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Abstract

The RNA chaperone protein Hfq is critical to the function of small, base pairing RNAs in many 

bacteria. In the past few years, structures and modeling of wild type Hfq and assays of various 

mutants have documented that the homohexameric Hfq ring can contact RNA at four sites 

(proximal face, distal face, rim and C-terminal tail) and that different RNAs bind to these sites in 

various configurations. These studies together with novel in vitro and in vivo experimental 

approaches are beginning to give mechanistic insights into how Hfq acts to promote small RNA-

mRNA pairing and indicate that flexibility is integral to the Hfq role in RNA matchmaking.

Introduction

In many bacteria, the RNA chaperone protein Hfq, which was identified nearly 50 years ago 

as an essential host factor for bacteriophage Qβ RNA replication in Escherichia coli [1], is 

required for the function of small, stress-induced regulatory RNAs (sRNAs) that act by 

limited base pairing. Hfq stabilizes the sRNAs and promotes their interactions with mRNAs 

leading to altered stability and/or translation of these targets (reviewed in [2]). This broad 

Hfq role in facilitating base pairing sRNA function is reflected in the pleiotropic phenotypes 

of hfq deletion strains observed for a variety of bacteria, including stress sensitivity and 

reduced virulence (reviewed in [3]). Given the central role played by Hfq in sRNA-mediated 

gene regulation in many bacteria, the protein has been the focus of extensive study.

Initial crystal structures of the apoprotein showed that Hfq adopts a homohexameric toroid 

of roughly 65 Å diameter (reviewed in [4-6]). Each subunit is composed of an amino (N)-

terminal α-helix followed by five highly twisted and curved antiparallel β-strands, 

terminating in an unstructured carboxy (C)-terminal region. The surface of the toroid with 

the N-terminal α-helices is commonly referred to as the ‘proximal’ face, the opposite face 

the ‘distal’ face, and the outer ring the ‘rim’ or ‘lateral’ face. The sequences and structures 

of Hfq unambiguously show that the protein is a member of the Sm and Sm-like (Lsm) 

b Corresponding author storzg@mail.nih.gov.
other authors: taylor.updegrove@nih.gov, zhanga@mail.nih.gov

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Opin Microbiol. Author manuscript; available in PMC 2017 April 01.

Published in final edited form as:
Curr Opin Microbiol. 2016 April ; 30: 133–138. doi:10.1016/j.mib.2016.02.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



family of proteins that are involved in various aspects of RNA metabolism in virtually all 

eukaryotes and archaea (reviewed in [7,8]).

Two comprehensive reviews about Hfq were published in 2011 and 2012 [2,3]. However, 

given the interest in the chaperone, much has been learned about the protein and its 

mechanisms of promoting RNA base pairing in the past three years. Here we discuss the 

findings from a wide range of approaches focusing on the Hfq role in promoting RNA base 

pairing, particularly in Gram-negative bacteria (summarized in Figure 1).

Binding of sRNAs and mRNAs

Hfq has four solvent exposed regions, the proximal face, distal face, rim and C-terminal tail, 

which possess unique architectures and electrostatic surfaces and are surprisingly varied 

from one homolog to another (reviewed in [3]). Early crystal structures of Staphylococcus 
aureus Hfq in complex with short oligonucleotides showed that the proximal face binds 

polyU sequences such that the uridines are stacked in pockets between neighboring 

monomers around the central pore [9]. Similar studies of E. coli Hfq revealed that the distal 

face binds A-rich oligonucleotides with three nucleotides per subunit of Hfq [10]. These 

triplet sequences were first defined as A-R-N motifs where the adenosine (A-site) and purine 

(R-site) nucleotides stack into the solvent exposed pockets while the third nucleotide (N) 

lacks protein contacts. More recent work has led to further definition of these binding sites 

as well as appreciation that the rim and C-terminal tails also contribute to RNA binding, and 

that binding to sRNAs and mRNAs is more varied than perhaps initially thought (Figure 1a).

Proximal face binding to polyU sequences in Rho-independent terminators of sRNAs

The importance of the proximal face in binding polyU sequences, particularly those 

comprising the Rho-independent terminators found on all Hfq binding sRNAs characterized 

thus far [11,12], has been affirmed in multiple studies. Co-crystal structures of E. coli 
[13,14] and Listeria monocytogenes [15] Hfq bound to U-rich oligonucleotides showed 

geometries very similar to what was found for the S. aureus protein [9] with uridines stacked 

adjacent to phenylalanine in each Hfq monomer [13,14]. The proximal-face uridine-binding 

pocket thus is conserved in Hfq from Gram-negative and Gram-positive bacteria. 

Nonetheless, a study that examined sRNA accumulation and target mRNA regulation in E. 
coli strains expressing various Hfq mutants from the chromosome [16], showed that while 

mutations in some conserved proximal face residues (such as Q8, F42 and K56) affected 

most sRNAs analyzed, mutations in other proximal face residues (such as D9 and F39) had 

varying effects toward different sRNAs. It also was recently reported that certain acidic 

residues (D9, E18 and E37) on the proximal face of the E. coli protein are important for the 

discrimination of sRNAs from other cellular RNAs; mutations of these residues allowed for 

more non-discriminant Hfq binding to RNA while reducing the efficiency of the sRNA-

mRNA annealing [17]. Generally, although sRNAs appear to be similarly anchored to the 

proximal face of Hfq via the polyU tail of the Rho-independent terminator, there are some 

differences in the way individual sRNAs contact this face.
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Distal face binding to varied A-rich sequences in mRNAs and sRNAs

Further binding studies have revealed that RNA contacts on the distal face are more varied 

than those on the proximal face, though Hfq hexamers from both Gram-negative and Gram-

positive organisms contain R-site stacking interactions with adenosine on the distal side. 

Tryptophan fluorescence quenching assays led to further definition of the preferred distal 

face binding sequence to (A-A-N)n for the E. coli protein and (A-L)n for the S. aureus 
protein, where L is a linker nucleotide [18]. Co-crystal structures of E. coli Hfq bound to the 

A-rich region of the OxyS sRNA [19], S. aureus Hfq bound to an (A-A)3-A oligonucleotide 

[20] and Bacillus subtilis Hfq bound to an (A-G)3-A oligonucleotide [21] similarly show 

refinement of the canonical A-R-N motif as well as differences in the binding configuration.

Regardless of the exact sequence, several studies have demonstrated that for mRNAs, the 

position of the A-rich motif relative to the base-pairing region is critical for Hfq-mediated 

regulation. An A-rich sequence immediately 3′ of the complementary sequence of a 

molecular beacon, which fluoresces upon base pairing with a target, significantly enhanced 

Hfq-mediated annealing in vitro [22]. This enhancement was lost as the distance between 

the (A-A-N)n site and the complementary sequence increased unless the sequences were 

brought into proximity with a secondary structure. In vivo, potential mRNA targets of the 

Spot 42 sRNA were not regulated if the A-rich sequence overlapped the sRNA binding site, 

but did show regulation if the sequence was repositioned upstream of the base pairing region 

[23]. Similarly, repositioning the (A-A-N)n at various positions in the rpoS 5′UTR sequence, 

either upstream or downstream of the natural site, reduced the ability of Hfq to facilitate 

annealing with the DsrA sRNA in vitro and sRNA activation of rpoS translation in vivo [24]. 

Although the distances between the Hfq- and sRNA-binding sites are greater than 20 

nucleotides in a number of regulated mRNAs, it is likely that, as for rpoS, the RNA 

secondary and tertiary structures place the Hfq binding site adjacent to the sRNA binding 

site.

While the first A-rich sequences to be characterized were synthetic or derived from mRNAs, 

multiple studies have now shown that some sRNAs also have A-rich sequences that allow 

them to bind the distal face [16,19,25-29]. In general, Hfq-binding sRNAs in E. coli can be 

classified into two groups, though a few have intermediate properties [25] (Figure 1e). Class 

I sRNAs, which constitute the majority, bind to the proximal and rim domains of Hfq and 

base pair with mRNAs that have distal face binding sites. Class II sRNAs, which bind the 

proximal and distal sites of Hfq, base pair with mRNAs with rim binding sites. Binding on 

both proximal and distal sites appears to have a stabilizing effect on Class II sRNAs, and 

Class I sRNAs can be stabilized by the addition of A-R-N motifs.

Rim binding to UA-rich sequences in sRNAs and mRNAs

The rim of E. coli Hfq contains a patch of positively charged surface residues (R16, R17 and 

R19) on the outside of a shallow groove leading out from the proximal sRNA binding site on 

each of the six monomers, and recent work has shown that the rim is a secondary binding 

site for UA-rich sequences in sRNAs [12,25,26,30-33]. In vitro, mutations of the positively 

charged patch impaired RybB sRNA binding, and wild type Hfq could not bind RybB and 

SgrS sRNAs with mutations in the internal UA-rich regions [12,30]. In addition, a recent 
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structure of full-length E. coli Hfq with the Salmonella enterica RydC sRNA shows direct 

phosphate-backbone contacts between R16 and R17 of Hfq and U23 and U24 within the 

body of RydC [32]. In vivo, mutations of the charged residues reduced the levels of Class I 

sRNAs, indicating reduced sRNA binding and stability [25]. As for the A-rich sequences 

that contact the distal face, the distance between the UA-rich sequence on the sRNA and the 

region of base pairing impacts regulation [12]. Together these studies indicate that many 

sRNAs are anchored to the proximal side of Hfq by the single stranded polyU tail of the 

Rho-independent terminator, with additional contacts between the sRNA and the charged 

rim residues. Recently, some mRNAs, particularly targets of Class II sRNAs that bind the 

proximal and distal faces, have also been found to require the charged rim residues for 

binding [25,34]. The arginine patch, while conserved in most Gram-negative bacteria, is 

almost completely absent in Hfq from a number of Gram-positive species such as B. 
anthracis and S. aureus (reviewed in [3,6]), but it is possible that RNAs contact other rim 

residues in these species.

C-terminal tail contacts with some sRNAs

The C-terminal tail, which varies significantly in sequence and length, was absent in the first 

Hfq structures as it is intrinsically disordered and flexible. Early studies to dissect the 

cellular function of the C-terminus of E. coli Hfq also yielded conflicting conclusions 

(reviewed in [3]). However, new evidence is accumulating that the C-terminal tail is 

important for the interaction with at least some sRNAs. The structure of Hfq with the RydC 

sRNA showed the C-terminal tail makes distributive contacts over the surface of RydC [32]. 

This observation, together with the finding that the in vivo half-life of RydC was reduced in 

the absence of the C-terminus, is consistent with binding. Deletion of the C-terminal tail in 

E. coli Hfq also reduced in vitro binding affinity to the V. cholera Qrr sRNAs [35], and 

tryptophan quenching experiments showed the C-terminus can bind the hfq mRNA [18]. 

Interestingly, Hfq from Clostridium difficile, which has an extremely asparagine and 

glutamine-rich tail, can complement many of the functions of E. coli Hfq [36]. In this 

heterologous context, deletion of the tail impacted some of the regulation by C. difficile Hfq. 

These in vitro and in vivo findings, along with the highly variable sequence, suggest that, 

while the C-terminal tail binds some but not all RNAs, binding relies less on specific 

binding pockets and residues and more on the intrinsically disordered nature of this domain.

Promoting sRNA-mRNA interactions

The fact that sRNAs and mRNAs make several, varied contacts allows for rapid exchange of 

RNAs on Hfq (reviewed in [37]) and is consistent with multiple models for Hfq-facilitated 

pairing. Innovative experimental approaches are now providing direct evidence that Hfq 

impacts multiple steps; changing the structures of RNAs (Figure 1b), bringing RNAs into 

proximity (Figure 1c), neutralizing the negative charge of the two pairing RNAs, stimulating 

the nucleation of the first base pairs (Figure 1d) as well as facilitating the further annealing 

of the two RNA strands (Figure 1e).

Early structure probing studies indicated that Hfq could change the secondary structures of 

bound RNAs (reviewed in [3]). This role has been further documented with a range of 

experiments. SAXS (small-angle X-ray scattering) and SANS (small-angle neutron 
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scattering) analysis combined with circular dichroism of Hfq bound to the RprA and OxyS 

sRNAs revealed E. coli Hfq binds the sRNAs in a 1:1 stoichiometry and changes the 

structures of the sRNAs but not Hfq [28]. Similarly, SAXS and SHAPE (selective 2′-

hydroxyl acylation and primer extension) analysis showed that E. coli Hfq makes rim 

contacts with a U5 motif in conjunction with distal contacts with the (A-A-N)n motif of 

rpoS, changing the tertiary conformation of the mRNA into a more compact structure and 

positioning the region involved in base pairing near an sRNA bound to the proximal face 

[34]. The observations that mutations of rim residues or deletion of the C-terminal tail of E. 
coli Hfq impair formation of an Hfq-RydC-cfa ternary complex further support the model 

that Hfq plays an active role in positioning RNAs for optimal base pairing [32].

Other studies have shown that the rim goes beyond positioning the RNAs and carries out a 

more catalytic role in promoting base pairing [31,38]. Assays of sRNA-mRNA annealing 

using stopped flow spectroscopy and an RNA beacon revealed that wild type E. coli Hfq, but 

not a derivative lacking the rim arginine residues, increased the annealing of complementary 

RNAs up to 100-fold by reducing both entropic and electrostatic barriers [31]. Experiments 

combining the molecular beacon with a target RNA carrying a photo-caged guanosine 

derivative within the complementary region allowed assessment of base pairing before and 

after uncaging [38]. These experiments showed that Hfq directly overcomes the initial 

energetic barrier for nucleation of the RNA helix. Moreover, given that annealing was 

reduced if Hfq was proteolytically removed after nucleation, the chaperone must also 

promote extension of the duplex.

Finding RNAs in the cell

One of the most intriguing and unresolved questions surrounding Hfq function is how this 

protein is able to facilitate the base pairing of cognate RNA pairs in the context of thousands 

of cellular RNAs within the minute time frames of the environmental stress responses in 

which the sRNAs act. While estimates of the number of Hfq hexamers vary from ≈400 to 

10,000, it is clear that Hfq is limiting under most conditions (reviewed in [37]). Recent 

studies, which have examined Hfq and RNA subcellular localization and levels in E. coli, are 

giving clues into how Hfq effectively carries out its matchmaking function within the cell.

The rate of Hfq diffusion in the cell was estimated by monitoring single-molecule 

trajectories [39]. These measurements showed three distinct states with different diffusion 

constants. The interpretation of these observations were that Hfq has three binding states: 

free unbound Hfq (fastest diffusion constant), Hfq bound to RNA and/or other proteins 

(intermediate diffusion constant), and Hfq bound to RNA during transcription and thus 

tethered to transcription complexes (slowest diffusion constant, which disappears after 

transcription is blocked with rifampicin). Overall, these findings suggest that Hfq binds at 

least some RNAs as they are synthesized [39]. A recent study combined smFISH (single-

molecule fluorescence in situ hybridization) with super-resolution microscopy, which 

enables subcellular localization of RNA molecules, to quantify single sRNA, mRNA and 

sRNA-mRNA complexes and thus determine the in vivo kinetics of sRNA target search and 

sRNA-mRNA co-degradation [40]. These experiments showed that the association rate for 

duplex formation is far slower than the dissociation rate.
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A recent modeling study examining the effects of different RNA levels reported that, given 

random order binding of sRNAs and mRNAs observed previously (reviewed in [37]), 

maximum sRNA-dependent regulation occurs at specific Hfq concentrations, which varies 

for sRNA-mRNA pairs [41]. Too little or too much Hfq leads to suboptimal sRNA activity, 

with the latter resulting from sequestration of sRNAs and mRNAs in singly bound Hfq 

complexes. Furthermore, deep sequencing experiments have revealed a broad spectrum of 

additional RNAs that bind Hfq, further increasing competition for the RNA chaperone. 

Several of the abundant RNAs, including fragments of unprocessed tRNAs and 

bacteriophage-encoded transcripts, base pair with and antagonize the functions of sRNAs 

and have been denoted “sponge RNAs” [42,43]. Together these studies emphasize how the 

relative levels of a specific sRNA, its mRNA target as well as other sRNAs, mRNAs, sponge 

RNAs and Hfq all impact the extent of regulation.

Conclusions

The recent in vitro and in vivo studies have shown that Hfq binds sRNAs and mRNAs in 

multiple configurations on four different surfaces to affect stability of the sRNAs as well 

promote sRNA-mRNA base pairing by enhancing multiple steps. As a consequence, Hfq-

mediated regulation by sRNAs can be controlled intricately by the levels and the sequences 

of each of the binding partners. However, a note of caution is warranted. Most of the studies 

were carried out on a limited set of sRNAs and mRNAs in E. coli, and findings regarding the 

importance of specific residues or steps in the base pairing for one sRNA-mRNA pair may 

not necessarily apply to another pair. In addition, as mentioned at multiple points, the RNA 

binding surfaces on Hfq, particularly the rim and C-terminal domains, vary substantially 

from one organism to another, and Hfq molecules from one organism frequently fail to 

complement the full function of Hfq in another organism [36,44,45]. Nevertheless, we 

anticipate that the application of mutational and structural analysis combined with 

fluorescence-based in vitro and in vivo approaches described here to other sRNA-mRNA 

pairs and other Hfq homologs undoubtedly will further elucidate how the chaperone 

functions as such an effective, yet flexible RNA matchmaker.
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Highlights

• Hfq contacts RNA via proximal, distal, rim and C-terminal surfaces

• RNAs interact with Hfq in multiple ways

• Mechanisms of Hfq-facilitated RNA pairing are being elucidated by new 

technologies
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Figure 1. 
Recent reports have added new details to the model of how Hfq binds to sRNAs and mRNAs 

and stimulates their interactions. (a) E. coli Hfq (teal for the proximal face and rim views 

and green for the distal face view) employs four solvent exposed surfaces to interact with 

RNA; sRNAs (red) have been found to contact the proximal and distal faces, rim and C-

terminus, and mRNAs (blue) have been shown to contact the distal face, rim and C-terminus 

(not shown). Red and blue arrows denote sRNA and mRNA binding to Hfq, respectively. 

Some of the interactions occur concurrent with transcription of the RNAs, although Hfq 
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binding to Rho-independent terminator of sRNAs most likely occurs after transcription 

termination, when the U-rich end of the terminator is accessible. Hfq binding to mRNAs and 

sRNAs is proposed to be in random order. Initial binding is likely to involve only a subset of 

subunits allowing for rapid displacement by other RNAs. (b) Many RNAs bind multiple 

surfaces, resulting in changes in RNA secondary structure and protection against RNase 

degradation, particularly for sRNAs. (c) The free surface(s) of Hfq not already bound to 

RNA interacts with the cognate RNA partner, positioning the unbound seed region of the 

sRNA in close proximity to the unbound complementary region of the mRNA. (d) Basic 

residues on the Hfq rim surface neutralize the negative charge of the RNAs and help to 

catalyze initial nucleation. (e) Hfq also promotes base pairing of the remaining 

complementary region. (f) Lower affinity of duplex RNA for Hfq causes free RNAs to 

compete off sRNA-mRNA pairs, allowing Hfq to serve as a matchmaker for another pair of 

RNAs. Lists of Class I and Class II sRNAs can be found in [25].
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