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Measuring selection in human
populations using the growth rate
per generation

Douglas Ewbank

Population Studies Center, University of Pennsylvania, Philadelphia, PA 19104, USA

Estimates of the speed of evolution between generations depend on the

association between individual traits and a measure of fitness. The two most fre-

quently used measures of fitness are the net reproduction rate and the 1-year

growth factor implied by the fertility and mortality rates. Results based on

the two lead to very different results. The reason is that the 1-year growth

factor is not a measure of change between generations. Therefore, studies of

changes between generations should use the amount of growth over the

length of a generation. This is especially important for studies of human popu-

lations because of the long length of generation. In addition, estimates based on

a single year’s growth are overly sensitive to data on individuals who fail to

reproduce. The effects of using a generational measure are demonstrated

using data from Kenya and Ukraine. These results demonstrate that using a

1-year growth rate to measure fitness leads to estimates that understate the

rate at which evolution changes the characteristics of a human population.
1. Introduction
The composition of the human population is continually affected by the subtle

effects of evolution. The rate of evolution is the speed at which the characteristics

of a population change. For example, a recent study of a contemporary American

population found that if the environment of the 1950s and 1960s continued, evo-

lution would lead to a 1.8% decline in total cholesterol levels over a period of five

generations [1]. Similarly, the age at menopause would increase by 0.4 years over

the same period. These estimated effects are small compared with the changes

resulting from the rapidly changing environment in which we live. However,

they demonstrate that even in the context of very low mortality, the effect of

evolution in humans is comparable with that in many other species (table 1).

Demonstrating these effects involved two steps. The first step was to demon-

strate that the number of children a woman had in her lifetime was statistically

related to those characteristics. Second, it was necessary to show that those charac-

teristics tended to be inherited by their children. Those two parts of the

evolutionary process, selection and inheritance, are often combined in a model

called the ‘breeder’s equation’ to estimate the effects of evolution on the character-

istics of the next generation [2,3]. The breeder’s equation is a model of change

between generations and only gives reasonable estimates of year-to-year changes

if the population has had a growth rate near zero in recent decades. Evolutionary

demographers refer to this as the problem of overlapping generations [4].

It is rarely possible to measure both selection and inheritance in the same

population; therefore, the two parts are generally studied separately. This paper

examines an issue in the measurement of selection between generations in

human populations. Studies of selection examine the statistical relationship

between characteristics of individuals or groups and a measure of evolutionary fit-

ness. Several measures of fitness have been used to study humans. The theoretically

preferred measure of fitness is the population growth rate implied by the fertility

and mortality rates. That growth rate is generally expressed as growth per year.

Many studies of human populations have examined the selection part of the

evolutionary process by examining change between generations [1,5–16]. I have

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2015.0148&domain=pdf&date_stamp=2016-03-28
mailto:ewbank@pop.upenn.edu


Table 1. Nomenclature.

variable definition

LRS lifetime reproductive success—for an individual, the

number of births that survive to the age of

reproduction

R0 for a population, the mean number of births implied

by a set of age-specific fertility rates and life table

survival rates weighted by the genetic contribution

of each parent to the offspring, one-half for

humans

r the long-term population growth rate implied by a

set of age-specific fertility and mortality rates. For

human populations it is generally expressed per

annum

l the factor by which the population will grow during

a specified period of time given a set of fertility

and mortality rates. It is equal to exp(r). For the

present discussion, we assume it is the growth

over 1 year

T the mean length of generation—the time required

for a population to increase by a factor of R0
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not found any studies of humans that employ a model that

accounts for overlapping generations. Almost all of these

studies rely solely on measures of either the quantity of repro-

duction such as the average children ever born [6,11], or the

number of children surviving to a given age [1,5,7,12,15]. Sev-

eral studies include values of the long-term growth rates

[8,9,13,16,17].

The generally recommended method for adjusting for

timing differences is to use the 1-year growth factor implied

by the fertility and mortality rates, l. However, it is demon-

strated in §6 that using l for humans leads to smaller

selection differentials and, as a result, much slower estimates

of the speed of evolution.
2. Selection differentials and selection gradients
Evolution is driven by differences in fitness among individ-

uals that are correlated with heritable characteristics. These

differences are described by directional selection differentials

which are the change in the mean value of a phenotypic char-

acter produced by selection within a generation [2,3].

Selection differentials are interesting by themselves or they

can be used as part of a projection of the characteristics of

future generations.

Given a vector of characteristics, z, the vector of selection

differentials, s, is given by

s ¼ �z� � �z,

where �z� is the vector of characteristics after selection [17,18].

Each set of characteristics is associated with fitness values,

W(z). Evolution is driven by relative fitness defined as

wðzÞ ¼WðzÞ
�W

,

where �W is the mean fitness across all individuals or groups.

For quantitative traits, the observed selection differentials are

given by

s ¼ Cov[w, z]:

Because selection is measured as the differences between suc-

cessive generations, the measure of fitness must refer to the

difference in the sizes of consecutive generations.

Our focus here is on how the estimates of selection are apt

to change when we switch from one fitness measure to

another. To do that, we use the definition of the correlation

coefficient as the covariance divided by the standard devi-

ations in fitness and that trait, sw and si. Then solving for

si we find:

si ¼ Cov(w, ziÞ ¼ ri,wswsi ,

where ri,w is the correlation between fitness and trait i.
It is difficult to predict how the correlation will change if

we switch to a different measure of fitness. However, if the

two measures of fitness are highly correlated than ri,w is

not likely to change radically. On the other hand, as we

shall see, we can sometimes predict that sw will change

substantially when we switch fitness measures.

The selection differentials give the observed association

between each trait and selection. However, the selection

differential for a given trait is determined not only by its

direct effect on selection but also by the fact that it is correl-

ated with other traits that are directly associated with

selection. Therefore, to estimate the direct force of selection

associated with a given trait, it is necessary to control for

the correlations between traits.

The direct force of selection for a trait is given by its selec-

tion gradient, bi. It is equal to the partial regression

coefficient from a multiple linear regression of relative fitness

on all of the traits. For present purposes, we can simply state

that bi can be expressed as the ratio sw/si multiplied by a

term based on the correlations among the traits, and the correl-

ations between each trait and relative fitness [19]. As before, it is

difficult to guess how switching to a different measure of fit-

ness might affect the correlations between relative fitness and

each trait. However, as with the fitness differential, the fitness

gradient is directly proportional to the standard deviation in

the fitness measure.

It is worth noting that this use of the coefficients from a

multiple regression is quite different from the usual appli-

cation. Generally, the bi are used to estimate the mean level

of the left-hand variable associated with given levels of the

right-hand variables. In that case, the ratio of sw to si

serves to translate from the units used to measure i to those

used to measure w. However, when we use the bi as selection

differentials, we combine them with information on inher-

itance patterns to estimate new values for the right-hand

variables. Now changing the scale of the measure of fitness

need not change the scale of the new trait values.
3. Measuring fitness
The most commonly used measure of overall fitness for a

population is the net reproduction rate, R0. It is the average

number of offspring per person weighted by the genetic con-

tribution of each parent to the offspring—one-half for

humans [4,20]. It is defined in terms of m(a) which is the
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fertility rate at each age weighted by one-half and p(a), the

probability of surviving from birth to age a giving:

R0 ¼
ðv
a

mðaÞpðaÞ da,

where a and v define the ages over which fertility occurs.

Because m(a) is a rate, it is expressed as births per unit of

time. Rates for humans are almost always expressed per

annum. The p(a) are probabilities and do not depend on the

units used for the m(a). In practice, the integral is replaced by

a summation using m(a) values for age groups. For humans,

R0 is usually estimated from m(a) values for 1-year or 5-year

age groups. If the m(a) are expressed per annum then the age-

specific fertility rates are multiplied by five to derive rates per

quinquennium for summations based on 5-year intervals.

One problem with R0 as a measure of fitness is that it does

not take into account the pace of reproduction. R0 is a growth

rate per generation. Therefore, two populations with the

same value of R0 grow at different annual rates if they have

different lengths of generation. For example, consider two

populations with an R0 of 2.5 but one has a mean length of

generation of 26 and the other has a mean of 28. The first is

growing at 3.52% per year (i.e. ln(2.5)/26), whereas the

other is growing at only 3.27% per year. The same amount

of growth per generation is spread over a longer period of

time in the second population.

That problem is solved by using the long-term growth

rate implied by the m(a) and p(a). If those rates stay constant

long enough, the population growth rate will stabilize at r,

the intrinsic rate of increase [21]. In practice, it is preferable

to use exp(r) which is l. Because it is a rate, r is expressed

per unit of time. For studies of humans, r is expressed per

annum and l is then the result of 1-year’s growth.

The relationship between these measures and R0 is given

by

R0 ¼ erT ¼ lT ,

where T is the mean length of generation measured in the

same units as r and l.

The intrinsic rate of increase and l can also be calculated

from the population projection matrix, A [4]. The projection

matrix is an n � n matrix, where the data are presented in

terms of n age groups of length Dt years. The first row of A

contains the fertility rates, F(a), which are one-half the

number of births during the Dt years that survive to the

start of the next projection period. The subdiagonal contains

the proportion surviving from the start of the age interval

until the start of the next interval, P(a). The matrix projects

the population Dt years forward.

If A remains constant over time, the population even-

tually increases by a factor of lDt every Dt years, where l is

change per year. lDt is equal to the dominant eigenvalue of

A. The annualized growth factor, l, is then the dominant

eigenvalue raised to the power 1/Dt and the annualized

intrinsic growth rate is ln(lDt)/Dt [22]. Therefore, with a pro-

jection matrix based on 5-year intervals, the annual growth

factor is the fifth-root of the dominant eigenvalue.

There is nothing in the model of population growth that

dictates what size age intervals we should use. Previous

studies of selection in humans have used single years [9,14]

or 5-year intervals [8] and the associated values of l and

l5. However, I demonstrate below that estimates of selection

differentials based on relative values of lDt are quite sensitive
to the choice of Dt. For example, using 1-year age intervals

and l will lead to quite different estimates of the selection

differentials than using 5-year intervals and l5. The two

will always give the same relative ranking of subpopulations

(subject to differences in the precision of the two estimates).

However, the relative magnitudes of selection differentials

for different traits based on l will differ substantially from

estimates based on l5 (see §6).

It is crucial that the growth factor used to estimate selection

differentials is scaled properly. There is no reason why our

choice of a fitness measure should depend on the age groups

used in the available data or on the size of the projection

matrix we are willing to manipulate. The time-scale for measur-

ing fitness need not be theDt used to form the projection matrix.

For example, Lahdenperä et al. [23] used l18. The appropriate

time-scale for fitness measures for studying selection is dictated

by the definition of selection differentials as the change between

generations. This is the only theoretical basis for selecting

the appropriate time-scale for the measure of fitness used to

estimate selection differentials. Therefore, the theoretically

appropriate fitness measure for studying selection is lT.

In summary, the problem with comparing values of R0 for

different groups is a problem of differing time-scales. For

group i, R0,i measures growth over Ti years. When we use

R0 to compare groups i and j, we are comparing a Ti-year

growth factor to a Tj-year growth factor. Using l for both

groups solves this timing problem, but l is not a generational

measure. Therefore, the estimation of selection differentials

should be based on growth factors for T years, that is lT
i ,

where T is the length of generation measured for the whole

population. In this way, we are using the theoretically pre-

ferred measure, a growth rate, and scaling it appropriately

for measuring selection.
4. What difference does using a generational
measure make?

In most cases, rescaling a measure of fitness does not have any

effect on estimates of selection. In particular, multiplying the

fitness measure by a constant would not change the fitness

values relative to the mean. However, rescaling l involves

raising it to a power which changes all of the relative values.

The first implication of raising the relative fitness values to

the power T is that it increases the standard deviation in fitness,

sw. We can see this in a simple example. In human populations,

the values of l for subpopulations are not apt to differ by more

than a few per cent per year. Consider two subgroups with

values of li of 1.01 and 1.03 and a mean of 1.02. Their values

relative to the mean are then approximately 0.99 and 1.01. Set-

ting T at 29 and switching to lT
i leads to fitness values of 1.335

and 2.357. The mean fitness is now 1.846 (which is slightly

different from 1.0229 or 1.776). This leads to relative fitness

values of 0.723 and 1.277. As shown above (§2), increasing

the deviations of the fitness of groups from mean fitness will

tend to increase the selection gradients. This then translates

to a more rapid estimated speed of evolution.

Although lT
i will always lead to more variation in fitness

compared with what we find using l, the same is not true of

a comparison with R0. We can see this by noting that for

group i

lT
i ¼ RT=Ti

0,i :
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In human populations, T almost always falls within a few

years of age 29 [24] and, therefore, the range of likely values

of T/Ti is clustered around 1.0. As a result, the variance in lT
i

and the covariances between it and other quantitative traits

will be similar to those of R0.

There is a second important result from this. If groups with

high values of R0 also tend to have high values of T, then using

lT
i will reduce relative fitness for those groups compared with

using R0 and increase it for groups with lower R0 and T. In that

case, using lT
i would reduce the variance in fitness. On the

other hand, if groups with high R0 tend to have lower values

of T (perhaps because they start childbearing earlier), using

lT
i will have the opposite effect: increasing the variance. There-

fore, using lT
i can lead to larger or smaller variance in fitness

than using R0. This is different from the effect of using l

which always leads to much lower variance.
.B
371:20150148
5. Data and methods
I have used data from two surveys to demonstrate how chan-

ging the measure of relative fitness can change estimated

selection differentials. These surveys were designed following

the pattern set by the Demographic and Health Surveys

(DHSs). The DHS program includes over 300 surveys in

more than 90 countries covering important issues in popu-

lation, health and nutrition. They are representative surveys

that are generally national in scope. The central focus of

most surveys is data collected from women of reproduc-

tive age. The data from the DHSs are freely available to

researchers from the website DHSprogram.com.

The data used here come from the women’s questionnaires

and the pregnancy histories from the 2003 Kenyan Demo-

graphic and Health Survey (KDHS) [25] and the 2007

Ukraine Demographic and Health Survey (UDHS) [26].

These two countries were selected to represent extreme levels

of fertility. The fertility rates in Kenya in the year preceding

the survey implied 4.9 births per woman which implies rapid

population growth. The comparable value in Ukraine was

only 1.2, well below replacement. In Kenya, about 10.5% of

children died before age 5. In Ukraine, only about 7% died

before age 5 [27]. When mortality rates are this low, selection

differentials are driven by differences in fertility. Both surveys

are national in scope and are cluster surveys. All analyses use

the appropriate sample weights to adjust for any oversampling

of areas. The Kenya survey had a sample size of 7688 women

aged 40–49. The sample size in Ukraine was 8007.

The limitation of pregnancy histories is that they only

include women who are alive at the time of the survey. In

order to get fertility information for all ages, it is necessary to

limit the analysis to women who have completed (or nearly

completed) reproduction. Therefore, we do not have life his-

tories for women who died before reaching the end of the

childbearing years. Estimates of l for populations based

solely on the maternity histories will be biased upward.

To incorporate mortality during the childbearing years, the

completed maternity histories were used as a collection of

potential histories. Each history was randomly assigned six

ages at death over age 15 based on life tables for the two

countries around 1990 [28]. The six replications for each history

were then used as separate observations in the analyses by

excluding births after the assigned age at death. The statistical

tests then weighted each observation by one-sixth times the
original sample weight. With this design, the proportion child-

less includes women reaching age 40 without having a child

that survived to age 5 as well as women whose simulated

age at death preceded the birth of their first child.

This procedure incorporates the assumption that the risk of

death during the childbearing years is not correlated with the

phenotypes being studied. Therefore, the estimated selection

differentials only incorporate the effects of fertility differentials.

In addition, the populations of Kenya and Ukraine cannot be

assumed to be a single breeding population. For these reasons,

the estimated selection differentials may not be relevant to the

real population of these countries.

Lande & Arnold [18] have shown how the selection gradi-

ents can be estimated using standard regression programs

and data for individuals. McGraw & Caswell [29] proposed

that this approach can be based on an estimate of l for indi-

viduals. Their approach is to create a population projection

matrix for individual i, A (i), with the age-specific number

of births in the top row and ones in the subdiagonal for

each year the individual survives. The dominant eigenvalue

for this matrix is li if the matrix is in single years of age.

The lifetime reproductive success (LRS) for each woman

was calculated as the number of a woman’s children who sur-

vived to 5 years of age. Because LRS is not adjusted for the

genetic contribution to offspring, mean LRS is about twice

as large as R0 for the population. Then l for individuals

was estimated as ln(LRSi/2)/Ti. Following Coale [24], Ti

was estimated as the average of the mean age of the fertility

schedule and the mean age of mothers in a population with

the growth rate implied by l. This approximation is quite pre-

cise for humans and greatly simplified the calculations. The

mean LRS of women aged 40–49 in Kenya is 5.20, three

times as high as the mean in Ukraine (1.68).

Each survey provides data on a phenotype that is useful

for estimating selection gradients. The KDHS included

measurements of height (mean+ 1 s.d.: 159.4+6.38 cm)

and weight (60.19+ 13.49 kg). The UDHS provides systolic

and diastolic blood pressure measurements (means 131.6+
18.13 and 86.6+ 13.46). Therefore, the data provide a realistic

example of the performance of different fitness measures

using data for individual life histories.

All analyses were completed in STATA using appropriate

weights.
6. Results
Table 2 shows fitness measures for three groups of Kenyan

women defined by BMI (weight/height2). The mean LRS

declines from 5.56 for the leanest to 4.32 for the heaviest. Ti

declines from 27.02 to 25.66, a difference of 1.37 years. There-

fore, we expect that adjusting for differences in T would

reduce the relative advantage of the lean and moderate

groups compared with the heaviest. In this case, using li

rather than LRS reduces the relative advantage of the leanest

relative to the heaviest from 1.29 to only 1.03. By contrast,

using lT
i leads to relative fitness values that are similar to

the ratios using LRS. The use of li also leads to a reduction

in the variance of relative fitness across all individuals. The

s.d. using li (0.29) is about half as large as the values using

LRS and lT
i (0.54 and 0.55).

Table 3 presents a similar comparison using systolic blood

pressure data from the Ukraine. Again we see that using li



Table 2. Estimated absolute and relative values of LRS, l and lT
i , and

mean length of generation (T ) by body mass index (BMI), Kenya [25].

LRS l lT
i T

means

BMI , 20 5.55 0.977 2.69 27.02

BMI 20 – 27.5 5.11 0.949 2.55 26.28

BMI 27.5þ 4.32 0.947 2.22 25.66

relative fitness values difference in T

BMI , 20 1.29 1.03 1.21 1.37

BMI 20 – 27.5 1.18 1.00 1.15 0.62

BMI 27.5þ ref. ref. ref. ref.

Table 3. Estimated absolute and relative values of LRS, l and lT
i , and

mean length of generation (T ) by systolic blood pressure (SBP), Ukraine [26].

LRS l lT
i T

means

SBP , 130 1.62 0.937 0.805 24.98

SBP , 140 1.69 0.927 0.838 25.12

SBP , 160 1.78 0.951 0.881 25.26

SBP , 180 1.88 0.913 0.930 24.47

SBP . 179 1.88 0.936 0.925 25.36

relative fitness values difference in T

SBP , 130 0.86 1.00 0.87 20.38

SBP , 140 0.90 0.99 0.91 20.24

SBP , 160 0.95 1.02 0.95 20.10

SBP , 180 1.00 0.97 1.01 20.89

SBP . 179 ref. ref. ref. ref.

Table 4. Estimated selection gradients for ages at first and last birth based
on different measures of fitness: LRS, l and lT

i [25,26].

selection gradient for age at:

ratio of gradients1st birth last birth

Kenya

LRS 20.053 0.052 21.01

l 20.003 0.002 21.32

lT
i 20.070 0.043 21.63

Ukraine

LRS 20.085 0.076 21.12

l 20.003 0.003 20.97

lT
i 20.079 0.076 21.03
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leads to much smaller differences among the groups. The

relative values using LRS range from 0.86 to 1.0, a range of

0.14. Using li, the range shrinks to only 0.04. Also the stand-

ard deviation in relative fitness among all individuals is

reduced by about 50% from 0.53 using LRS to 0.24 using li.

Table 4 presents selection gradients for Kenya and Ukraine

from regressions of relative fitness using LRS, li, and lT
i on age

at first birth and age at last birth. All of the estimates suggest

that lower age at first birth and higher age at last birth are

associated with higher fitness. However, using li leads to selec-

tion gradients that are only 5.7% as large as those estimated

using LRS in Kenya and only 3.4% as large in Ukraine.

In Kenya, the three fitness measures also lead to very differ-

ent estimates of the relative importance of ages at first and last

birth. The ratio of the two gradients is determined solely by the

correlations and not affected by the change in the variation in

fitness. LRS suggests that the ages at first and last birth have

roughly the same effect on fitness. Using li leads to a coefficient

on age at first birth that is 1.32 times as large as the coefficient

on age at last birth. Using lT
i leads to an even larger ratio: 1.63.

In Ukraine, li and lT
i lead to about the same effect on the

relative importance of the two ages.

Studies of ages at first and last birth exclude childless

individuals for whom these variables are not defined.
When we examine other characteristics, differences in the

prevalence of childlessness can become a very important

determinant of selection differentials. Estimates based on li

and lT
i differ in the extent to which they are determined by

the proportion childless.

Figure 1 plots values of LRS and li for individual Kenyan

women. The value of li for nulliparous individuals (zero) is

an extreme outlier. Having a single birth that survives increases

li by about 10 times as much as going from a single child to 12

children. The levelling off of the curve is surprising given that

evolution is driven by differences in the number of descendants

produced by individuals with different characteristics. It is not

plausible that fitness should almost cease responding to differ-

ences in reproduction after only a few births. Because of the

similar magnitudes of R0 and lT
i , a graph of LRS and lT

i
would show a nearly linear relationship between reproduction

and fitness. The graph for Ukraine would look almost exactly

like figure 1 except for the lack of data at the highest levels of

LRS. At each value of LRS, the two graphs differ imperceptibly

because of small differences in the mean length of generation.

Studies by Jones & Bird [14] and by Käär & Jokela [8]

present similar graphs. Their graphs show similar effects,

although they appear somewhat different from figure 1.

Jones and Bird have examined this relationship using historical

data from Utah. Their graph excludes childless women and the

vertical axis begins above 0.95. This stretches out the curve for

LRS values above unity which visually de-emphasizes the flat-

tening. Their discussion emphasizes both the decline in the

marginal increase in l and the enormous increase in fitness

associated with having a first birth.

Käär and Jokela [8] examine the relationship between LRS

and l using historical data for the Sami populations of northern

Finland. They begin their curve at three surviving children (an

LRS of 1.5 by their definition). Their curve appears less flat than

figure 1 or Jones and Bird’s curve. The reason is that they calcu-

late l using a projection matrix based on 5-year age groups.

Therefore, they are actually plotting a 5-year growth factor.

For example, a value of three surviving children would not be

sufficient to give an annual increase of 6% for a human popu-

lation. Although their x-axis is labelled from 1.0 to 1.3, that is

equivalent to 1-year growth factors ranging from 1.0 to 1.054

which is similar to the range shown in figure 1 and the figure

given by Jones and Bird. If the data from these two studies

were plotted on figure 1, they would look very similar to the
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Figure 1: Relationship between lifetime reproductive success (LRS) and estimates of the 1-year intrinsic growth rate, l, for Kenyan women [25].

Table 5. The effect on estimated selection gradients for height (bht) and
weight (bwt) of limiting the sample to woman with children that survived
to age 5 using three measures of fitness: LRS, l and lT

i [25].

selection gradient for:

height weight bht/bwt ratio

LRS 0.0098 20.0074 21.33

l 0.0017 20.0007 22.47

lT
i 0.0084 20.0061 21.37

limited to LRS . 0

LRS 0.0086 20.0070 21.22

l 0.0003 20.0003 21.09

lT
i 0.0071 20.0058 21.24
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data from Kenya. Any differences would be due to differences

in the values of T in these populations.

With such a large difference between the value of l for an

LRS of zero and the values for all other parities, the regression

estimates can be dominated by differences in the proportion

childless across groups. With a relatively high proportion of

childless individuals, a regression on l approaches a regression

on a binary measure of childlessness. The sensitivity of selec-

tion differentials based on l to childlessness is apparent in

data presented by Korpelainen [13]. She presents mean LRS

and mean l for groups of women in Finland defined by year

of birth (1870–1899 and 1900–1929) and three ages at death

(less than 50, 50–79 and 80þ). The variance among the six esti-

mates of relative fitness using LRS is 0.023, whereas the

variance among the values based on li is only 0.008. The differ-

ences in mean li are almost completely determined by the

proportion childless. The proportion of women without sur-

viving children varies from 4.3 to 20.7% across the six groups

and the number of births per women with children varies

from 1.41 to 2.05. The correlation of mean LRS with the pro-

portion childless was 20.87, whereas the correlation between

mean l and childlessness was 20.98.

Table 5 demonstrates this effect in regressions for Kenya

using the estimated selection gradients associated with

height and weight. Just as in table 2, using li leads to a huge

reduction in the selection gradients. This is true for both

height and weight. In addition, dropping the women who

failed to reproduce has a much larger effect when using li.

The selection gradients based on LRS and lT
i change very

little when we limit the sample. The estimates for height

drop by 12% and 15% and the estimates for weight both

change by 5%. However, when li is used as the measure of fit-

ness, dropping the childless women reduces the estimates by

78% and 57%.

In addition, the relative importance of the two measures

changes substantially using l but remains virtually

unchanged using LRS and lT
i : Using LRS, the ratio of the gra-

dient for height to the gradient for weight changes very little

when we drop the childless women (21.33 versus 21.22).

The same is true using lT
i : However, the ratio of the two
gradients drops dramatically when using l (22.47 to

21.09). This demonstrates the extent to which the extreme

value of li for the nulliparous can cause the selection differ-

entials to be very sensitive to the characteristics of childless

individuals. Similar effects are seen in analyses of blood

pressure in Ukraine (results not shown).

This sensitivity to observations with LRS of zero is especially

troublesome given a problem highlighted by McGraw &

Caswell [29]. They discuss the use of a population projection

matrix for person i, A (i), as an estimate of that person’s propen-

sity to reproduce. In that model, each individual has risks of

giving birth and dying at each age. However, we do not observe

their underlying risks. As McGraw and Caswell note, the

observed life history is only one of the possible lives which

that individual might have lived. They note that it is the propen-

sity to reproduce that is relevant for the study of evolution, not

the observed reproduction. In most cases, the observed LRS for

an individual can be assumed to be an unbiased estimate of their

propensity to reproduce and certainly the mean values for

groups provide unbiased estimates. However, McGraw and

Caswell note that that is not true for most individuals that
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did not reproduce. Most individuals with LRS of zero had a

non-zero propensity to reproduce and, therefore, their observed

LRS provides a biased estimate. As a statistical fix for this prob-

lem, they proposed estimating the propensity to reproduce for

these individuals using regressions of survival and fertility on

observed characteristics. It is possible that something of this

sort could reduce this problem. In the meantime, estimates of

selection differentials based on li are much more heavily

affected by these biased estimates than are differentials

estimated from LRS or lT
i :
 g
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7. Summary
The mathematical models of population growth and evolution

provide remarkable insights into the complex interactions of

genetics, environment and evolution. The strength of these

models is the extent to which they generalize basic biological

phenomena that are observed in whales, trees, bacteria and

viruses. One reason for this is that they are scalable with respect

to time. However, it is necessary to specify a unit of time when

they are applied to a specific species. In general, the unit of time

appropriate for studying population dynamics will not be an

appropriate unit of time for studying selection and evolution.

Studies of human populations almost always use annual

fertility, mortality and growth rates, and single-year or 5-year

age groups. However, selection differentials are based on the

changes in phenotype distributions between generations. The

appropriate measure of the length of a generation is the mean

length of generation, T. Therefore, it is necessary to rescale fit-

ness measures derived from the population growth models

before estimating selection differentials. In practice, this

involves raising the annual growth factor for each individual

or group, li, to the power T measured for the whole population.

In many cases, rescaling a measure has little effect on sub-

stantive findings. However, using l to study selection leads to

radically different results than using R0 or LRS. It is not intui-

tively clear that adjusting a quantitative measure for slight

differences in timing should have such a radical effect. It is
especially not obvious that an adjustment for timing should

always greatly reduce estimates of selection—even when

quantity and timing are negatively correlated.

The effect of using lT
i rather than l for studying selection

is especially large for studies in humans. The first reason is

simply that T for humans is very large. Raising estimates of

l for groups or individuals to the 25th or 30th power has a

large effect on the variation in fitness and the selection gradi-

ents. Secondly, selection gradients based on l for individuals

are very sensitive to observations for childless individuals

because of the extreme value of l.

In a population, lT is equal to R0. Therefore, when we

adjust for timing differentials by raising the estimate of li

for each individual or group to the value of T for the whole

population, we derive a measure that is scaled in the same

units as R0. As a result, lT
i can be considered a timing

adjusted R0.

Evolution is basically a game of numbers: what kinds of

individuals produce the largest number of descendants. Differ-

ences in the timing of reproduction and the mean length of

generation make a difference but this is secondary to the basic

numbers. The solution to the timing issue is to use the long-

term growth factor implied by the quantity of reproduction

(lifetime reproduction) and the mean length of generation.

However, using the implied 1-year growth factor for humans

leads to relative fitness values that are radically different from

the basic quantities of reproduction. As a result, estimates of

the speed of evolution using a 1-year growth rate are radically

different from those based on the unadjusted quantities.

Using a growth factor that is consistent with the length of gen-

eration leads to fitness values that are much more similar to the

numbers that domine evolution. This approach maintains the

primacy of the amount of reproduction while providing a

modest adjustment for timing.
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