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Abstract

Background—Malignant cerebral edema (CED) complicates at least 20 % of large hemispheric 

infarcts (LHI) and may result in neurological deterioration or death. Midline shift (MLS) is a 

standard but crude measure of edema severity. We propose that volumetric analysis of shifts in 

cerebrospinal fluid (CSF) over time provides a reliable means of quantifying the spectrum of 

edema severity after LHI.

Methods—We identified 38 patients from 2008 to 2014 with NIHSS ≥8, baseline CT <6 h after 

stroke onset, at least 1 follow-up (FU) CT, and no parenchymal hematoma. The volumes of CSF 

(sulci, ventricles, and cisterns) ipsilateral (IL) and contralateral (CL) to infarct on baseline and FU 

CTs were quantified by manually assisted outlining with MIPAV image analysis software, as was 

infarct volume and MLS on FU CTs. Percentage change in CSF volumes (ΔCSF) from baseline to 

FU scans was correlated with MLS and compared in those with vs. without malignant edema 

(defined as hemicraniectomy, osmotic therapy, or death/neurological deterioration with MLS ≥5 

mm).

Results—11 of 38 subjects (29 %) developed malignant edema. Neither baseline NIHSS nor 

CSF volume differed between those with and without edema (median NIHSS 18 vs. 13, p = 0.12, 

CSF volume 102 vs. 124 ml, p = 0.16). Inter-rater reliability for CSF measurements was excellent 

(intraclass correlation coefficient 0.97). ΔCSF correlated strongly with MLS at peak edema (r = 

−0.75), even adjusting for infarct volume (p = 0.009). ΔCSF was also greater in those with 

malignant edema [−55 % (IQR −49 to −62) vs. −36 % (−27 to −45), p = 0.004]. ΔCSF was the 

greatest within IL sulci [−97 % (−86 to −99) vs. −71 % (−41 to −79), p = 0.002] but also 

significantly greater within CL sulci in those with malignant edema [−50 % (−29 to −65) vs. 
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−25 % (0 to −31), p = 0.014]. More than half this CSF volume reduction occurred by the time of 

first FU CT around 24 h after stroke, while MLS rose later.

Conclusions—Volumetric CSF analysis reliably quantifies CED and distinguishes those with 

malignant edema and MLS from those with a more benign course after LHI. ΔCSF may provide 

an earlier and more sensitive indicator of edema severity across a broader dynamic range than 

MLS.
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Introduction

Cerebral edema (CED) accounts for a large proportion of neurologic deterioration within the 

first week after large hemispheric infarction (LHI) and is the leading cause of early death 

[1]. Malignant edema develops in approximately 10–20 % of patients and can result in a 

rapid rise in compartmental pressure, subfalcine and uncal herniation, and clinical 

deterioration, often leading to death [2]. Mortality may be as high as 80 % despite medical 

management, unless surgical decompression is performed before herniation occurs [3]. 

Despite the importance of studying CED after LHI, little attention has been paid to 

understanding the kinetics of this process [4, 5]. No simple validated metric exists to easily 

and accurately quantify edema across the broad range of severities at several time points 

after stroke. Such a methodology would be important to characterize and thence understand 

the variability in trajectory of edema across patients while potentially providing a biomarker 

for studying and predicting outcomes after LHI, including early need for decompressive 

hemicraniectomy (DHC) [6].

Midline shift (MLS) and volume of infarct-related hypodensity are two commonly used 

surrogates of edema [7]. MLS is a crude estimate of subfalcine herniation which only 

becomes apparent later in the course and in severe cases, when edema has progressed 

beyond the point where reductions in intracranial blood and cerebrospinal (CSF) volume can 

compensate. It does not capture the full spectrum of edema severity, as those with milder 

degrees of edema may have little to no MLS, while others with temporal lobe infarction may 

develop uncal herniation despite minimal MLS. Hypodensity size is a variable combination 

of infarct and edema and so only approximates the actual edema-related increase in 

intracranial volume; it is also difficult to quantitate early when infarcts are subtle on 

computed tomography (CT) scans [8, 9]. In contrast, CSF is progressively displaced from 

the sulci and ventricles of the cerebral hemispheres as edema develops, and measures of CSF 

shifts may better capture the dynamic range and temporal course of CED after stroke.

We propose a CT-based volumetric analysis of shifts in CSF compartments as a novel 

method for more accurately quantifying CED after LHI. This leverages the widespread 

utilization of CT in acute stroke and the ease of CSF segmentation [10]. In this study, we 

aim to demonstrate the feasibility and reliability of CSF volumetrics in patients with LHI, 

and validate this novel metric against standard measures such as MLS and hypodensity 

volume. We will also evaluate whether changes in or ratios of specific CSF compartments 
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(such as ipsilateral (IL) or contralateral (CL) sulci or ventricles) better correlate with MLS 

and discriminate those who develop malignant edema compared to estimates of stroke 

severity or infarct-related hypodensity volume.

Methods

Patient Selection and Clinical Endpoint

We retrospectively identified patients with hemispheric infarction from acute ischemic 

stroke patients who were enrolled in a prospective stroke genetics study at our institution 

between 2008 and 2014. Inclusion criteria were (1) initial National Institutes of Health 

Stroke Scale (NIHSS) ≥8; (2) baseline head CT within 6 h of stroke symptom onset; and (3) 

at least 1 additional follow-up (FU) CT within 5 days of stroke (and at least 4 h from 

baseline CT) confirming hemispheric infarction [i.e., hypodensity in middle cerebral artery 

(MCA) ± PCA/ACA territories] as well as some degree of edema, defined as the presence of 

ventricular or sulcal effacement, MLS, and/or transtentorial herniation. FU CT scans were 

categorized based on timing as either “early edema” (within 48 h of stroke onset) or “peak 

edema” (2–5 days from onset, but prior to DHC). In those with several FU CTs, the CT 

closest to 24 h from onset was used as early edema CT and the FU CT with the most MLS 

was used as the peak edema CT. Subjects were excluded if FU CT demonstrated 

parenchymal hematoma (i.e., homogenous hyperdensity occupying <30 % [PH1] or >30 % 

of infarct zone [PH2], latter with significant mass effect or located beyond borders of the 

infarct) [11].

Clinical and demographic information was extracted from the prospective study database 

and supplemented with review of medical records. This included age, sex, race, time of 

stroke onset, tPA use, baseline and 24-h NIHSS, and GCS at baseline and at the time of each 

FU CT. Radiographic data extracted from baseline CT included the presence of hyperdense 

MCA (hd-MCA) sign and Alberta Stroke Program Early CT Score (ASPECTS) [12]. The 

primary clinical outcome of “malignant edema” was defined by the development of edema 

requiring hemicraniectomy or osmotic drug therapy, or CT exhibiting MLS C5 mm 

associated with death or decline in GCS (of two or more points) from baseline. In our single-

center institutional practice, osmotic therapy is only initiated at the time of neurologic 

worsening associated with edema on CT scan and is not used prophylactically. Similarly, 

DHC is performed in appropriate patients only after the development of edema and 

worsening mental status, but prior to signs of irreversible herniation.

Image Processing and Volumetric Analysis

Each CT scan was analyzed using the NIH Medical Imaging Processing, Analysis, and 

Visualization (MIPAV) software. Supratentorial CSF spaces [sulci and ventricles ipsilateral 

(IL) and contralateral (CL) to stroke, third ventricle] and basal cisterns were outlined on 

each slice using the semi-automated level-set tool (with manual outlining, if required, see 

Fig. 1). The volumes of each compartment and the total volume of CSF were then 

quantified. Total hemispheric volume (perimeter of brain from vertex down to the level of 

the anterior clinoid process) was also quantified. Hemispheric and sulcal symmetry was 

calculated as the ratio of IL vs. CL CSF volumes. The proportion of CSF in the cerebral 
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hemispheres was calculated as the ratio of total CSF volume to hemispheric volume. All FU 

scans also had measurement of MLS (displacement of the septum pellucidum) and infarct 

volume (by manual outlining of the visible hypodensity on each slice), and CED grading 

(grade 1 = focal brain swelling ≤1/3 of hemisphere, grade 2 = > 1/3 of hemisphere, grade 3 = 

edema with MLS) [13]. The absolute and percentage changes in volumes of CSF (total and 

each compartment) from baseline to early and peak edema FU CTs were calculated. ΔCSF 

was defined as the percentage change in total CSF volume from baseline to FU CT with 

peak edema in each subject. Continuous variables were reported as medians (with 

interquartile range, IQR) unless normality was confirmed by Shapiro-Wilk testing. Normally 

distributed variables were compared using t-tests, while non-parametric tests were employed 

for other comparisons of continuous variables.

Reliability of Measurements

The CSF regions of interest were independently outlined by two different raters (K.Y. and 

R.D.) in a subset of 13 CTs from five subjects and volumes of each obtained. Inter-rater 

reliability was calculated using the intraclass correlation coefficient (ICC) derived from a 

two-way mixed model of absolute agreement of these volumes between raters. This testing 

was repeated for the measurement of MLS on FU CT scans.

Validation of ΔCSF

Baseline and FU CSF volumes were compared using paired t-tests. Hemispheric and sulcal 

symmetry was tested by comparing the observed ratios to one (i.e., perfect symmetry) using 

t-tests at each time point. Validation of ΔCSF as a metric for quantifying CED after LHI was 

accomplished by (1) correlating ΔCSF with MLS and hypodensity volume at peak edema 

(using Pearson correlation coefficients). Partial correlations were then obtained for ΔCSF 

and MLS, adjusting for baseline NIHSS and peak hypodensity volume. (2) The association 

between ΔCSF and the endpoint of malignant edema was analyzed using the Mann–Whitney 

U test. If an increased risk of edema was associated with ΔCSF, then this association was 

further tested in binomial logistic regression, adding baseline clinical and radiographic 

covariates including age, baseline NIHSS, hd-MCA sign, ASPECTS, tPA use, and baseline 

CSF volume. ΔCSF was compared between CED grades using one-way ANOVA. Receiver 

operating characteristic (ROC) analysis was performed to identify optimal ΔCSF thresholds 

for malignant edema. To further evaluate the internal face validity of CSF measurements, we 

correlated baseline CSF volume (as a proportion of hemispheric volume) against patient age 

to determine if this accurately reflected brain atrophy.

Results

We identified 38 subjects with LHI from the prospectively enrolled cohort. Median baseline 

NIHSS was 15.5 (IQR 10–20) (Table 1). Baseline CT scan was performed at 74 min from 

stroke onset (IQR 36–166), and median ASPECTS score was 9 (IQR 8–10); 13 (34 %) had 

an hd-MCA sign and 82 % were treated with tPA. All had at least one FU CT for CSF 

volumetric analysis; 33 (87 %) had an early FU scan performed at a median of 18 h (IQR 

14–30), while 20 (53 %) had a scan at peak edema at a median of 67 h (52–88); 15 had both 

early and peak edema scans for serial analyses.
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Total baseline CSF volume was 120 ml (IQR 80–176 ml), of which just over two-thirds 

resided in the hemispheric sulci. The ratio of IL to CL hemispheric CSF volumes (i.e., 

hemispheric symmetry) was 0.96 ± 0.15 at baseline (p = 0.1 for comparison to 1). The ratio 

of IL:CL sulcal volumes (i.e., sulcal symmetry) was 0.94 ±0.16 (p = 0.048 for comparison to 

1). CSF volume represented 11 ± 5 % of hemispheric volume at baseline. The correlation 

between % CSF volume (as an estimate of brain atrophy) and subject's age was 0.77 (p < 

0.001, supplementary Fig.1). We did not find a correlation between ASPECTS score and 

baseline NIHSS or CSF volume/symmetry at baseline. However, hemispheric symmetry 

weakly correlated to baseline NIHSS (r = −0.36, p = 0.028). ICC for inter-rater measurement 

of CSF volumes was 0.92 for sulci and 0.99 for ventricles (both p < 0.001). Overall 

agreement for total CSF volumes was 0.97 (p < 0.001, supplementary Fig. 2). For 

comparison, ICC for the measurement of MLS was only 0.85.

Kinetics of Cerebral Edema

CSF volume fell 32 % from baseline to early FU scan (39 ± 24 ml, p < 0.001). The majority 

of this reduction occurred in IL sulci (22 ml or 56 %), but there was also a loss in CL sulci 

(12 ml/30 %) and IL ventricle (4 ml/ 28 %). Hemispheric symmetry fell to 0.63 ± 0.24 and 

sulcal symmetry to 0.57 ± 0.29 (both p < 0.001 compared to baseline). There was a further 

loss of CSF to scan with peak edema in those with both scans available: total CSF volume 

fell 55 ml compared to baseline (ΔCSF of 47 %) with IL sulci falling by 82 % (29 ml) and 

CL sulci by 35 % (14 ml). IL ventricular volume fell by 64 % (10 ml, all p < 0.001); there 

was no change in CL ventricular volume. Hemispheric symmetry fell to 0.31 ± 0.23 and 

sulcal symmetry to 0.21 ± 0.2 (both p < 0.001 in comparison to baseline and early CT). 

While over half the loss of CSF occurred by 24 h, the increase in MLS was seen 

predominantly on the peak edema scan (median of 5.3 mm, IQR 2.8–9.4) with little seen by 

24 h after stroke (median 2 mm, IQR 0–2.7 mm).

Validation of CSF Volumetrics with MLS and Malignant Edema

Malignant edema occurred in 11 subjects (29 %), with one additional subject having 5 mm 

or greater MLS without clinical deterioration. There was only a trend to higher baseline 

NIHSS in those with malignant edema, and hyperdense MCA sign was non-significantly 

more likely in those with edema (Table 1). There was no correlation between NIHSS and 

degree of MLS at peak edema (r = 0.13, p = 0.57). In contrast, we found a strong correlation 

between ΔCSF and MLS (r = −0.75, p < 0.001, Fig. 2). The volume of infarct-related 

hypodensity also correlated with MLS (r = 0.66, p = 0.001) and with ΔCSF (r = 0.54, p = 

0.01), but the association of ΔCSF and MLS remained even after adjusting for baseline 

NIHSS and peak infarct-related hypodensity volume (partial correlation of −0.63, p = 

0.005). MLS also inversely correlated with hemispheric (r = −0.64) and sulcal symmetry (r = 

−0.73, both p < 0.001). The CSF compartment most strongly correlated with MLS was % 

reduction in the volume of IL sulci (r = −0.76, p < 0.001).

There was a greater ΔCSF in those with malignant edema (55 vs. 35 % vs. baseline, p = 

0.004). Absolute volume reduction was not statistically different (53 vs. 39 ml, p = 0.2). 

Adjusting the association of ΔCSF with malignant edema for baseline covariates (age, 

NIHSS, hyperdense MCA, ASPECTS, baseline CSF volume) did not temper its association 
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(aOR 1.14, 95 % CI 1.02–1.28, p = 0.027). Reduction in IL and CL sulci volumes was also 

significantly greater in those with malignant edema (IL −92 vs. −65 %, p = 0.002; CL −43 

vs. −19 %, p = 0.014). There was significantly larger ΔCSF in those with CED grades 3 

(49 %) vs. 1 (14 %) or 2 (34 %, p = 0.005). ROC analysis revealed that ΔCSF had an area 

under curve of 0.85 (95 % CI 0.66–1.00, p = 0.006) with an optimal cutoff of 45 % 

providing 90 % sensitivity and 83 % specificity for malignant edema. For comparison, 

measurement of peak hypodensity volume provided 90 % sensitivity for volumes above 150 

ml but with only 58 % specificity.

Discussion

In this validation study, we have demonstrated that severity of CED after LHI can be 

quantified using a CT-based volumetric measure of CSF shifts over time. This novel measure 

utilizes serial brain imaging with CT scans as routinely performed in patients with LHI at 

risk for malignant edema. Outlining CSF compartments on baseline and FU scans provided 

a reliable and quantitative metric (with extremely high inter-rater agreement) that correlated 

strongly with infarct volume and MLS and was associated with the development of 

malignant edema independent of baseline markers of stroke severity and even infarct volume 

itself. In fact, we found that baseline NIHSS was only weakly associated with more severe 

edema in this cohort of stroke patients with hemispheric infarcts, and there was absolutely 

no correlation of baseline NIHSS with maximal severity of midline shift. This highlights the 

need for better early predictors of malignant edema.

CSF volumetric measures also exhibited good temporal resolution, demonstrating easily 

measurable differences at two distinct FU time points after LHI compared to baseline 

imaging. The reduction in CSF volume (ΔCSF) that we were able to quantify also paralleled 

the known time course of cerebral edema, with over half the shifts occurring by 24 h, 

providing a potential early radiographic predictor of malignant edema at a time point when 

accurate decisions about need for surgical interventions are critical. MRI measurement of 

infarct volume within 24 h has been demonstrated to predict malignant edema, but we 

believe that a CT-based approach would offer more generalizable advantages if it was able to 

aid in early decision making [4].

Using CSF volumetrics to quantify CED also possesses intrinsic biologic merit as it reflects 

the direct physiologic compensation that the brain undergoes in response to edema, as 

outlined over two centuries ago by anatomist Alexander Monro but expanded upon by 

Burrows and later Cushing who noted the importance of CSF in intracranial dynamics [14–

16]. Not only did we observe that the majority of hemispheric CSF resides in the bilateral 

sulci, but that the majority of CSF lost (i.e., compensation as edema develops, per the 

Monro-Kellie doctrine) comes from IL sulci. Measurement of % volume loss of IL sulci 

correlated most strongly with MLS and differentiated those with malignant edema from 

those less severely affected. Further exploring the compartmental dynamics of CSF might 

provide greater understanding of pressure shifts as edema develops. MLS is likely a later 

marker of edema when CSF compensation has been exhausted. Tracking early changes in 

CSF may allow elucidation of early kinetics not reflected simply by the measurement of 

MLS.
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Few studies have attempted to identify biomarkers of edema. One recent attempt utilized 

radiographic volume change in a roughly analogous way, but with MR imaging (at a time 

point of 62 h that was quite similar to our peak edema CT scans) and increase of brain 

volume rather than reduction in CSF volume as their target measurement [17]. However, this 

study included only 12 subjects, of whom only three developed neurologic deterioration 

from edema. Nonetheless, it is interesting that they found that brain volume increased by 72 

ml, a value not dissimilar to the 55-ml loss of CSF we measured. They found a trend to 

greater increase in volume in those with edema but no correlation of their measure with 

MLS. We believe that CSF volumetric measurements may provide a more sensitive marker 

of edema that detects subtle changes in sulcal effacement and compression of ventricles. 

Furthermore, performing MR scans in patients with large strokes who are often ventilated or 

unstable may be challenging, while CT scans are rapid and easier to obtain in this 

population; they are also more likely to be performed serially, which may facilitate the study 

of edema kinetics.

We found a 14-ml greater loss in CSF volume in those with malignant edema. While this 

may appear a minor difference, it is clear that small changes in intracranial volume can be 

quite clinically significant. A volumetric MR-based study of the effect of mannitol found an 

8-ml reduction in brain volume after a bolus dose in LHI patients with MLS [18]. Despite 

this modest effect, it is apparent that osmotic agents like mannitol and hypertonic saline can 

reverse transtentorial herniation by reducing brain volume [19].

We also found a significant correlation between baseline CSF volume and age, further 

supporting the face validity of our measurements. While greater atrophy was not associated 

with lower risk of malignant edema in this study, having more CSF and room to compensate 

for edema may be significant and should be explored in future larger studies. One prior 

study did analyze total CSF volume at baseline (but not change over time) in relation to 

malignant edema after proximal occlusion [20]. They found that this intracranial volume 
reserve was lower in those developing malignant edema, while NIHSS was no different. In 

that study, only total (and not compartmental) CSF volume was measured and even then it 

was only estimated using a simple thresholding approach. While this method seemed 

feasible for baseline imaging, it cannot accurately delineate CSF in the presence of infarct-

related hypodensity (with overlapping low density adjacent to sulci and ventricles) on FU 

CT scans. We applied a semi-automated CSF outlining approach with human input that is 

likely much more accurate in that setting. The next step in expanding the applicability of our 

approach to a broad spectrum of stroke patients is developing a fully automated algorithm 

that can outline CSF on serial CT scans. Not only could this be useful for understanding 

edema kinetics and prediction of malignant trajectories at early time points, but also be 

applied to large-scale genomic evaluations of edema after stroke, an endeavor that could 

uncover biologic targets to prevent edema formation [21–23].

There are several limitations to note in this preliminary analysis. While stroke patients were 

prospectively enrolled in this cohort, selection and image analysis was retrospectively 

performed and with some knowledge of radiographic outcomes (i.e., MLS) and clinical 

endpoints (i.e., need for hemicraniectomy), which could introduce a degree of bias. We also 

utilized a convenience sample of available scans that were generally performed at times of 
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neurologic deterioration and so hopefully represent a close approximation of ‘peak edema,’ 

but were not standardized in timing. Larger prospective studies should validate the 

generalizable accuracy of CSF volumetrics to predict edema (adjusting for stroke severity 

and other important covariates) while employing automated techniques to negate any such 

biases. We also plan to further evaluate the utility of CSF changes at 24 h as a standardized 

early biomarker of edema severity.

Conclusions

CSF volumetrics offers a reliable and quantifiable measure of CED after LHI that better 

captures the full range of edema severity than MLS and does not simply recapitulate 

measuring infarct-hypodensity volume. We confirmed that those with more MLS and 

malignant edema manifest larger ΔCSF, validating our novel metric. We propose that this 

CT-based quantitative metric of edema will allow widespread study of early changes to 

predict malignant edema and further analyses of the early versus delayed kinetics of edema 

after LHI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. CSF spaces outlined on CT scan slice at baseline and peak edema in sample patient
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Fig. 2. Correlation of peak midline shift with total ΔCSF (top) and in ipsilateral and contralateral 
sulci (bottom, left, and right)
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Table 1
Clinical and radiographic characteristics in all subjects, categorized by development of 
malignant cerebral edema

Variable All subjects Malignant edema (n = 11) No malignant edema (n = 27) p value

Age (years) 62 ± 16 57 ± 17 64 ± 16 0.21

Gender, female 19 (50 %) 7 (64 %) 12 (44 %) 0.48

Race, AA (%) 8 (21 %) 2 (18 %) 6 (22 %) 1.00

Baseline NIHSS 15.5 (10–20) 18 (14–21) 13 (10–20) 0.12

ASPECTS 9 (8–10) 9 (8–10) 10 (9–10) 0.18

Hd-MCA sign 13 (34 %) 6 (55 %) 7 (26 %) 0.09

tPA treatment 31 (82 %) 9 (82 %) 22 (82 %) 1.00

24-h NIHSS 17 (13–22) 20 (17–25) 16 (10–21) 0.04

Hypodensity volume 201 (96–280) 282 (227–329) 135 (70–203) 0.001

Peak MLS 4.9 ± 3.7 8.5 ± 2.6 2.5 ± 2.0 <0.001

Mortality 5 (13 %) 1 (9 %) 4 (15 %) 1.00

Values are reported as mean ± standard deviation, median (interquartile range), or proportions
AA African-American, Hd-MCA hyperdense MCA, MLS midline shift
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