT

2
𝚲∗

2
−1X2

)−1

p1×p2(
XT

2
𝚲∗

2
−1X2

)−1

p2×p2

⎞⎟⎟⎟⎠(p1+p2)×(p1+p2)

,

where cov
(
Y1,Y2

)
is approximately estimated by

diag
{(

Y11 − XT
11𝜷̂1,fix

) (
Y12 − XT

12𝜷̂2,fix

)
,… ,

(
Ym1 − XT

m1𝜷̂1,fix

) (
Ym2 − XT

m2𝜷̂2,fix

)}
,

which is a diagonal matrix with
(
Yi1 − XT

i1𝜷̂1,fix

) (
Yi2 − XT

i2𝜷̂2,fix

)
being the i-th diagonal element. Again,

the eigenvalues of 𝚺̃
∗

can be truncated to ensure this matrix is positive semi-definite and the methods
and issues for handling missing data described in Section 3.3 apply. This extension for meta-regression
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reduces to the MMoM for meta-analysis if there are no covariates and an intercept only ‘regression’
is used .

4. Simulation study

To evaluate the finite sample performance of the proposed MMoM and to compare it with some more
established multivariate methods, in this section, we will conduct a simulation study. Here, data are gen-
erated from a two-stage procedure as specified in Equation (1). To cover a wide spectrum of scenarios,
we vary the values for the four factors that are considered important in practice.

Specifically, the number of studies m is set to either 10 or 25 to represent meta-analyses with moderate
number and large numbers of studies, respectively. We will consider both complete data and missing data
scenarios. For the missing data scenario, there are 30% missing data for each of the two outcomes, where
data are MCAR. To reflect the variation in the within-study standard errors, we sample s2

ij as the square of
an N(0.25, 0.50) distribution, which leads to a median value of around 0.26. The size of the within-study
variation relative to the between-study variation may have a substantial impact on the performance of the
methods. To this end, we let the between-study variation to be relatively small, comparable or relatively
large, corresponding to 𝜏2

1 = 𝜏2
2 = 0.1, 0.25 or 0.5 respectively. For between-study correlations, we set

𝜌B to be either −0.8, −0.6, −0.4, 0, 0.4, 0.6 or 0.8. Finally, for the within-study correlations, we set 𝜌wi

for all studies to either −0.8, −0.5, 0, 0.5 or 0.8.
We set the overall effect sizes to be 𝛽1 = 0 and 𝛽2 = 2. The novel aspect of our method is that it is

intended to make valid joint inferences and inferences for functions of 𝛽1 and 𝛽2. We assume that the
target for inference is the difference between the effect sizes of two outcomes, that is, 𝛿 = 𝛽1 − 𝛽2. The
parameter 𝛿 is estimated as 𝛽1 − 𝛽2 using the MMoM and as 𝛽1R − 𝛽2R and 𝛽1J − 𝛽2J using BRMA, where
the between-study covariance is estimated by REML and Jackson’s method, respectively. The standard
errors of the estimates of 𝛿 are calculated as (1,−1)TV(1,−1), where V is the corresponding covariance
matrix of the estimates of (𝛽1, 𝛽2). For each simulation setting, we generated 1000 samples. The samples
were simulated in R (R Development Core Team, Version 3.14.1) using the ‘mvrnorm’ function.

The results from the BRMA model, fitted using both REML and Jackson’s method, were produced
in order to compare the MMoM results with BRMA. However, we note that the BRMA model makes
use of further data (the within-study correlations), and the data were simulated under the BRMA model,
so we cannot anticipate that our method will perform better than the alternatives. Instead, our main
interest is whether or not our much simpler proposal performs similarly to BRMA. We present the
results for 𝜏2

1 = 𝜏2
2 = 0.5 in Figures 1–4; the results for 𝜏2

1 = 𝜏2
2 = 0.25 and 0.1 are provided in

Section 3 of the Supporting Information. We show the results for the largest between-study variance in
the main paper because we anticipate that considerable between-study heterogeneity would present the
biggest challenge to our method. However, the overall conclusions are quite similar for all three between-
study variances (see Section 3 of the Supporting Information). As the between-study variation becomes
smaller (i.e. 𝜏2

1 = 𝜏2
2 = 0.25 or 0.1), all methods generally provide better (closer to the nominal) actual

coverage probabilities.
Figure 1 summarizes the empirical bias (Bias), the coverage probability (CP) of nominal 95% con-

fidence intervals and relative efficiency (RE) of the estimate of 𝛿 = 𝛽1 − 𝛽2 estimated using BRMA
(REML), BRMA (Jackson) and the MMoM when there are no missing data (referred to as the complete
data setting) and there are m = 10 studies. The total number of simulated data sets (1000) is used to
calculate CP of Jackson’s method and MMoM. RE is defined as the square of the standard error of the
estimator from BRMA (REML) divided by the standard error of an estimator from a method under com-
parison. The left panels in Figure 1 suggest that all three methods give unbiased estimates. The middle
panels indicate that confidence intervals of BRMA (REML) have slightly better coverage than confidence
intervals from BRMA (Jackson). The proposed MMoM leads to similar coverage to BRMA (Jackson).
Although both the MMoM and BRMA (Jackson) have the advantage of non-iterative and computation-
ally simple, the MMoM can be applied to the situation when the within-study correlations are unknown.
The right panels in Figure 1 present the RE of BRMA (Jackson) and the MMoM compared with the
BRMA (REML). The range of RE is [92.5, 99.1] for BRMA (Jackson) method and is [86.8, 101.9] for
the MMoM. This suggests that the MMoM is as good as Jackson’s method in terms of coverage and
efficiency and is only slightly worse than the iterative REML method. Interestingly, the information on
within-study correlations 𝜌wi

does not appear to improve the efficiency in estimating the difference in the
effect sizes 𝛿 = 𝛽1 − 𝛽2. Such a finding for complete data is in agreement with the literature [10, 25, 31].
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Figure 1. Bias, coverage probability (CP) and relative efficiency (RE) of estimates for 𝛿 = 𝛽1 − 𝛽2 from
restricted maximum likelihood (REML), Jackson’s method (Jackson) and marginal method of moments (MMoM)
based on 1000 simulations with data generated from bivariate random-effects meta-analysis model. The between-
study/within-study variation ratio is close to 2 (i.e. between-study variations 𝜏2

1 = 𝜏2
2 = 0.5 and median

within-study variation is 0.26). Within-study correlations 𝜌w are set to (−0.8,−0.5, 0, 0.5, 0.8). Between-study
correlations 𝜌b are set to (−0.8,−0.6,−0.4, 0, 0.4, 0.6, 0.8). Number of studies is m = 10. There is no missing data.

Similar observations can be found from simulation results when correlations are −0.9 or 0.9, where the
CP of the proposed method is consistently better than the Jackson’s method (see Figure S9−S12 of the
Supporting Information).

Figure 2 presents the results when the number of studies is larger (m = 25). Again, there is no evidence
of bias. The coverage of the MMoM is around 90% and is robust to the between-study and within-study
correlations, whereas the coverage of Jackson’s method deteriorates as the between-study correlation
becomes larger. The coverage of the REML method is around 93%, suggesting that the REML method
does have advantage in coverage over Jackson’s method and the MMoM when number of studies is
relatively large and the within-study correlations are available. The RE of the MMoM is ranging from
89.5% to 98.8% and is substantially better than that of Jackson’s method.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1405–1422
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Figure 2. Bias, coverage probability (CP) and relative efficiency (RE) of estimates for 𝛿 = 𝛽1 − 𝛽2 from
restricted maximum likelihood (REML), Jackson’s method (Jackson) and marginal method of moments (MMoM)
based on 1000 simulations with data generated from bivariate random-effects meta-analysis model. The between-
study/within-study variation ratio is close to 2 (i.e. between-study variations 𝜏2

1 = 𝜏2
2 = 0.5 and median

within-study variation is 0.26). Within-study correlations 𝜌w are set to (−0.8,−0.5, 0, 0.5, 0.8). Between-study
correlations 𝜌b are set to (−0.8,−0.6,−0.4, 0, 0.4, 0.6, 0.8). Number of studies is m = 25. There is no missing data.

Figure 3 summarizes the results when number of studies is 10 with 30% missing for each outcome
(referred to as the missing data setting). Similar to that, in the complete data setting, there is no evidence
of bias in any method. The coverages of all three methods are poorer than that in the complete data
setting, but the MMoM provides at least as good coverage as the competing methods. The range of RE is
[97.8, 102.6] for BRMA (Jackson) and is [94.6, 105.1] for the MMoM. This indicates that both Jackson’s
method and the proposed MMoM are as efficient as the iterative REML method in small samples despite
the missing outcome data.

Figure 4 presents the results when number of studies is larger (m = 25) and 30% of data missing
for each outcome. The coverages of the three methods are all improved compared with Figure 3. The
coverage of the MMoM is comparable with the BRMA (REML) and is slightly better than that of BRMA
(Jackson). The ranges of RE are [88.6, 98.5] and [88.7, 102.7] for BRMA (Jackson) and the MMoM,
respectively. This suggests that the MMoM may be slightly more efficient than Jackson’s method in
this setting. This may be explained by the fact that the estimation of between-study correlation 𝜌B is
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Figure 3. Bias, coverage probability (CP) and relative efficiency (RE) of estimates for 𝛿 = 𝛽1 − 𝛽2 from
restricted maximum likelihood (REML), Jackson’s method (Jackson) and marginal method of moments (MMoM)
based on 1000 simulations with data generated from bivariate random-effects meta-analysis model. The between-
study/within-study variation ratio is close to 2 (i.e. between-study variations 𝜏2

1 = 𝜏2
2 = 0.5 and median

within-study variation is 0.26). Within-study correlations 𝜌w are set to (−0.8,−0.5, 0, 0.5, 0.8). Between-study
correlations 𝜌b are set to (−0.8,−0.6,−0.4, 0, 0.4, 0.6, 0.8). Number of studies is m = 10. There are 30% missing

data for each of the two outcomes.

not required by the MMoM, and truncation of the estimated between-study covariance matrix is often
performed by Jackson’s method. However, it appears that BRMA (REML) may be the most efficient
method in this situation, which might be anticipated because outcome data are missing and likelihood
based estimation is fully efficient.

It is worth mentioning that the coverages of all three methods under comparison are less than 95%
nominal size in the simulations (Figures 1–4), which is possibly due to the finite sample issue. The number
of studies we used in simulation is only 10 or 25 which is relatively small. By comparing the coverage for
the same method for m = 10 with the coverage for m = 25, there is a clear improvement. We also note that
for all simulation settings considered, a non-positive definite estimated covariance matrix 𝚺̃

∗
as defined

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1405–1422
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Figure 4. Bias, coverage probability (CP) and relative efficiency (RE) of estimates for 𝛿 = 𝛽1 − 𝛽2 from
restricted maximum likelihood (REML), Jackson’s method (Jackson) and marginal method of moments (MMoM)
based on 1000 simulations with data generated from bivariate random-effects meta-analysis model. The between-
study/within-study variation ratio is close to 2 (i.e. between-study variations 𝜏2

1 = 𝜏2
2 = 0.5 and median

within-study variation is 0.26). Within-study correlations 𝜌w are set to (−0.8,−0.5, 0, 0.5, 0.8). Between-study
correlations 𝜌b are set to (−0.8,−0.6,−0.4, 0, 0.4, 0.6, 0.8). Number of studies is m = 25. There are 30% missing

data for each of the two outcomes.

in Equation (10) was encountered in at most just 3.6% of simulated datasets. When a non-positive definite
covariance matrix is encountered, a positive semi-definite version was obtained by truncating negative
eigenvalues to zero as explained in Section 3.1. Estimates of the between-study correlation in the BRMA
often lie at the edge of the parameter space, which is known to result in estimation difficulties. The fact
that non-positive semi-definite covariance matrices are such an uncommon occurrence when using the
proposed method may explain why the proposed method provides quite efficient estimates of 𝛿 = 𝛽1 −𝛽2
despite the fact that it affords no possibility of borrowing of strength. On the other hand, the percentage of
times that we encounter a singular between-study covariance matrix using Jackson’s method is at most in
56.7% of simulated datasets, in the missing data setting with m = 10. Because Jackson’s method truncates
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any negative eigenvalues of the estimated between-study covariance matrix to zero, it guarantees that the
estimated between-study covariance is always positive semi-definite. Therefore, the estimated covariance
matrices Σ̂∗ from Jackson’s method are positive semi-definite in all simulated data sets.

In summary, the simulation studies suggest that under both the complete data setting and the miss-
ing data setting, the MMoM performs well in that it provides parameter estimates with small biases,
retains good coverage probabilities and has high relative efficiency. Just as importantly, the MMoM can
be used for meta-analysis when within-study correlations are unknown, which is commonly encoun-
tered in practice [2]. Therefore, the proposed MMoM provides a useful and simple alternative to the
existing methods.

5. Data applications

We illustrate the proposed MMoM by two meta-analyses. For the first meta-analysis, the within-study
correlations are known, and so, we compare the performance of the proposed MMoM with conventional
multivariate random effects meta-analyses. For the second meta-analysis, the within-study correlations
are unavailable, and so, we only apply our proposed method. An additional example is shown in Section
4 of the Supporting Information.

5.1. Example 1: Treatment effect of antihypertensive drug on cardiovascular disease and stroke

High blood pressure is believed as an important risk factor of heart diseases and stroke [32]. Wang et
al.[33] performed a quantitative overview of trials to investigate the effects of lowering of systolic blood
pressure (SBP) and diastolic blood pressure (DBP) on the prevention of cardiovascular disease (CVD)
and stroke. They selected 10 trials in which active antihypertensive drugs were compared with placebo.
A unique feature of this quantitative overview is that the individual patient data for all trials are available,
which leads to the availability of within-study correlations. Their results confirmed that antihypertensive
treatment lowered SBP and DBP and reduced the risk of all cardiovascular events and stroke. The effect
sizes of the antihypertensive treatment on CVD and stroke are summarized in the upper left panel of
Figure 5 and are taken from Riley et al. [34].

To evaluate the overall effect of the antihypertensive treatment on both CVD and stroke, it is natural
to estimate the average of log hazard ratio of CVD and stroke as a composite treatment effect of the two
outcomes. Such a composite effect can be used for medical decision making. Let Yi1 denote the log hazard
ratio of risk of CVD comparing treatment and placebo group, and Yi2 denote the log hazard ratio of risk
of stroke. Because CVD and stroke share many of risk factors, the two outcomes Yi1 and Yi2 are positively
correlated. The within-study correlations of Yi1 and Yi2 are presented in the right column of Figure 5.
We conduct meta-analyses of this data using the BRMA (REML), BRMA (Jackson) and the MMoM and
estimate the overall composite effect of the antihypertensive treatment, as 𝛿 = (𝛽1 + 𝛽2)∕2. The lower

Figure 5. Average of log hazard ratios of cardiovascular disease (CVD) and stroke (𝛿) and 95% confidence inter-
vals evaluated by the bivariate random-effects meta-analysis (restricted maximum likelihood (REML)), bivariate

random-effects meta-analysis (Jackson) and the marginal method of moments (MMoM).

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1405–1422
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panel of Figure 5 presents the results from the three methods. The point estimate of 𝛿 is estimated as
−0.312 (95% CI: (−0.432,−0.192)) by the BRMA (REML), and −0.305 (95% CI: (−0.430,−0.180))
by BRMA (Jackson) method. The MMoM provides very similar point estimate of 𝛿 as −0.313 but a
slightly narrower 95% confidence interval as (−0.418,−0.208). Despite this, the proposed MMoM has
made appropriate inferences for 𝛿 = (𝛽1 + 𝛽2)∕2 for this example where the pairs of estimates from each
study are correlated.

We also conduct a bivariate meta-regression to further evaluate the treatment effects in SBP and DBP.
Let ISH denote the indicator of trials included only isolated systolic hypertension patients (i.e. subjects
with high SBP but normal DBP). We include ISH as a covariate for both outcomes in this meta-regression,
in order to allow studies of this type to estimate different effects. We now let Yi1 denote the difference
in SBP between the treatment and the control groups, and Yi2 denote the difference in DBP between the
treatment and the control groups. Let 𝛽10 and 𝛽20 denote the intercept in the meta-regression model for Yi1
and Yi2, and 𝛽11 and 𝛽21 denote the regression coefficients associated with ISH for Yi1 and Yi2, respectively.
It is of clinical importance to evaluate the overall composite effect of the reduction in SBP and DPB in
patients with high SBP or high DBP, that is, trials where ISH = 0, so that our target for inference is the
parameter 𝛿 = (𝛽10 + 𝛽20)∕2. The point estimate of 𝛿 is estimated as −7.34 (95% CI: (−7.99,−6.69)) by
the MMoM.

5.2. Example 2: School-based programmes for smoking prevention

This example is taken from the Cochrane review ‘School-based programmes for preventing smok-
ing’ [35]. The intervention of the study is a smoking prevention program by offering curricula to school
students. Analysis 1.1 of this review compares the effectiveness of all curricula versus control for pure
prevention cohorts (Cohorts in which never-smokers at baseline were followed up), where the outcome
of interest is whether subjects begin smoking and the follow up time is less than one year. Analysis 1.2 is
as Analysis 1.1 but for this second analysis the follow up time is the longest available follow-up. Hence,
these two analyses address very similar questions, but Analysis 1.2 is intended to describe the effective-
ness of all curricula over the longer term. Seventy three studies contribute outcome data to these analyses,
which were performed on the log odds ratio scale. The pooled results were, however, presented on the
odds ratio scale, where an odds ratio of less than one favours the intervention.

All 73 studies contribute to Analysis 1.2 for which the Cochrane review reports a pooled odds ratio
of 0.88 (with a 95% confidence interval of [0.82, 0.96]), suggesting that intervention is effective in the
longer term. Forty of these studies also contribute data to Analysis 1.1 for which the Cochrane review
reports an odds ratio 0.94 (with a 95% confidence interval of [0.85, 1.05]), so there is no evidence of an
intervention effect in the shorter term. In Analysis 1.1, the estimated between-study variance was zero,
and so, the random-effects model collapses to a fixed effect model, and Analysis 1.1 was presented as a
fixed effect model in the Cochrane review.

The confidence intervals from these two univariate analyses considerably overlap, but the outcomes
are highly correlated; in some studies the estimates for both analyses are the same because their longest
follow-up was less than 1 year. The results presented in the Cochrane review, therefore, do not make it
clear whether there is any evidence of a different treatment effect in the longer term. However, our method
can be used to answer this question by making inference about 𝛿 = 𝛽1 − 𝛽2 as in the simulation study.

The results from the MMoM estimate the difference in treatment effects of intervention between shorter
term and longer term as 𝛿 = 0.064 (with a 95% confidence interval of [−0.048, 0.18]). Thus, there is no
evidence of different treatment effect of intervention in shorter term and longer term. Because the BRMA
(REML) and BRMA (Jackson) cannot be applied when the within-study correlations are unknown, we
impute three different nonnegative values of the within-study correlations for all studies and compare
the estimation of 𝛿 in Table I. All three estimation methods show no evidence of a different treatment
effect in the longer term. The point estimation from Jackson’s method when the imputed within-study
correlations are large (i.e. 0.8) is close to that of MMoM method, while the confidence intervals from
Jackson’s method are narrower. We observe that the estimation from the REML and Jackson methods
produce notably different findings for the three different imputed within-study correlations 𝜌w, indicating
that the performances of the REML and Jackson methods are sensitive to the value of imputed within-
study correlations. This example nicely illustrates how our proposed MMOM can be used to make further
inferences from systematic reviews that use multiple univariate meta-analyses where studies contribute
data to more than a single meta-analysis.
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Table I. The difference in treatment effect (𝛿) estimated by
REML, Jackson and MMoM with imputed within-study corre-
lation for the Cochrane review ‘School-based programmes for
smoking prevention’.

𝜌w REML Jackson MMoM

0 0.08(−0.05, 0.22) 0.09(−0.05, 0.22) 0.06(−0.05, 0.18)
0.5 0.07(−0.02, 0.18) 0.07(−0.02, 0.17)
0.8 0.07(−0.01, 0.16) 0.06(−0.01, 0.14)

6. Discussion

We have proposed an extension of the standard procedure for univariate meta-analysis. Our procedure
uses conventional methods for univariate meta-analysis for making inferences about the marginal effects
but augments these univariate analyses with a covariance matrix for the resulting pooled estimates. Our
approach has a variety of advantages. Firstly, the often unknown within-study variances are not required
when using our method. Secondly, our approach builds upon the univariate procedures that meta-analysis
will already be familiar with. Thirdly, very few estimation problems are encountered when using method.
Finally, and perhaps most importantly, our procedure enables consumers of systematic reviews that per-
form multiple univariate meta-analyses to make valid joint inferences and also valid inferences for any
functions of the pooled estimates that might be of interest. The main disadvantage of our proposal is that
no borrowing of strength is possible when using our new approach.

Another issue is that the proposed method is a non-likelihood-based frequentist method and so requires
the MCAR assumption when any outcome data are missing. Some form of inverse probability weighting
might be developed in order to make the weaker missing at random (MAR) assumption. Dealing with
outcome reporting bias and publication bias is in general much more complicated, however, because
these lead to missing not at random (MNAR) models. Because the proposed method is not based on the
likelihood, complex modelling of this type in conjunction with our estimation procedure is, at best, not
straightforward. The computation for handling missing data is very straightforward, but the necessity of
the MCAR assumption must not be forgotten.

There are several potential topics of future. The extension to multivariate meta-regression models is
straightforward, and some models for network meta-analysis can be fitted as regression models [36].
Hence, the proposed approach may also be useful in the network meta analysis setting in datasets where
the within-study correlations are not available. In this paper, we apply the proposed method to multivariate
meta-analysis with two outcome. When applying the REML method to the multivariate setting with
more than two outcomes, because to estimate. In contrast, the extension of the proposed method to meta-
analysis with more than two outcomes is straightforward and is less prone to computational issues. The
empirical performance of the proposed method under multivariate setting with more than two outcomes
will be investigated in the future.

The methodology builds upon standard univariate methods, and more sophisticated methods for
univariate meta-analysis could also be used conjunction with our approach. For example, confidence
intervals for the between-study variance in random effects meta-analysis [37], and meta-regression mod-
els [38] are immediately applicable. There is a vast univariate meta-analysis literature, and by using
standard univariate methods for the marginal inferences. the usefulness of all this literature is retained.
Also our methodology is attractive from a more applied perspective, because all the results from the very
many univariate meta-analyses that have been performed to date and have informed medical practice
are unchanged by our method. Hence, our method does not change anything that has been done already,
rather it allows us to do more with published meta-analytic results than was hitherto possible.

To summarize, we have developed a very simple and useful method for handling correlated outcome
data in meta-analysis when interest lies beyond making marginal inferences for each of the effects of
interest. Our method has been found to perform well when compared with more sophisticated approaches
and provides another useful tool for all those involved in performing and interpreting meta-analyses.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1405–1422
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Appendix

##
## R code for analyzing the example data using the proposed MMoM
method
## The proposed method is implemented in the ’mmeta’ function in our
R software package ‘xmeta’, and can be installed from CRAN
(http://cran.r-project.org/package=xmeta/), the official R
package archive.
## Proposed method : Multivariate Method of Moments with working
independence assumption
## Input:
## 1. ys: effect sizes (y1 and y2) from n studies in a matrix format
with two columns: y1 and y2
## 2. vars: an (nx2) matrix with column 1 being variance of y1 and
column 2 being variance of y2
## Note: when y1 or y2 is missing, we put y1 or y2 as 0 and
corresponding variance as 10ˆ6.
## Output: beta.hat (the pooled effect sizes for two outcomes) and
## sigma.hat (covariance matrix of the estimates)

MMoM <- function(ys,vars){
ys1 = ys[,1]
ys2 = ys[,2]
vars1 = vars[,1]
vars2 = vars[,2]
w1 = 1/(vars1)
w2 = 1/(vars2)
y1.weight = sum(w1*ys1)/sum(w1)
y2.weight = sum(w2*ys2)/sum(w2)
n1 = sum(1-1*(vars1 > 10ˆ4))
n2 = sum(1-1*(vars2 > 10ˆ4))
Q1 = sum(w1*(ys1-y1.weight)ˆ2)
Q2 = sum(w2*(ys2-y2.weight)ˆ2)
tau1.2.hat = max(0, (Q1-(n1-1))/(sum(w1)-sum(w1ˆ2)/sum(w1)))
tau2.2.hat = max(0, (Q2-(n2-1))/(sum(w2)-sum(w2ˆ2)/sum(w2)))
## variance estimate:
w1.star = 1/(vars1 + tau1.2.hat)
w2.star = 1/(vars2 + tau2.2.hat)
beta1.hat = sum(w1.star*ys1)/sum(w1.star)
beta2.hat = sum(w2.star*ys2)/sum(w2.star)
var.beta1.hat = 1/sum(w1.star)
var.beta2.hat = 1/sum(w2.star)
mycov.beta = sum((w1.star/sum(w1.star))*(w2.star/sum(w2.star))
*(ys1 - beta1.hat)*(ys2 - beta2.hat))
beta.hat = c(beta1.hat,beta2.hat)
sigma.hat = matrix(c(var.beta1.hat,mycov.beta,mycov.beta,
var.beta2.hat),nrow = 2, byrow = T)
result = list(beta.hat=beta.hat,beta.cov=sigma.hat)
return(result)
}

## working example
ys<-matrix(c(1.139434283, 1.446918983, 1.704748092, 0.470003629,

0.85566611, 1.440361582, 0.186585956, 1.504077397,
1.540445041, 1.665007764, 3.218875825, 1.299282984,
0.661398482, 3.283414346, 4.919980926, 1.386294361,
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3.218875825, 2.197224577, 2.268683541, -1.145132304),
ncol=2)

vars<-matrix(c(0.164999999811686, 0.308823529160345,
0.0738636362264944, 0.162499999665475,
0.0838235293119684, 0.137426900570286,
0.0938352427206998, 0.203703703772108,
0.40476190440518, 0.169884169901165,
1.04000000057403, 0.424242423879069,
0.0947580646552244, 0.34583333355377,
1.00729926944171, 0.208333333709766,
2.07999999946466, 0.555555554810304,
0.367816092120049, 0.188311688602409),ncol=2)

## Apply the MMoM method to the working example
MMoM.fit = MMoM(ys,vars)
MMoM.fit

## obtain the estimate and standard error of delta = beta1-beta2
myV = c(1, -1)
delta.hat = (myV%*%(MMoM.fit$beta.hat))[1,1]
delta.se = (sqrt(t(myV)%*%(MMoM.fit$beta.cov)%*%myV))[1,1]
delta.hat
delta.se

## obtain the estimate and standard error of beta.average =
(beta1+beta2)/2
myV2 = c(0.5, 0.5)
beta.average = (myV2%*%(MMoM.fit$beta.hat))[1,1]
beta.average.se = (sqrt(t(myV2)%*%(MMoM.fit$beta.cov)%*%myV2))[1,1]
beta.average
beta.average.se
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