
rsta.royalsocietypublishing.org

Research
Cite this article: Lin A, Liu KKL, Bartsch RP,
Ivanov PCh. 2016 Delay-correlation landscape
reveals characteristic time delays of brain
rhythms and heart interactions. Phil. Trans. R.
Soc. A 374: 20150182.
http://dx.doi.org/10.1098/rsta.2015.0182

Accepted: 26 February 2016

One contribution of 16 to a theme issue
‘Uncovering brain–heart information through
advanced signal and image processing’.

Subject Areas:
biomedical engineering, biophysics,
complexity, medical physics, statistical physics

Keywords:
brain–heart interactions, time-delay
analysis, delay-correlation landscape,
Network Physiology

Author for correspondence:
Plamen Ch. Ivanov
e-mail: plamen@buphy.bu.edu

Electronic supplementary material is available
at http://dx.doi.org/10.1098/rsta.2015.0182 or
via http://rsta.royalsocietypublishing.org.

Delay-correlation landscape
reveals characteristic time
delays of brain rhythms
and heart interactions
Aijing Lin1,2, Kang K. L. Liu2,3, Ronny P. Bartsch4 and

Plamen Ch. Ivanov2,5,6

1Department of Mathematics, School of Science, Beijing Jiaotong
University, Beijing 100044, People’s Republic of China
2Keck Laboratory for Network Physiology, Department of Physics,
Boston University, Boston, MA 02215, USA
3Department of Neurology, Beth Israel Deaconess Medical Center,
Harvard Medical School, Boston, MA 02215, USA
4Department of Physics, Bar-Ilan University, Ramat Gan, 5290002,
Israel
5Division of Sleep Medicine, Brigham andWomen’s Hospital,
Harvard Medical School, Boston, MA 02115, USA
6Institute of Solid State Physics, Bulgarian Academy of Sciences,
Sofia, 1784, Bulgaria

Within the framework of ‘Network Physiology’, we
ask a fundamental question of how modulations in
cardiac dynamics emerge from networked brain–heart
interactions. We propose a generalized time-delay
approach to identify and quantify dynamical
interactions between physiologically relevant
brain rhythms and the heart rate. We perform
empirical analysis of synchronized continuous
EEG and ECG recordings from 34 healthy subjects
during night-time sleep. For each pair of brain
rhythm and heart interaction, we construct a delay-
correlation landscape (DCL) that characterizes how
individual brain rhythms are coupled to the heart
rate, and how modulations in brain and cardiac
dynamics are coordinated in time. We uncover
characteristic time delays and an ensemble of
specific profiles for the probability distribution of
time delays that underly brain–heart interactions.
These profiles are consistently observed in all
subjects, indicating a universal pattern. Tracking the
evolution of DCL across different sleep stages, we find
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that the ensemble of time-delay profiles changes from one physiologic state to another,
indicating a strong association with physiologic state and function. The reported observations
provide new insights on neurophysiological regulation of cardiac dynamics, with potential for
broad clinical applications. The presented approach allows one to simultaneously capture key
elements of dynamic interactions, including characteristic time delays and their time evolution,
and can be applied to a range of coupled dynamical systems.

1. Introduction
As an integrated physiologic system under neural regulation, the cardiac system exhibits
complex behaviour characterized by continuous fluctuations and transient, nonlinear and
scale-invariant temporal dynamics. Reflecting modulation in neural autonomic control and
sympatho-vagal balance [1–4], the linear and nonlinear characteristics of cardiac dynamics [5–7]
change with sleep–wake cycle [8,9], across circadian phases [10] and sleep-stage transitions
[11–13]. Various measures derived from linear and nonlinear characteristics of cardiac dynamics
have been established as robust biomarkers for diagnosis and prognosis under a broad range of
conditions [14,15], young versus elderly [16,17] and under pathological perturbations [18–23]. To
account for these extensive empirical observations, modelling approaches have been developed
(i) to investigate the underlying mechanisms of neuroautonomic control and associated nonlinear
feedback loops acting on a wide range of time scales, and (ii) to study how these mechanisms
change across different physiologic states and conditions [24].

Despite the importance of understanding the basic mechanisms of neural regulation of organ
systems, it is not well understood how the brain and the cardiac system dynamically interact
and coordinate their functions to generate a variety of physiologic states. Specifically, the role of
different brain rhythms and their temporal dynamics in mediating brain–heart communications
remains an open question.

Probing dynamics of brain–heart interactions is a major challenge due to several levels of
complexity. At the individual systems level: the heart and the brain are very different integrated
systems, each with its own structural and functional complexity, leading to output dynamics
with distinct characteristics, i.e. the cardiac system exhibits a pronounced oscillatory pattern
on the scale of seconds, whereas brain dynamics are characterized by multiple rhythms with
different origins and functions that operate on much shorter time scales. At the level of pairwise
interactions: physiological systems often interact through multiple forms of coupling, which are
of transient nature, can switch on/off, and can simultaneously coexist [25–29]. In the context
of brain–heart communications [30], synchronization [31–33], coherence [34], time delay [35,36]
and information transfer [37,38] play important roles. At the organism level where dynamical
networks of diverse organ systems are essential: integrated physiologic function emerges as a
global phenomenon from hierarchical networks representing the dynamical interactions among
organ systems, and cannot be simply described by summing up the behaviours of individual
systems.

Within the framework of ‘Network Physiology’ [36,39,40], using the concept of time-delay
stability (TDS), recent work [26,40] has demonstrated that the cardiac system communicates
with the brain not only through one but rather through multiple brain rhythms simultaneously.
Further, empirical analyses have shown that, during different physiologic states, brain–heart
communications are predominantly mediated through different brain rhythms, where patterns of
brain–heart networked interactions depend on brain locations, and undergo complex hierarchical
reorganization with transitions across physiologic states [40].

To quantify brain–heart interactions, here we extend the TDS approach [36,40–42] and we
propose a generalized time-delay analysis based on the novel concept of delay-correlation
landscape (DCL) to investigate coordination of bursting activities in the brain and heart
output signals. We hypothesize that key properties of the brain–heart DCL reflect changes in
neuroautonomic control of cardiac and brain dynamics associated with distinct physiologic
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states such as sleep or wake and different sleep stages. Specifically, we hypothesize that
the characteristic time delays and directionality of brain–heart communications between each
physiologically relevant brain rhythm and cardiac output dynamics exhibit unique signature
profiles reflecting physiologic function during distinct physiologic states.

2. Material and methods

(a) Data
We analyse continuously recorded multichannel physiological data obtained from 34 healthy
young subjects (17 female, 17 male, with ages between 20 and 40, average 29 years) during
night-time sleep [43] (average record duration is 7.8 h). This allows us to track the dynamics and
evolution of brain–heart interactions during different sleep stages and sleep-stage transitions.
We focus on physiological dynamics during sleep as sleep stages are well-defined physiological
states, and external influences due to physical activity or sensory inputs are reduced during
sleep. Sleep stages are scored in 30 s epochs by sleep laboratory technicians based on
standard criteria [43,44]. In particular, we focus on the electroencephalogram (EEG) and the
electrocardiogram (ECG). To compare these very different signals with each other and to study
interrelations between them, we extract the following time series from the raw signals: the spectral
power of five physiologically relevant frequency bands of the EEG, derived from the central C3
channel, in moving windows of 2 s with a 1 s overlap (namely δ wave (0.5–3.5 Hz), θ wave (4–
7.5 Hz), α wave (8–11.5 Hz), σ wave (12–15.5 Hz) and β wave (16–19.5 Hz)); heartbeat RR intervals
are re-sampled to 1 Hz (1 s bins) after which values are inverted to obtain the instantaneous heart
rate (HR). Thus, all time series have the same time resolution of 1 s before our analyses are applied.

We calculate the fast Fourier transform (FFT) in 2 s EEG windows and determine the spectral
power in the EEG frequency bands mentioned above. As there is a problem of power leakage
from one frequency bin to others, we taper the window by a Hann function, and because tapering
itself introduces the problem of weighting the edge of the windows much less than the data in
the middle, we choose an overlap of half the window length, i.e. 1 s. According to Press et al.
[45], tapering and choosing an overlap that is half the window length resolves the problems
of power leakage and different weights, respectively. Because we are analysing EEG data that
were recorded during sleep, we use the five EEG band definitions that are commonly accepted
in sleep medicine [46] as defined above. We originally extended the definition for β to include
‘high β waves’ (20–30 Hz); however, we noted that, past 20 Hz, the EEG is more susceptible to
electromyography (EMG) movement artefacts, and therefore we chose the traditional 16–19.5 Hz
frequency band.

The ECG data are analysed and annotated by a semi-automatic R-peak detector (see below).
EEG recordings were filtered by a high-pass filter (0–0.4 Hz) and a low-pass filter (30–70 Hz).
We apply the high-pass filter in this range to filter out slow movement artefacts without much
affecting δ frequencies. The low-pass filter filters out high-frequency artefacts (e.g. from EMG).
In addition, the EEG recording device had a 50 Hz notch filter. R-peaks are extracted from the
ECG data using the semi-automatic peak detector Raschlab developed by the cardiology group
of Klinikum Rechts der Isar, Munich, Germany (R. Schneider. Open source toolbox for handling
cardiologic data, available on the internet: www.librasch.org). A beat classification (normal beat,
ventricular beat, artefact) is assigned to each R-peak by the detector. Then we calculate the series
of RR time intervals between each pair of consecutive heartbeats and obtain the HR time series
by inverting the RR series. Ectopic beats and artefacts are detected by Raschlab. Additionally, we
examine more carefully the obtained RR intervals and exclude RR intervals from our calculations,
if (i) the beat at the beginning or at the end of the interval is not normal, (ii) the calculated interval
is shorter than 330 ms or longer than 2000 ms or (iii) the interval is more than 30% shorter or
more than 60% longer than the preceding interval. The purpose of the last filter is to eliminate
extrasystoles and ectopic beats unnoticed by the peak detector. This procedure led to ≈1%
removal of original ECG RR intervals and corresponding ≈1% reduction in the original EEG data.
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One potential approach to study brain–heart interaction mediated by different brain rhythms
is to use the absolute spectral power in each EEG frequency band. However, our preliminary
results (not shown) indicate that the bursting activity in HR is strongly modulated by trends in
the total EEG power within the frequency range of 0.5–19.5 Hz (sum of all five frequency bands)—
a masking effect leading to very similar results for each pair of HR and brain rhythm interaction.
In order to eliminate this masking effect and to isolate spurious synchronization among all brain
rhythms caused by modulations in the total EEG spectral power, we use normalized (relative)
spectral power in our analyses. First, we calculate the time series of the total power of EEG (SEEG)
as the sum of all spectral powers from the five frequency bands listed above. Next, we obtain the
relative spectral power in each frequency band with a 1 s resolution. The relative spectral power
(Sδ(t), Sθ (t), Sα(t), Sσ (t), Sβ (t)) is obtained as the ratio between the spectral power in the specific
frequency band and the total spectral power of all five bands. Thus, the obtained normalized
relative spectral power represents the relative contribution of each brain rhythm to the total brain
activity, and allows one to investigate the individual role of each brain rhythm in facilitating
brain–heart communications.

(b) Generalized time-delay analysis and delay-correlation landscape
The TDS method proposed in earlier studies [36,40,41] focuses on the time evolution and stability
of the time delay defined as the time shift corresponding to maximum degree of correlation/
anti-correlation between two signals. While the percentage of data segments exhibiting
time-delay stability (%TDS) was found to have important physiological relevance, as it undergoes
a pronounced transition from one physiologic state to another, it does not provide information on
the type of correlation (positive or negative) and directionality of interaction based on the sign of
the time delay.

To address these limitations and to further quantify the dynamical aspects of brain–
heart interaction, we extend our TDS methodology to a more generalized time-delay analysis
framework, which keeps track of both the time t evolution of cross-correlation C as well as the
time shift τ dependence of the cross-correlation, i.e. C(t, τ ).

As shown in figure 1, for each time window t with size L = 30 s, we obtain the Spearman cross-
correlation as a function Cxy of the time shift τ ∈ [−30, 30] between two signals x and y, where rx

and ry represent the ranks of the values in the signals x and y, respectively. The functional form
of Cxy(t, τ ) can be written as:

Cxy(t, τ ) ≡
∑L

i=1[rx(t + i) − r̄x][ry(t + τ + i) − r̄y]√∑L
j [rx(t + j) − r̄x]2

√∑L
k [ry(t + τ + k) − r̄y]2

(2.1)

= 1 − 6
∑L

i=1 [rx(t + i) − ry(t + τ + i)]2

L(L2 − 1)
, (2.2)

where r̄x = r̄y = (L + 1)/2. At each time step t, we shift the 30 s window of the HR (signal y)
relatively to the 30 s window of EEG spectral power (signal x) in steps of 1 s, and calculate the
cross-correlation as a function of the relative time shift τ (vertical axis in figure 1). Cxy(t, τ ) forms
a DCL as shown in figure 1c that represents the time evolution of cross-correlation for different
choices of time shift τ between two signals.

Theoretically, the DCL contains the information provided by both the traditional cross-
correlation analysis and the original TDS method [36,40,41]. The cross-section of DCL along the
black dashed line τ = 0 in figure 1c represents the cross-correlation of the two signals without
any time shift, i.e. Cxy(t)|τ=0. Black triangle symbols in figure 1c mark the evolution of time
delay defined in the original TDS method as the time shift between the two signals at which the
maximum in the absolute value of cross-correlation is observed, i.e. τ (t)|max |Cxy|. The DCL reveals
a more comprehensive picture of the dynamic interaction between two signals as represented by
a heterogeneous landscape within which red ‘hills’ (positive correlation, C > 0) and blue ‘valleys’
(negative correlation, C < 0) form a complex mixture.
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Figure 1. Generalized time-delay analysis and delay-correlation landscape. (a) Normalized spectral power Sδ ofδ brain rhythm
(0.5–4 Hz) derived from EEG recording at the central C3 channel (C3–M2 set-up), and (b) heart rate (HR) from a healthy subject
during 30 min of night-time sleep. Black dashed lines and background colours in (a) and (b) represent sleep stages (denoted on
the right vertical axis) as defined by traditional sleep-stage scoring criteria [43,44]. (c) Spearman cross-correlation function
Cδ,HR(τ , t) between Sδ and heart rate (HR) are obtained in 30 s windows moving with a step of 30 s and plotted as delay-
correlation landscape (colour map). Horizontal axis t indicates the time corresponding to the centre of the two aligned 30 s
windows used for the cross-correlation calculation. At each time step t, we shift the 30 s window of the HR relatively to the
30 s window of EEG spectral power, and calculate the cross-correlation as a function of the relative time shift τ (vertical axis):
τ > 0 when the 30 s window for brain rhythm signal precedes the window of cardiac signal and vice versa for τ < 0. Colour
of the delay-correlation landscape (DCL) represents the value of cross-correlation: red corresponds to positive correlation C > 0
and blue corresponds to negative correlation C < 0. Black triangle symbols in (c) mark the time evolution (in 30 s steps) of the
maximum correlation time delay τMC(t) defined as the time shift corresponding to the maximum absolute value of the cross-
correlation function. Positive and negative correlationmaps are plotted separately in (d) and (e), where only positive or negative
correlation values are shown. We define positive correlation time delay τPC(t) (red circles) and negative correlation time delay
τNC(t) (blue squares) as the time shift corresponding to themaximumpositive ormaximumnegative correlation. (Online version
in colour.)
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Figure 2. Probability distribution profiles for maximum, positive and negative correlation time delays τMC, τPC and τNC: (a)
for an individual subject and (b) for the group average of 34 healthy subjects representing the entire night-time sleep period.
Solid black line in each panel is a moving average of the probability distribution (smoothed profile with 3 s moving window).
The bin size for the time delay τ is 1 s. Similarity between the individual subject profiles and the group average profiles for each
pair of brain rhythm–heart interaction indicates a universalmechanismunderlying time delays in brain–heart communication.
(Online version in colour.)

To quantify the structure of DCL and to better understand the nature of interactions that
generate the delay-correlation configuration at each time t, it is important to differentiate the two
types of cross-correlation—positive versus negative. Thus, we construct the subset of DCL with
only positive correlation, i.e. only ‘hills’ in the DCL, as shown in figure 1d, where red solid circles
mark the positive correlation time delay, τPC(t) ≡ τ (t)|max C, corresponding to the time shift where
maximum positive cross-correlation is observed at each time step t. Similarly, we also construct
the negative DCL of blue ‘valleys’ as shown in figure 1e, where blue squares track the time
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Figure 3. Statistical patterns of characteristic time delays underlying brain–heart communications. Probability distributions of
the maximum correlation time delay τMC (first row), positive correlation time delay τPC (second row) and negative correlation
time delay τNC (third row) are obtained from the generalized time-delay analysis (figure 1) for each pair of brain–heart
interactions. (a) Individual distributions for all 34 subjects (plotted in different colours) and (b) the group average, where
black error bars represent the standard deviation across subjects. Distributions are obtained for the entire night-time sleep
period. Distribution profiles skewed to the right with peak at τ > 0 indicate that activations in brain dynamics precede cardiac
dynamics. Considering interactions between the relative spectral power of each brain rhythm and the HR, we find unique
profiles for the probability distribution of the time delay τ , indicating a specific role of each brain rhythm in mediating brain–
heart interactions. Note the different distribution profiles of τMC, τPC and τNC for the interaction between each brain rhythm
and the heart, indicating that positive and negative cross-correlations are characterized by different time delays. Interactions
between the total EEG power (all five brain rhythms) and the HR are characterized by a significant peak at τPC = 0, indicating
synchronized bursting activity in the brain–heart network where modulations in the same direction for the heart and the
brain occur simultaneously. By contrast, total EEG power and HR interactions exhibit a sharp peak at τNC > 0, indicating that
modulations in the HR that are in opposite direction to changes in brain oscillation occur with a positive time delay. The double-
peak distribution profile of τMC reflects a combination of the profiles for τPC and τNC. Remarkably, the ensemble of probability
distribution profiles for all three types of time delays is consistently observed for all subjects with small standard deviation,
indicating a universal mechanism underlying time delays in brain–heart communication. (Online version in colour.)
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Figure 4. Change in brain–heart time-delay distribution profiles with transitions across physiologic states. Joint profiles of
the probability distribution of τPC and τNC for each pair of brain–heart interactions during different physiologic states (sleep
stages) obtained by pooling data from all subjects (see §2). Distributions for τPC are plotted in the upper half plane in each
panel (different colours for different brain–heart interactions as in figure 3). Distributions for τNC are inverted and plotted in
the lower half plane with the same light shade. Each sleep stage (horizontal row) is characterized by a specific set of profiles
representing the time-delay characteristics for each brain–heart interaction. Considering each pair of brain rhythm and heart
interaction (column), the joint distribution profile of τPC and τNC changes from one sleep stage to another, leading to a complex
reorganization for the entire set of profiles across different physiologic states. This reorganization in the time-delay profiles
across sleep stages is also observed for the total EEG spectral power (right column), indicating a pronounced change in the
coupling between the overall brain activity and cardiac dynamics. Note that, for all pairs of brain–heart interactions during all
sleep stages, there are no peaks with significant negative time delay, indicating that brain–heart communications are mainly
mediated through directional interaction from the brain to the heart. Each sleep stage is characterized by a specific ensemble
of joint time-delay distribution profiles indicating that these profiles are a robust signature of physiologic state. (Online version
in colour.)

evolution of negative correlation time delay, τNC(t) ≡ τ (t)|min C, corresponding to the maximum
negative cross-correlation at each time step t.

In our analyses of brain–heart interactions, we fix the second signal to be the instantaneous
heart rate y(t) ≡ HR(t), and we assign the first signal x(t) as the relative spectral power of five
physiologically relevant brain rhythms (Sδ(t), Sθ (t), Sα(t), Sσ (t), Sβ (t)) and the total spectral power
SEEG(t). Under this definition, a positive time delay τ > 0 always corresponds to a situation when
the modulation in brain rhythms precedes corresponding changes in the cardiac signal, and vice
versa for τ < 0.

(c) Probability distributions of time delay
Our previous work has shown that TDS is a reliable measure of interaction and coupling
between dynamical systems, and that it is sensitive to differentiate between physiological
states and conditions even in cases when the amplitude of cross-correlation cannot provide a
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statistically significant separation between real and surrogate data [36]. Thus, to probe brain–heart
interactions, here we quantify the temporal dynamics and statistical properties of the time delay
inherent to different pairs of brain rhythms and heart interactions by calculating the probability
distribution P(τ ) of three types of time delay, including maximum correlation time delay (τMC),
positive correlation time delay (τPC) and negative correlation time delay (τNC). In other words, we
are interested in the most probable time delay when significant cross-correlations are observed.
The probability distribution is represented by a renormalized histogram of time delays and the
summation of the histogram values over all bins (1 s bin) equals 1. As shown in figures 2 and 3, we
obtain the probability distributions for all three types of time delay for a typical individual subject
as well as for the entire group of subjects. Panels along the horizontal direction are colour-coded
to represent interactions between different brain signals and the HR output, whereas different
rows of panels correspond to different types of time delay.

For a given pair of brain–heart interaction, the probability distributions of τPC and τNC can
be further combined into one histogram profile by plotting P(τPC) in the upper half plane with
corresponding colours as in figures 2 and 3, and inverting and plotting P(τNC) in the lower half
plane with the same light shade (figure 4). Combining histograms in this way enables us to better
demonstrate the changes in the probability distribution profile of the time delay for a given pair
of brain–heart interaction with transitions from one physiologic state (sleep stage) to another, as
well as the corresponding hierarchical reorganization of the entire set of distribution profiles for
all pairs of brain rhythms and heart interactions (shown in figure 4).

Peaks in the probability distribution profiles of time delay correspond to the characteristic time
delays that underlie brain–heart communications, and the sign of these characteristic time delays
is indicative of the directionality of brain–heart communication: τ > 0 for directional interaction
from the brain to the heart, whereas τ < 0 indicates that cardiac dynamics precede modulations
in brain activity.

3. Results and discussion
Integrated physiological systems, in general, are coupled by feedback and/or feed-forward loops
with a broad range of time delays that underlie physiologic interactions. Combination of these
feedback loops leads to different types of coordinated modulation in the output dynamics of
physiological systems that can simultaneously coexist [25–27]. Characteristics of physiologic
coupling and interaction, such as the range of time delays and different modes of coordination, are
essential for the entire organism to optimize its function during different physiologic states and to
generate proper response to external perturbation. Consequently, we focus on the characteristic
time delays involved in different modes of brain–heart interaction.

We perform empirical analyses of EEG and HR data recorded in healthy subjects during night-
time sleep to probe the interaction between distinct brain rhythm and the heart, and how these
interactions change with different sleep stages (well-defined physiologic states). As brain rhythm
activation and cardiac dynamics continuously change even within the same physiologic state,
we expect a high degree of complexity in the DCL representing brain–heart communications
(§2). As shown in figure 1c, the DCL for the Sδ−HR interaction is characterized by pronounced
heterogeneity where different types of cross-correlation (positive or negative correlation as
represented by regions with different colours) form a complex mixture.

(a) Ensemble of characteristic time-delay profiles
To investigate whether there are characteristic time delays associated with brain–heart
interactions, we construct the DCL (figure 1) for each pair of brain rhythm and HR signals.
We obtain probability distributions for three distinct types of time delays:

(i) Maximum correlation time delay (τMC) is the time shift which corresponds to the highest
degree of cross-correlation defined as the maximum of |C|. If the fluctuations of τMC
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remain small within the range of �τMC = ±1 s, the two signals are considered to exhibit
TDS and the two physiological systems are linked during this time period [36,40,41].

(ii) Positive correlation time delay (τPC) is the time shift for which two signals exhibit the
maximum positive cross-correlation. Strong positive correlation Cxy is often associated
with coordinated bursting activities in both signals, namely increase (or decrease) in
signal x is accompanied by a corresponding increase (or decrease) in signal y.

(iii) Negative correlation time delay (τNC) represents the time shift for which two signals
exhibit the most negative cross-correlation. Thus, τNC characterizes the typical time delay
when modulations in two signals occur in the opposite direction.

We find that, for each pair of brain–heart interaction, τMC, τPC and τNC are characterized by
markedly different patterns in their probability distribution P(τ ) (vertical columns in figures 2
and 3). For example, Sδ−HR interaction has a pronounced peak for P(τPC) at τPC ≈ 0 s, while the
peak for P(τNC) is located at τNC ≈ 6 s, indicating that different modes of brain–heart coordination
operate at markedly different time delays. For τMC, we consistently observe a double-peak pattern
in its probability distribution for all pairs of brain rhythm and HR interactions, which reflects
features of the distribution profiles for both τPC and τNC—this double-peak pattern is most
pronounced for the SEEG–HR interaction (figures 2 and 3).

Comparing pairs of interaction between the HR and different brain rhythms, we find that
for each type of time delay (horizontal rows in figures 2 and 3) different pairs of brain–heart
interactions exhibit distinct profiles of the probability distribution P(τ ). For example, while P(τPC)
for the pair Sδ−HR has a dominant peak at τPC ≈ 0 s, the pair Sθ−HR is characterized by a
dominant time delay of τPC ≈ 6 s, and Sσ −HR has characteristic time delays at both τPC ≈ 0 s
and τPC ≈ 6 s. By contrast, comparing P(τNC) for different pairs of brain rhythm–HR interaction,
we observe a pronounced peak at τNC ≈ 6 s for Sδ−HR and peak at τNC ≈ 0 s for Sθ−HR; this is
exactly opposite to the peak locations observed in P(τPC) (figures 2 and 3). These distinct profiles
indicate that each brain rhythm plays a specific role in mediating brain–heart interactions.

Remarkably, the entire ensemble of distribution profiles for all three types of time delays is
robust, as it is consistently observed for all individual subjects (figure 3a) as well as for the group
average behaviour (figure 3b). This consistency in time-delay distribution profiles is demonstrated
by the small standard deviation across subjects (error bars around group average value, figure 3).

Our statistical analysis (electronic supplementary material, figure S5a) reveals that the most
pronounced characteristic time delays underlying brain–heart communications are associated
with the following pairwise interactions: (i) Sδ–HR, (ii) Sθ –HR and (iii) SEEG–HR. These
interactions exhibit statistically significant peaks in the profiles of P(τPC) and P(τNC), coupled
with consistent time delays for τPC and τNC across subjects: (i) for Sδ–HR, τPC = 0 s and τNC = 6 s;
(ii) for Sθ –HR, τPC = 6 s and τNC = 0 s; and (iii) for SEEG–HR, τPC = 0 s and τNC = 6 s.

To further explore the interrelation between the characteristic time delays in the brain–heart
communication and distinct physiologic functions, we calculate the probability distributions for
τPC and τNC for different sleep stages, including deep sleep (DS), light sleep (LS), rapid eye
movement sleep (REM) and wake/brief arousals (W).

We find that each sleep stage is characterized by a specific set of joint profiles of the probability
distribution for τPC and τNC (horizontal rows in figure 4). Following each pair of brain–heart
interaction (vertical columns in figure 4), we observe that the joint profile of τPC and τNC changes
significantly from one sleep stage to another, reflecting changes in the neural regulation of cardiac
dynamics. Moreover, we find that the joint τPC and τNC profile for each pair of brain–heart
interaction follows a specific transition pattern across sleep stages (figure 4). Thus, with transition
across physiological states there is a complex reorganization of the entire ensemble of time-delay
distribution profiles of the different brain rhythm–HR interactions.

Intriguingly, our results for the total power SEEG–HR interaction show that, with increase
in sympathetic tone from DS to LS, REM and W, the peak in P(τNC) at τNC = 6 s completely
vanishes (figure 4), corresponding to the loss of significant time delays for negative brain–
heart cross-correlation (i.e. for modulations in the opposite directions between the EEG and
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HR signals). Indeed, increased bursting activity in brain dynamics associated with dominant
parasympathetic tone during DS and LS is associated with dipping in the HR, leading to a
pronounced anti-correlation profile, which disappears under dominant sympathetic tone during
wake. This pronounced τNC = 6 s time delay is consistently observed for all subjects (electronic
supplementary material, figure S5). While it may be associated with the baroreflex feedback loop,
the underlying physiologic mechanism for this characteristic time delay remains to be explored.
These observations identify characteristic time delays of brain–heart communications as a new
hallmark of physiologic state and function.

Notably, we find that, for both τPC and τNC, there are no peaks at significant negative time
delays as shown by the profiles in figure 4, indicating that brain–heart communications are mainly
mediated through directional interaction from the brain to the cardiac system.

4. Conclusion
To understand the basic mechanisms of neuroautonomic control of the cardiac systems, we
develop a generalized time-delay analysis framework and a novel DCL approach to investigate
the role of distinct physiologically relevant brain rhythms in mediating brain–heart interactions.
Compared with the traditional cross-correlation analysis with a fixed time delay or the original
TDS approach, where the emergence of stable time delay marks the onset of dynamical coupling
between two systems, the approach proposed here keeps track of both the time evolution and the
delay dependence of the cross-correlation between two signals.

We find that brain–heart interactions exhibit characteristic time delays and that different
modes of interaction (i.e. positive or negative cross-correlations) are characterized by
different time delays. Our results demonstrate that the interactions between different brain
rhythms and the HR are characterized by distinct distribution profiles for time delays, indicating
that each brain rhythm has a specific role in mediating brain–heart communications. Furthermore,
we find that the time-delay profile for each pair of brain rhythm and HR interaction follows a
unique transition pattern from one sleep stage to another, leading to a complex reorganization of
the entire ensemble of time-delay profiles.

As sleep-stage transitions are closely associated with changes in sympatho-vagal balance,
the uncovered ensemble of time-delay profiles representing brain–heart interactions reveals
previously unknown dynamical aspects of cardiac neural regulation that are a hallmark of
physiologic state and function.

Remarkably, the uncovered time-delay distribution profiles for all pairs of brain rhythm
and HR interactions are consistently observed in all healthy subjects, and exhibit a similar
reorganization with transition across sleep stages in each subject. Thus, these new measures can
potentially be used not only as robust markers of physiologic states and functions under healthy
condition, but also as diagnostic and prognostic indicators of pathological perturbations.

The main purpose of this work is to present a first proof-of-concept demonstration of a
DCL approach to identify and quantify the characteristic time delay underlying brain–heart
interactions. Thus, in this study, we use data from the C3 EEG channel only, which is most
commonly used in sleep research, and we use EEGC3–HR interaction as an example to present
our computational framework. Naturally, follow-up work will extend to other EEG leads to
identify the different roles of brain location in mediating brain–heart interactions. These extended
analyses may include not only instantaneous HR time series, as presented here, but also high-
and low-frequency HR components as well as other static and dynamic local characteristics
of the cardiac output. Further, modelling approaches based on surrogate time series with
different autocorrelations and other dynamical characteristics as observed in the brain and heart
output signals can help elucidate the origin and structure of the DCL representing brain–heart
interactions during different sleep stages.

The proposed time-delay approach is general and can be applied to other types of dynamical
systems with complex output signals where the existence and the nature of coupling and
interactions are not known a priori. Moreover, the novel concept of delay-correlation landscape
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encompasses all key elements of cross-correlation, and provides a comprehensive picture of the
coupling strength, characteristic time delays and time evolution of correlation between dynamical
systems. Thus, the approach presented here can serve as a general analytical tool to understand
basic mechanisms underlying physiological interactions, which is essential for the development
of the new field of ‘Network Physiology’.
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