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Abstract

This article introduces an item factor analysis (IFA) module for OpenMx, a free,
open-source, and modular statistical modeling package that runs within the R pro-
gramming environment on GNU/Linux, Mac OS X, and Microsoft Windows. The IFA
module offers a novel model specification language that is well suited to programma-
tic generation and manipulation of models. Modular organization of the source code
facilitates the easy addition of item models, item parameter estimation algorithms,
optimizers, test scoring algorithms, and fit diagnostics all within an integrated frame-
work. Three short example scripts are presented for fitting item parameters, latent
distribution parameters, and a multiple group model. The availability of both IFA and
structural equation modeling in the same software is a step toward the unification of
these two methodologies.
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Introduction

When a test consisting of items is administered, it is desirable to understand what

those items measure. Furthermore, if a test is to be summarized as a single score, the

items should assess a single latent dimension. This is especially important for
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computer adaptive testing because each examinee may receive a different set of

items intended to measure the same latent ability. These issues have received atten-

tion in the literature since at least the 1950s. However, it was the publication of the

marginal maximum likelihood algorithm (MML; Bock & Aitkin, 1981) and the

increasing availability of computing power that opened the way for efficient analysis

of practical problems grounded with a sound theoretical footing. With demonstra-

tions of the flexibility and sensitivity of MML for modeling tests and questionnaires

(e.g., Bock, Gibbons, & Muraki, 1988), full-information item factor analysis (IFA)

has grown in popularity.

A wide variety of software is available for estimation of IFA models. Examples

include ConQuest (M. L. Wu, Adams, Wilson, & Haldane, 2007), EQSIRT (E. J. C.

Wu & Bentler, 2012), flexMIRT (Cai, 2012), IRTPRO (Cai, Thissen, & duToit,

2011), and mirt (Chalmers, 2012). In light of the many excellent choices already
available, it may be surprising that there is an opportunity for new IFA soft-
ware. Even so, the present article introduces the availability of IFA software that
is substantially different from what is currently available.

Why New Software for IFA?

Modular design is an important software attribute that has been neglected by current

IFA software. Modular software is written such that each section of code operates

independently and is accessed via a well-defined interface. A benefit of modularity is

that many programmers can work on the code simultaneously as long as each module

maintains the expected behavior of its interface. Our new IFA software is itself a

module within OpenMx (Boker et al., 2011), a free and open-source software orig-
inally designed for structural equation modeling (SEM). OpenMx runs inside the
R statistical programming environment (R Core Team, 2014) in heterogeneous
computing environments. Similar to the OpenMx style of model specification for
SEM, the IFA module offers a novel model specification language.

Open-Source

OpenMx is open-source; hence, the source code is available for everybody to
view, modify, and use. To help organize a community around the project, the
OpenMx team maintains a website (http://openmx.psyc.virginia.edu) that hosts
binary and source versions of the software and several forms of tutorials and
reference documentation. Help with OpenMx is available on the website from
discussion forums and a community-maintained Wiki.

OpenMx is not the only open-source software for IFA. The R package mirt is
also open-source. In fulfillment of some of the claimed benefits of open-source
software, a friendly exchange of code and ideas has taken place between OpenMx
and mirt (Pritikin, 2014). The OpenMx team welcomes contributors and
encourages cross-pollination between implementations. Of course, open-source
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software is peer-reviewed. In many software engineering projects, peer-review
has led to more reliable and higher quality software in comparison with a closed-
source approach (Aberdour, 2007).

Heterogeneous Computing Environments

OpenMx runs on a variety of operating systems including GNU/Linux, Mac OS
X, and Microsoft Windows. OpenMx scripts that are written on one operating
system can be used on other operating systems without modification. This
platform-independence is useful in today’s heterogeneous computing environ-
ments, where each researcher on a team may have a different preferred comput-
ing platform. Moreover, since OpenMx is free, no license obligations hinder the
use of OpenMx on computer clusters or exotic supercomputers.

Model Specification

While IFA software has grown more capable, model specification generally follows

a structure that has changed very little since the 1980s. Specification of IFA models

is generally accomplished with a serially ordered script written in a domain specific

language unique to a particular software package. One of the key innovations in the

design of OpenMx was the recognition that models can be specified directly in R,
leveraging the fact that R is interactive and offers a full programming language.
One may use OpenMx without changing one’s conception of model building,
engaging in programming minimally. However, consider the challenge of speci-
fying nominal item models for testlets.

The nominal model (e.g., Thissen, Cai, & Bock, 2010) can be defined as

a = Taa

c = Tcg

Pr (pick = kjs, u, ak , ck) = C
1

1 + exp (� (suak + ck))

where the kth entry of a and c are the result of multiplying two vectors of free para-

meters a and g by fixed matrices Ta and Tc, respectively; a0 and c0 are fixed to 0 for

identification; and C is a normalizing factor such that
P

k Pr (pick = k) = 1. For

locally dependent items that share a common stimulus, Thissen, Steinberg, and

Mooney (1989) suggested fitting a nominal item model to their sum-score.

Orthogonal polynomial contrasts were used for the Ta and Tc matrices. To avoid

overfitting, a proportion of the ak and gk parameters were fixed to zero and the

remainder estimated as free parameters, typically obtaining satisfactory fit with a less

than full-rank model.

The specification of such nominal items is somewhat labor intensive. The transfor-

mation matrices, Ta and Tc, depend on the number of outcomes and the proportion of

free parameters may be controlled by freeing or fixing individual parameters. A

460 Educational and Psychological Measurement 75(3)



function is given in Appendix A that takes as arguments a dataset, the item name, the

number of factors, the proportion of full-rank of a, and proportion of full-rank of g.

This is a simpler interface because, conceptually, these are the form of the parameters

that a user wants to control and the user has direct control of them. Granted, there is

nothing that precludes an analyst from writing a similar function for any IFA software

package. However, this is often regarded as extra work and is rarely, if ever, done.

Automation of the specification of nominal testlet items is one example of the use

of programming to ease a modeling task. One of the main contributions of OpenMx
has been to encourage treatment of statistical models and their components as
things that can be generated and manipulated within a programming environment.
The OpenMx IFA module also uses this style of model specification. Not all users
will prefer to exploit such a low-level user interface. Our goal is to extend the range
of utility in both directions, toward both expert and novice users. Sophisticated
users are empowered to build nonstandard models or to simplify application of
routine analyses by developing higher-level interfaces. For example, the metaSEM
package (Cheung, 2014) simplifies the specification of OpenMx models for meta-
analysis. A similar package could simplify the specification of nominal testlets to
make the technique simpler for nonspecialists to put into practice.

Modular Components

OpenMx is written using modular programming techniques in the R and C++
languages with the intent that it will be maintained and extended by members of
the research community. The core programming team helps and encourages sta-
tistical and quantitative researchers to add their research projects to the larger
OpenMx framework. We believe that nurturing a sustainable community around
OpenMx is essential to the project’s long-term prosperity (Nakakoji, Yamamoto,
Nishinaka, Kishida, & Ye, 2002). To work on part of OpenMx, one does not
need to understand the inner workings of all other modules; it is only necessary
to understand and adhere to the interface of the thing that one wishes to custo-
mize or extend. Although OpenMx originally focused on SEM, the scope of
OpenMx is often stretched in new directions, expanding its scope (e.g., state-
space modeling, Hunter, 2014). The IFA module is another instance of this hap-
pening. In creation of the IFA module, economy of effort was realized by lever-
aging the existing model specification and data handling methods already built
into OpenMx. The IFA module, in turn, adds a new set of interfaces that can be
customized and extended. Those who practice basic research on IFA are invited
to incorporate their research projects into the OpenMx IFA module.

Item Models

The IFA module of OpenMx relies on the RPF package for response probability
functions (Pritikin, Chalmers, Weeks, Cai, & Houts, 2014). Three functions are
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currently available: the 4PL dichotomous response model (Loken & Rulison,
2010), graded response model (Samejima, 1969), and nominal response model
(Thissen et al., 2010). Of course, the 1PL, 2PL, 3PL, partial credit model
(Masters, 1982), and generalized partial credit model (Muraki, 1992) can be con-
structed as restrictions of the available models. All models use the logistic metric
and a multidimensional parameterization.

The community is invited to expand the list of available models. All that is

required to add a new response probability function is to contribute computer code to

implement the RPF interface (see Table 1). Beyond this modular interface, no addi-

tional computer code is required to add a new type of item model. From the point of

view of the rest of the software suite, a new item model is indistinguishable from

any of the three original item models. Item estimation and fit statistics would work

seamlessly with a new item model just as they do with the item models that are cur-

rently implemented.

Item Parameter Estimation

Item parameters are optimized using MML (Bock & Aitkin, 1981) with an equal

interval quadrature. For a convenient performance boost, automatic detection of

two-tier covariance structure is implemented (Cai, 2010a). Bayesian priors of any

functional form can be placed on any parameter. As per usual SEM practice, a free

parameter can be fixed to a constant or equated with other free parameters. Precision

of estimates (e.g., standard errors) can be assessed by the direct method (Oakes,

1999), covariance of the row-wise gradients, Richardson extrapolation (Jamshidian

& Jennrich, 2000), Supplemented EM (Meng & Rubin, 1991; Tian, Cai, Thissen, &

Xin, 2013), sandwich-type covariance (Louis, 1982; Yuan, Cheng, & Patton, 2013),

likelihood-based confidence intervals, and bootstrap. Accuracy of parameter recov-

ery and standard errors is indistinguishable from accuracy reported by Cai, Yang,

and Hansen (2011). However, users are encouraged to verify our accuracy claims for

Table 1. Interface for Response Probability Functions.

Method

Descriptive
Count of nonestimated parameters
Count of estimated parameters
Default upper and lower bounds (if any)

Imperative
Plausible random parameters
Response probability function

First and second derivatives
Estimable parameters with respect to the log likelihood
Outcome probabilities with respect to examinee ability
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themselves. A number of ready-to-run simulation studies are included with OpenMx,
including both simulation studies from Cai, Yang, et al. (2011).

Optimizers

IFA is closely related to factor analysis (Kamata & Bauer, 2008; Takane & De

Leeuw, 1987). However, IFA makes the simplifying assumption of conditional inde-

pendence (Equation 1) to achieve higher performance. The Hessian of the completed

data model is block diagonal (Cai, 2010b). OpenMx takes full advantage with a
block-wise matrix inversion routine and Newton–Raphson optimizer. To demon-
strate and exercise this code, a test in the OpenMx test suite routinely fits a model
with 1,536 2PL items. This test completes in 17 seconds on a developer laptop,
less than the time it takes to invert a 3,072 3 3,072 matrix once on the same hard-
ware. MML offers remarkable efficiency but at the cost of flexibility. To com-
pute likelihood-based confidence intervals, a general nonlinear optimizer is
required.

OpenMx currently offers two nonlinear optimizers: NPSOL (Gill, Murray,
Saunders, & Wright, 1986) and CSOLNP (Zahery, Gillespie, & Neale, 2014).
Since optimizers use a modular interface, a nonlinear optimizer can be substi-
tuted for the Newton–Raphson optimizer in the M-step of MML or can opti-
mize an IFA model directly without MML. The nonlinear optimizers are much
slower than Newton–Raphson, but can optimize a much broader class of prob-
lems. The ability to switch optimizers can also simplify debugging. For example,
if Newton–Raphson cannot solve a problem then it is a simple matter to check
whether NPSOL can solve it. NPSOL tries to optimize the fit function without
the use of analytic derivatives. If NPSOL cannot solve it either then, most likely,
there is a mistake in the problem specification.

Test Scores

Examinee scores can be obtained with expected a posteriori (EAP; Bock & Mislevy,

1982), maximum a posteriori (MAP), and sum-score EAP (Thissen, Pommerich,

Billeaud, & Williams, 1995) methods. However, the user interface is different than

what many traditional IFA packages offer (e.g., menu options or buttons). EAP fam-

ily scores do not involve optimization whereas MAP scores do. Therefore, EAP fam-

ily scores are available from the RPF package, while MAP scores involve running an

OpenMx optimization function. This seemingly minor difference is of great phi-
losophical importance to the OpenMx design team. OpenMx is intended to accu-
rately reflect the underlying mathematical process. We believe that closely
following the math is the best way to avoid designing ourselves into a corner.
Our users expect their data analysis scripts to continue working year after year,
even as we add features and evolve the software. If we design ourselves into a
corner then we will be forced to break backward compatibility and users will be
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forced to update their scripts. This means that some of the OpenMx IFA inter-
faces are not as streamlined as most other IFA software in popular use. One
could regard OpenMx as a middle layer to support a point-and-click style IFA
user interface for analysts who are satisfied with fitting an occasional single fac-
tor 2PL model. On the other hand, we believe sophisticated users will appreciate
the power and consistency of the OpenMx approach when building intricate or
nonstandard models.

Fit Diagnostics

OpenMx offers popular model fit statistics for IFA models including CFI, TLI,
RMSEA, AIC, and BIC, consistent with treatment of structural equation mod-
els. In addition, the RPF package includes IFA specific diagnostic tests. These
include a test of the assumption of conditional independence (Chen & Thissen,
1997), a sum-score-based test of item fit (Kang & Chen, 2008; Orlando &
Thissen, 2000), and a full-information multinomial fit test (Bartholomew &
Tzamourani, 1999). These tests are optimized for two-tier covariance structure.
Also available are Rasch residual-based fit statistics (Wright & Masters, 1982).
Consistent with our theme of modularity, each diagnostic procedure is an inde-
pendent R function. Easy access to single tests make it straightforward to verify
the uniformity of the null distribution or compute a bootstrap p value.

Example Scripts

Before we present the scripts, a brief review of IFA models will be helpful. The con-

ditional likelihood of response xij to item j from person i with item parameters jj and

latent ability ui is

L(xijj, ui) =
Q

j

Pr(pick = xijjjj, ui): ð1Þ

One implication of Equation 1 is that items are assumed to be conditionally indepen-

dent given the latent ability u. That is, the outcome of one item does not have any

influence on another item after controlling for j and ui. The unconditional likelihood

is obtained by integrating over the latent distribution ui,

L(xijj) =
R

L(xijj, ui)L(ui) dui: ð2Þ

With an assumption that examinees are independently and identically distributed, we

can sum the individual log likelihoods,

G =
P

i

log L(xijj): ð3Þ

One important observation about Equation 3 is that there are two kinds of para-

meters. There are item parameters j and latent distribution parameters u of the

464 Educational and Psychological Measurement 75(3)



participants. For didactic purposes, we will start with a model for item parameters j

and neglect the latent distribution, assuming that the latent distribution is standard

multivariate normal. Once there is some experience with item models, we will fix

item parameters and focus on estimating latent distribution parameters. Finally, an

example will be given of a model that estimates both item and latent distribution

parameters simultaneously.

Readers familiar with prior versions of OpenMx know that only one strategy
was available to find the maximum likelihood estimate and obtain an estimate
of the information matrix. Many more options are available for IFA models. To
accommodate the additional choices, the user can attach an explicit compute
plan to a model. The compute plan is flexible way to communicate to OpenMx
which operations to perform.

Item Parameters

Suppose you regularly administer the PANAS (Watson, Clark, & Tellegen, 1988),

but instead of scoring participants by adding up the item scores, you want to try IFA.

Here is how you might do it. Without loss of generality, we will only consider the

positive affect part of the scale.

1 library (Open Mx) # load the OpenMx and RPF packages into R

2 library (rpf)

3

4 spec\2list () # spec will map item models to data columns

5 # rpf . grm creates a graded response item model

6 spec [1:10]\2 rpf . grm ( outcomes = 5)

7 data\2 read . csv (‘demo1 . csv’)

8 # Coerce data to ordered factors

9 data\2 mxFactor (data, levels = 1:5)

10

11 # make starting values matrix

12 starting Values\2 matrix ( c ( 1, seq ( 1, 2 1, length . out = 4 ) ),

13 ncol = length ( spec ), n row = 5 )

14 # make an mxMatrix object to hold the free item parameters

15 imat\2 mxMatrix ( name = ‘item’, values = starting Values, free = TRUE,

16 dimnames=list(names(rpf.rparam(spec[[1]])),colnames(data)))

17 rownames ( imat ) [1]\2‘posAff’

18 # Labels create equality constraints

19 imat$labels [ 1, ]\2‘slope’

20

21 # Give instructions on how to optimize the model

22 compute Plan\2mxCompute Sequence ( steps = list (

23 mxComputeEM ( expectation = ‘expectation’, predict=‘scores’,

24 mstep=mxComputeNewtonRaphson ( ) ),

25 mxComputeOnce ( from = ‘fitfunction’, what= ‘information’, how= ‘meat’ ),

26 mxComputeStandardError ( ) ) )

27 # Construct an mxModel object called ‘panas1’ containing data, expectation,

28 # fit function, and compute plan.
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29 panas1\2 mxModel ( model = ‘panas1’, imat,

30 mxData ( observed=data, type=‘raw’),

31 mxExpectationBA81 ( ItemSpec=spec ),

32 mxFitFunctionML ( ), computePlan )

33 panas1\2mxRun (panas1, silent=TRUE) # run the model

34 summary (panas1) # print a summary of the results

The item parameters are stored in the item matrix with 1 item per column (Line

15). Regardless of item model, the first rows contain the factor loadings. The exact

parameterization of the graded response model used (Lines 6 and 13) is given in the

RPF package (Pritikin et al., 2014). We use traditional parameter names from the

item model except for the first row where we override the name with the name of our

factor (Line 17). An equality constraint is placed on the parameters in the first row of

the item matrix by giving them a label of slope (Line 19). This causes the estimation

of a Rasch model instead of unconstrained 2PL items. The compute plan (Line 22)

tells OpenMx what we want to do with the model. The default compute plan is to
optimize the parameters of a model using a nonlinear optimizer. This is usually
suitable for structural equation models, but for IFA models, it is much more effi-
cient to use the Expectation–Maximization algorithm (Dempster, Laird, &
Rubin, 1977). We must request this explicitly with mxComputeEM (Line 24). The
information matrix is approximated by the inverse of the covariance of the row-
wise first derivatives (Line 25). This estimate is called meat because it also forms
the inside of a sandwich covariance matrix (White, 1994). The last of step the
compute plan, mxComputeStandardError (Line 26), summarizes the infor-
mation matrix as standard errors.

Latent Distribution Parameters

Suppose an enterprising researcher has administered the PANAS to a large sample

from the general population, fit an item model to these data, and published item para-

meters. You are testing an experimental intervention that should increase positive

affect and wish to check whether your sample has significantly more positive affect

than the general population mean.

35 # Here we are going to reuse the item parameters from our first

36 # example. Instead of estimating them, we are going to fix

37 # them and assume that they are the true population parameters.

38 panas1$item$free [, ]\- FALSE

39

40 # set up the matrices to hold our latent free parameters

41 m.mat\- mxMatrix ( name = ‘ mean ’, nrow = 1, ncol = 1, values = 0, free = TRUE )

42 rownames ( m. mat)\- ‘posAff’

43 cov.mat\- mxMatrix(name= ‘ cov ’, nrow = 1, ncol = 1, values = diag ( 1 ), free=TRUE)

44 dimnames (cov.mat)\- list ( ’ posAff ’, ’ posAff ’ )

45

46 # build the item part of the model

466 Educational and Psychological Measurement 75(3)



47 data\- read.csv ( ’ demo2 .csv ’ )

48 # Coerce data to ordered factors

49 data\- mxFactor ( data, levels = 1:5 )

50 panasModel\- mxModel (model =panas1, m.mat, cov.mat,

51 mxData ( observed=data, type=‘raw’), name=‘panas’)

52

53 # build the latent distribution part of the model

54 latentModel\- mxModel ( model = ’ latent ’,

55 mxDataDynamic ( type = ’ cov ’, expectation=‘panas.expectation’),

56 mxExpectationNormal ( covariance= ’ panas.cov ’, means= ‘panas.mean’),

57 mxFitFunctionML ( ) )

58

59 computePlan\- mxComputeSequence ( steps = list(

60 mxComputeEM ( expectation = ’ panas.expectation ’, predict = ’ scores’,

61 mstep=mxComputeGradientDescent(fitfunction= ’ latent.fitfunction ’ ) ),

62 mxComputeConfidenceInterval ( ) ) )

63

64 # build the container model

65 e1Model\- mxModel(model= ’experiment1’, panasModel, latentModel,

66 mxFitFunctionMultigroup ( ’ panas.fitfunction ’ ),

67 mxCI ( ’ panas.mean ’ ),

68 computePlan )

69 e1Model\- mxRun (e1Model, silent=TRUE) # run the model

70 summary(e1Model) # print a summary of the results

If you want to run this code on your own computer, note that this example is

not self-contained but depends on the previous example. Inside the M-step

(Line 61), the latent distribution of an IFA model is independent of item para-

meters (Cai, 2010b). The discrete masses accumulated in the quadrature are con-

verted to a multivariate normal distribution by mxDataDynamic (Line 55).
The model multivariate normal distribution is fit against these dynamic data
by mxExpectationNormal (Line 56). Since the latent model does not
have any constraints, the optimizer will find a model distribution that is
essentially identical to the data distribution. However, this is not generally the
case. Within the M-step, we can fit an arbitrary structural equation model to
the data covariance and mean vector. In fact, mxExpectationNormal
is exactly the same function that we could use to specify a SEM. The compute
plan (Line 59) tells OpenMx what we want to do with the model. It is
necessary to specify an explicit compute plan because there are more
choices to make than can be accommodated by the default plan.
mxComputeGradientDescent invokes a nonlinear optimizer (Line 61).
Our use of mxFitFunctionMultigroup is not strictly necessary (Line 66).
This fit function is used because it generalizes to more than 1 group (as in
Appendix B). We request a likelihood-based confidence interval around the
mean (using mxCI) to obtain a more robust test of our hypothesis than we
could expect from a Wald test (Line 67).
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Item and Latent Distribution Parameters

The reader may be aware that other IFA software is more succinct when it comes to

model specification. Only a single line of R code is required to fit our first example
with mirt. The benefits of the OpenMx approach become apparent in the specifi-
cation of more intricate models. Multiple group models often involve one group
anchored to a standard normal distribution with latent distribution parameters
of the other groups estimated relative to the anchoring group. An example is
given in Appendix B that is approximately a combination of our first two exam-
ples. The specification is lengthy, but the user has control over every detail. As
few as another 10 to 20 lines of R code are required to turn this example into a
Monte Carlo study to predict statistical power at a range of candidate sample
sizes (e.g., Kelly et al., 2015).

Discussion

OpenMx is an open-source statistical modeling software package with IFA and
SEM modules that runs in the R statistical computing environment. The IFA
module builds on a strength of the OpenMx design wherein a full programming
language is used for model specification. The IFA engine (Bock & Aitkin, 1981)
has been carefully tuned to perform well on multicore hardware (Levon, 2014;
Valgrind Developers, 2014) and can fit a wide variety of multidimensional IFA
models. Once an IFA model is fit, a selection of factor scores, fit statistics, and
diagnostic tests are available.

Projects like OpenMx are never fully completed and the IFA module is no
exception. For higher-dimensional models, the Metropolis–Hastings Robbins–
Monro algorithm (Cai, 2010b) would make a useful addition, since Bock and
Aitkin (1981) become impractically slow as the number of dimensions increase
(the curse of dimensionality). Once we can efficiently estimate models with
more factors then it would be a straightforward extension to allow RAM
(McArdle & McDonald, 1984) or LISREL (Jöreskog & Van Thillo, 1972)
notation to model the mean and covariance matrix. The assumption that the
latent distribution is multivariate normal could be relaxed using splines
(Woods, 2006) or empirical histograms (Woods, 2007). A limited-information
goodness of fit test (Cai & Hansen, 2013) would be helpful since the full-
information test performs poorly as the number of items increase. Scripts to
automate exploration of differential item function and test linking would ease
these common tasks.

The current article only briefly covers the many features and facilities of

OpenMx. To learn more, obtain a free download of the software, and participate
in the forums please go to http://openmx.psyc.virginia.edu (Boker et al.,
2011).
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Conclusions

OpenMx, a freely available open-source statistical software package, is
now capable of estimating IFA models via MML. However, datasets often
include other indicators measured on an interval or ratio scale. For example,
in an educational context, students are often recorded with an age and a
socioeconomic score. Educators want to understand how school performance
is influenced by demographic factors in a general SEM setting. There is
some work in this direction (e.g., Adams, Wilson, & Wang, 1997). However,
at the time of writing, there is still no consensus on how to best combine IFA
and SEM approaches without resorting to Monte Carlo methods (Cai, 2013).
The availability of an IFA algorithm within capable, open-source SEM soft-
ware is a step toward the unification of IFA and SEM. We hope OpenMx will
spur research in to a more satisfactory reconciliation of these two
methodologies.

Appendix A

Nominal Item Model, Testlet Construction

71 library (OpenMx) # load the OpenMx and RPF packages into R

72 library ( rpf )

73 nominalTestlet\- function ( data, name, factors, aRank, cRank) {

74 lev\- length ( levels ( data [ [ name ] ] ) ) # find the number of outcomes

75 spec1\- rpf.nrm ( lev, factors ) # create a nominal item model

76 nthresh\- spec1$outcomes - 1

77

78 # determine which parameters are free

79 free\- rep ( FALSE, spec1$factors + 2 * nthresh)

80 free[1]\- TRUE

81 base\- spec1$factors+1

82 if (nthresh * aRank .= 1) {

83 free [ ( 1 + base ):(base + nthresh * aRank - 1)]\- TRUE

84 }

85 base\- base + nthresh

86 if (nthresh * cRank .= 1) {

87 free [ base:(base + nthresh * cRank – 1 ) ]\- TRUE

88 }

89

90 # suggest feasible starting values

91 sv\- free * c(rep(1,spec1$factors), rep(1, nthresh), rep(0, nthresh))

92 sv[ c(1,spec1$factors+1) ]\- 1

93

94 list ( spec1, free=free, startingValues=sv) # return results

95 }

96

97 # create some demonstration data and items

98 data\- data.frame ( fruitfly=mxFactor ( sample.int (5, 10, replace=TRUE), 1:5),

99 lincoln=mxFactor ( sample.int ( 6, 10, replace=TRUE), 1:6) )
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100 # What the user would do to create a nominal testlet once they had data

101 t1\- nominalTestlet ( data, ’fruitfly’, 1, .1, .5 )

102 t2\- nominalTestlet ( data, ’lincoln’, 1, .5, .3)

Appendix B

A Two Group Model, Estimating Item and Latent Distribution Parameters

103 library (OpenMx) # load the OpenMx and RPF packages into R

104 library (rpf)

105 spec\- list() # spec will map item models to data columns

106 # rpf.grm creates a graded response item model

107 spec[1:10]\- rpf.grm ( outcomes = 5 )

108

109 g1Data\- read.csv ( ’ demo1 . csv ’ )

110 # Coerce data to ordered factors

111 g1Data\- mxFactor ( g1Data, levels = 1:5 )

112

113 # make starting values matrix

114 startingValues\- matrix ( c ( 1, seq ( 1, - 1, length . out = 4 ) ),

115 ncol = length ( spec ), nrow = 5 )

116 # make an mxMatrix object to hold the free item parameters

117 imat\- mxMatrix ( name = ’ item ’, values = startingValues, free = TRUE,

118 dimnames = list ( names ( rpf.rparam ( spec [ [ 1 ] ] ) ), colnames ( g1Data ) ) )

119 rownames ( imat ) [ 1 ]\- ’ posAff ’

120 # label item parameters to equate them across groups

121 for (rx in 1:nrow ( imat ) ) for ( cx in 1:ncol ( i mat ) ) {

122 imat$labels [ rx, cx]\- paste ( ’ I ’, rx, ’, ’, cx, sep= ’‘ )

123 }

124

125 # The latent distribution of this group is fixed to standard normal.

126 anchor\- mxModel ( model = ’anchor’, imat,

127 mxData ( observed = g1Data, type = ‘ raw ’ ),

128 mxExpectationBA81 ( ItemSpec = spec ), mxFitFunctionML ( ) )

129

130 # set up the matrices to hold our latent free parameters

131 m.mat\- mxMatrix ( name = ’ mean ’, nrow = 1, ncol = 1, values = 0, free = TRUE)

132 rownames ( m . mat )\- ’posAff ’

133 cov.mat\- mxMatrix ( name = ’ cov ’, nrow = 1, ncol = 1, values = diag ( 1 ), free = TRUE )

134 dimnames ( cov.mat )\- list ( ’ posAff ’, ’ posAff ’ )

135

136 # build the item part of the 2nd group

137 g2Data\- read.csv ( ’ demo2 . csv’ )

138 # Coerce data to ordered factors

139 g2Data\- mxFactor (g2Data, levels = 1:5 )

140 panasModel\- mxModel ( model = ’ panas2 ’, m.mat, cov .mat, imat,

141 mxData ( observed = g2Data, type = ’ raw ’ ),

142 mxExpectationBA81(ItemSpec=spec), mxFitFunctionML())

143
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144 # build the latent distribution part of the 2nd group

145 latentModel\- mxModel ( model = ’ latent ’,

146 mxDataDynamic ( type = ’ cov ’, expectation = ’ panas2 . expectation ’ ),

147 mxExpectationNormal ( covariance = ’ panas2.cov ’, means = ’ panas2.mean ’ ),

148 mxFitFunctionML ( ) )

149

150 # build the container model

151 groups\- c ( ’ anchor ’, ’ panas2 ’ )

152 mstepPlan\- list (

153 mxComputeNewtonRaphson ( freeSet = paste ( groups, ’ item ’, sep = ’ .’ ) ),

154 mxComputeGradientDescent ( fitfunction = ’ latent . fitfunction ’,

155 freeSet = c ( ’ panas2 . mean ’, ’ panas2 .cov ’ ) ) )

156 cModel\- mxModel ( model = ’ container ’, anchor, panasModel, latentModel,

157 mxFitFunctionMultigroup ( c ( ’ anchor.fitfunction ’, ’ panas2.fitfunction ’ ) ),

158 mxComputeEM ( expectation = paste ( groups, ‘ expectation ’, sep = ’ . ’),

159 predict = ’ scores ’, mstep = mxComputeSequence ( steps =mstepPlan ) ) )

160 cModel\- mxRun ( c Model ) # run the model

161 summary ( cModel ) # print a summary of the results

This example uses the same data as the first two examples. However, instead of

using only the first data set to estimate item parameters (Line 30), both data sets

combined influence item parameters. In the mstepPlan (Line 152), freeSet is
used to partition the free parameters into item parameters and latent distribution
parameters (Lines 153 and 155). These two sets of parameters are optimized sep-
arately every E-M cycle.
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