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In this study, we investigated two potentially important intersexual postcopu-

latory gametic interactions in a population of chinook salmon (Oncorhynchus
tshawytscha): (i) the effect of female ovarian fluid (OF) on the behaviour of sper-

matozoa during fertilization and (ii) the effects of multilocus heterozygosity

(MLH) (as an index of male quality) and female–male genetic relatedness

on sperm behaviour and male fertilization success when there is sperm

competition in the presence of that OF. To do this, we conducted a series of

in vitro competitive fertilization experiments and found that, when ejaculates

from two males are competing for access to a single female’s unfertilized

eggs, fertilization success was significantly biased towards the male whose

sperm swam fastest in the female’s OF. Embryo survival—a measure of

fitness—was also positively correlated with both sperm swimming speed in

OF and male MLH, providing novel evidence that cryptic female choice is

adaptive for the female, enhancing the early survival of her offspring and

potentially influencing her fitness.
1. Introduction
Two mechanisms of postcopulatory sexual selection—sperm competition and

cryptic female choice (CFC)—are major determinants of fertilization success

in many taxa [1–4]. The gametic interactions between two (or more) males

and a given female, for example, has led to adaptations that enhance a

male’s ability to compete with a rival [2,5–10]. Females are also able to bias

the outcome of sperm competition by differentially enhancing the fertilization

success of ‘chosen’ males, a process known as CFC [1]. There is now convincing

evidence to suggest that, in species with either internal or external fertilization,

male–female compatibility at the gamete-level biases fertilization towards those

males most likely to maximize offspring fitness [11–13]. Thus, for example,

when there is a risk of inbreeding by close genetic relatives, there is often

gamete incompatibility [14–17].

Despite the recognized importance of CFC on fertilization success under

sperm competition, relatively little is known about how CFC is mediated, nor is

there clear evidence that such choice enhances female fitness. The identification

of mechanisms that allow females to promote fertilization after copulation or

spawning have only been identified in a handful of taxa [14,18–20], in part

because it is notoriously difficult to establish that CFC has in fact occurred.

Particularly in internal fertilizers, for example, it is near impossible to visualize

and measure egg and sperm interactions under natural conditions [21,22]. More-

over, variation in the quality of a male’s sperm may confound the process of CFC

as sperm traits alone can also influence a male’s fertilization success [2,5–10].

Some of the clearest examples of CFC have been observed in broadcast spawn-

ing species, where females differentially favour fertilization by sperm from

certain males. For example, in a hermaphroditic ascidian, Diplosoma listerianum,
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self-fertilization of ova is avoided by discrimination against

sperm that are genetically similar to the individual being ferti-

lized [23]. Likewise, the fertilization of sea urchin (Echinometra
sp.) eggs can only be achieved by sperm containing a bindin

genotype compatible with their own receptor, which acts to

limit hybridization and enhance local adaptation [24–26].

In this study, we build upon our previous work [27] using

an externally fertilizing fish species, chinook salmon,

Oncorhynchus tshawytscha, to explore the mechanism of CFC

at the gamete level, and to determine whether CFC has any

clear fitness consequences for the female. In this system,

males often mate in a competitive environment during

spawning [28], such that postcopulatory selection can act

on both males and females.

In salmonids, a viscous ovarian fluid (OF) surrounds the

unfertilized ova and is released with those ova into fresh or

salt water during spawning. This OF comprises 10–30% of

the volume of the spawned egg mass [29]. Spermatozoa

likely encounter increasing concentrations of OF as they

approach an unfertilized ovum, with the highest concentration

on the ovum’s porous outer shell and inside its micropyle [27].

In chinook salmon (and other fishes), sperm swimming

speed is an important predictor of sperm competitiveness,

and thus paternity success, under conditions similar to

those in the natural spawning environment [5–7]. When

the spermatozoa come into contact with OF, sperm perform-

ance is enhanced: sperm swim faster, survive longer, and

swim in a more linear trajectory compared with sperm be-

haviour measured in water alone [30]. The positive effect of

OF on sperm behaviour is now well studied in a number of

fish species [20,31–35] but, in chinook salmon at least,

sperm swimming speed in OF differentially depends upon

female and male identities, with certain sperm–OF combin-

ations resulting in faster sperm velocity than others [27].

This finding leads us to suggest that the OF may in fact

bias the success of spermatozoa carrying superior genotypes

to be sire’s for the female’s offspring [27,36–38].

Similar effects of OF on sperm performance have been

reported in guppies, Poecilia reticulata [20], lake trout, Salvelinus
namaycush [33], and Arctic charr, Salvelinus alpinus [35]. In the

internally fertilizing guppy [20], sperm–OF interactions biased

fertilization success towards males that were not related to the

female—the sperm of those males generally swam faster in the

focal female’s OF than did the sperm of their competitors that

were more closely related to the female [20]. In addition, recent

work on Atlantic salmon, Salmo salar, and brown trout, Salmo
trutta, indicates that OF plays a key role in promoting the fer-

tilization of ova by conspecific sperm in preference to

genetically incompatible heterospecific sperm, and that OF is

likely more important than interactions at the ovum’s porous

outer shell in promoting reproductive isolation between

these sympatric species [18].

Here we use a combination of paired-male, in vitro, com-

petitive fertilization trials in chinook salmon, coupled with

microsatellite-based analyses of paternity and multilocus het-

erozygosity (MLH), to investigate (i) the influence of OF on

sperm performance and male fertilization success when

there is sperm competition and (ii) the early life stage survi-

val and development of embryos resulting from fertilization

by ‘preferred’ versus ‘non-preferred’ males, where ‘preferred’

males are defined as those that had the higher fertilization

success under sperm competition. We also examined whether

any bias in fertilization outcomes was related to (iii) the
genetic relatedness between each of the competing males

and the female whose ova they were competing to fertilize

[18,33,39] and (iv) the quality of competing males as esti-

mated by their MLH determined with microsatellite

markers [40,41].
2. Material and methods
(a) Study species and maintenance
Chinook salmon were caught during their annual spawning run

(April–May) in a trap located on the Kaiapoi River, a tributary of

the Waimakariri River system, Canterbury, New Zealand [42].

We studied sexually mature, 3-year-old, ‘hooknose’ males and

3-year-old females captured in 2010 (n ¼ 13 males, 4 females)

and 2011 (n ¼ 15 males, 6 females), taken from a sample of fish

(25 and 37 males in 2010 and 2011, respectively, and about 100

females in each year) captured and individually marked for

gamete harvesting at a hatchery.

Fish were maintained in a natural river-water raceway (12.5–

138C) at a hatchery (Salmon Smolt NZ, Canterbury, New Zeal-

and) using standard husbandry procedures. A small fin clip

was taken from each fish and stored in 95% ethanol for later

DNA extraction and analysis.

(b) Competitive fertilization trials
To assess whether differences between males in sperm velocity

(measured in a female’s OF) influenced a male’s fertilization suc-

cess, we set up competitive fertilization trials between two males

(dyads) at a time. This allowed us to directly compare the relative

fertilization success of each male (difference between the number

of eggs fertilized) that was competing to fertilize the same clutch

of ova, in an experimental design that mimicked the natural

spawning environment. We tested two different concentrations

of OF (50% OF in 2010, 100% OF in 2011) as spermatozoa are

expected to be in contact with an increasing concentration of

OF as they approach the unfertilized ova.

We conducted a total of 90 replicated competitive fertilization

trials (35 in 50% OF, 55 in 100% OF) involving a total of 28 indi-

vidual males (13 in 2010, 15 in 2011) and 10 individual females

(4 in 2010, 6 in 2011). For each of the two replicates per trial,

one female and two males were haphazardly chosen, so individ-

uals were sometimes used in more than one replicated trial, but

each trial involved a unique triad.

Milt was obtained from males, and OF from females, as

described previously [7,27,30]. All unfertilized ova, OF and, milt

samples were held at 48C for up to 5 h until the trial was replicated.

Sperm density was determined using an improved Neubauer hae-

mocytometer prior to each fertilization trial so that approximately

the same number of sperm per male (1 � 108 spermatozoa) could

be used in each trial.

For each in vitro competitive fertilization trial, we placed a batch

of about 100 unfertilized ova from the focal female in a dry 2 l plas-

tic beaker, then added milt samples from each male simultaneously

by injecting them separately into a steady stream of raceway water

(250 ml at 12.58–138C) being poured into the beaker. This tech-

nique ensured a rapid and heterogeneous mixing of gametes. We

added the milt samples separately into the water to ensure that

the spermatozoa were activated before the milt samples came

into contact, to minimize any effects of each male’s seminal fluid

on the other male’s sperm function. For each trial, the two beakers

containing fertilized eggs, milt, and water were left undisturbed in

the dark for 5 min to ensure that sperm were no longer motile and

eggs had begun to harden. Then, each batch of fertilized eggs was

gently transferred into its own compartment in a vertical incu-

bation stack. Clutches of fertilized eggs were allowed to develop

undisturbed in a constant water flow at natural spawning-water
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temperatures for 28 days (350 accumulated thermal units, ATUs)

approximately 4–5 days before hatching (which typically occurs

after 480 ATUs). At 28 days after fertilization, an average of 116

eggs (range 68–204) were examined in each of those 180 batches

to determine the proportion of eggs that had viable embryos.

Viable embryos with vascularized yolk sacs were clearly visible

inside the egg at that stage [43,44].

To determine the paternity of offspring resulting from these

trials, we conducted microsatellite genotyping of 4 320

unhatched embryos at day 28. DNA was extracted from pre-

served tissue samples using a standard Chelex procedure [45].

For each of the 180 (i.e. 90 replicated) trials, the two potential

sires, the dam, and a haphazard sample of 24 progeny were

genetically typed by Genomnz (AgResearch Ltd, Mosgiel, New

Zealand) using a multiplex of nine highly polymorphic microsa-

tellite markers (Ocl-1 [46], Omy-325 [47], Ots-101 [47], Ots-104

[47], Ots-107 [47], Ots-2 [47], Ots-3 [47], Ssa-197 [48], Ssa-85

[49]). We assigned paternity using a maximum-likelihood

approach in CERVUS (v. 3.0) [50].

The results from these trials were not significantly different

between the two replicates with each triad (see the electronic sup-

plementary material, statistical appendix for details), and we

pooled the replicates for further analysis. We designated the

male that sired the majority of offspring in each triad as

the ‘winner’, and estimated his fertilization advantage as the

number of offspring that he sired in excess of those sired by

the loser.

To determine the most accurate measure of genetic relatedness

(rMF) between each male and the female in a trial, we used a simu-

lation program in COANCESTRY v. 1.0.1.0 [51] as outlined in

Taylor [52]. Based on the nine microsatellite markers that we

genotyped, these simulations showed that the triadic likelihood

(TrioML) estimator [51] produced pairwise relatedness esti-

mates most highly correlated with true values (Pearson’s r ¼ 0.82,

n ¼ 600 simulated dyad populations).

Using GenAIEx [53], we also calculated each individual’s

MLH from the same nine microsatellite loci as the proportion of

loci that are heterozygous. Calculating MLH using neutral loci

such as microsatellites provides a good estimate of heterozygosity

and is an index of genome-wide genetic diversity [40,41] that is

commonly used to measure heterozygosity in wild populations

[54,55]. Significant deviations from Hardy–Weinberg equilibrium

for these nine microsatellite loci was also calculated [53] (see the

electronic supplementary material, table S1, for observed and

expected heterozygosities).

(c) Non-competitive fertilization trials and embryo
survival

We conducted 59 in vitro non-competitive fertilization trials using

the milt of each male combined with the unfertilized ova from each

female that he was paired with in the competitive fertilization trials

(in which 14 males were paired with only one female, five males

with two different females, nine males with three females, and

two males with four females). These non-competitive fertilization

trials were not replicated but were handled as for the competitive

trials, and at the same time. We confirmed that all males were

reproductively fertile because they had fertilized some ova in at

least one trial. Thus, any differences in male fertilization success

in the competitive in vitro fertilization trials could not be attributed

to male infertility. On average, 115 (108, 122; 95% CL) eggs were

examined to determine the proportion of surviving embryos in

each of these 59 batches of eggs, and an average of 57% (49, 64;

95% CL) of eggs in each batch were successfully fertilized. Dead

eggs were counted and removed twice weekly. We used this

measure of embryo survival as a direct measure of early life repro-

ductive success, as this has previously been used in other salmonid

studies [49,56].
(d) Measuring sperm quality traits
We measured sperm swimming speed for each male at 10 s post-

activation using a CEROS sperm tracker (v. 12, Hamilton-Thorne

Research, Beverly, MA, USA) with the sperm in OF (50% in 2010,

100% in 2011) from those females used in that male’s competitive

fertilization trials, employing methods previously described

[7,27,30]. In brief, , 1 ml of milt was pipetted onto a 20 ml Leja

slide (Leja Products B.V., Nieuw-Vennep, The Netherlands), on

a temperature-controlled stage cooler (TS-4 Thermal Microscope

Stage, Physitemp, USA) set to 12.58C to match the natural

spawning water temperature.

We used average path velocity (VAP, mm s21)—which esti-

mates the average velocity of a sperm cell for 0.5 s over a

smoothed cell path—as our measure of sperm swimming

speed [7,27,29,30]. VAP was measured twice for each milt

sample in each activation medium, and we used the mean in

further statistical analyses. Thus, for the milt sample from each

male in each of the 90 replicated competitive fertilization trials,

we measured the VAP in river water and in either 50% (in

2010) or 100% OF (in 2011) from the female in that trial. VAP

was calculated from an average of 94 (86, 102; 95% CL) sperm

tracks per milt sample (n ¼ 360 VAP estimates, comprising four

samples—activated in OF—from the milt of each male in each

of the replicated 90 competitive fertilization trials). Within-male

repeatability (ICC ¼ intraclass correlation coefficient) of VAP

was high, with up to four measures of VAP per male (n ¼ 28

experimental males) from their milt activated in (i) 50% OF

(ICC ¼ 0.8, p � 0.0001) or (ii) 100% OF (ICC ¼ 0.7, p , 0.0001).

VAP was positively correlated with other sperm velocity

parameters (see the electronic supplementary material).
(e) Statistical analyses
All statistical analyses were performed using R v. 3.1.2 [57];

descriptive statistics are presented as mean (95% confidence

limits). See the electronic supplementary material, statistical

appendix, for details with regard to the choice of methods and

comprehensive results of all analyses, including tests of statistical

assumptions and alternative methods of analysis.

We used an information-theoretic approach to model evalu-

ation [58], wherein we consider all models with Akaike

Information Criterion (AICc) values within 2.0 of the best-fitting

model to be statistically equivalent, given the data. We report all

sets of top models, as well as the methods used for evaluating the

significance of fixed effects in the electronic supplementary

material.
3. Results
(a) Genetic analyses
Excluding one locus (Ots-104) in the 2010 spawning season,

we did not detect significant deviations from Hardy–

Weinberg equilibrium for the nine microsatellite loci used

in this study (see the electronic supplementary material,

table S1). Individual male MLH was similar for both spawn-

ing seasons (2010; MLH ¼ 0.79 [0.70, 0.88] n ¼ 13 males,

2011: MLH ¼ 0.82 [0.76, 0.87] n ¼ 13 males; F1,26 ¼ 0.31, p ¼
0.59). Mean pairwise genetic relatedness (rMF, using the

TrioML estimator) of male–female dyads was also similar

for both spawning seasons (2010: rMF ¼ 0.029 (0.01, 0.05)

n ¼ 35 unique female–male dyads (15 males and 4 females),

2011: rMF ¼ 0.047 (0.03, 0.06) n ¼ 55 unique female–male

dyads (13 males and 6 females); F1,88 ¼ 1.7, p ¼ 0.18).



Table 1. Best-fitting generalized linear mixed effect model (GLMM) to
predict the fertilization advantage by the winner (number of eggs fertilized
in excess of those fertilized by the loser) in each of 90 competitive
fertilization trials from predictor variables calculated as the differences (D)
between the two males with respect to (i) individual male multilocus
heterozygosity (MLH) and (ii) their sperm velocities (VAP in mm s – 1)
measured in that female’s OF. This model also controls for OF concentration
used in the trial as this was different in the 2 years of the study, as well
as for the random effects of male and female identities. P-values were
calculated using the Kenward – Rogers method; VAP and MLH were
standardized (std) in this analysis. See the electronic supplementary
material for (i) details of top models (AICc , 2) in this set (electronic
supplementary material, table S2) and (ii) a separate best-fitting model for
each ovarian fluid (OF) concentration (see the electronic supplementary
material, table S3).

parameters (fixed effects only) estimate (95% CL) p

intercept 29.2 (22.94, 35.39)

std D MLH 6.4 ( – 0.38, 13.10) 0.11

std DVAP in OF (mm s21) 11.2 (4.79, 17.52) 0.003

OF concentration (50 or 100%) – 7.5 ( – 15.80, 0.81) 0.12
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Figure 1. Partial regression plot to illustrate the association between sperm com-
petition success (fertilization advantage of male that obtained the majority of
fertilizations) and the difference in the mean sperm swimming speed (VAP in
mm s21) of the two competing males, as measured in 50% and 100% ovarian
fluid (OF) at 10 s after sperm activation (analysed separately, electronic supple-
mentary material, table S3). Each data point is the pooled data from a replicated
two-male sperm competition trial (n¼ 35 and 55 for 50% and 100% OF concen-
trations, respectively). Both linear models shown here control for the difference in
male MLH, but not for the random effects of male and female identities (see
the electronic supplementary material, appendix). (Online version in colour.)
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Figure 2. Partial regression plots to illustrate the relationship between embryo
survival (the proportion of eggs that survived to 28 days after fertilization) in
the non-competitive fertilization trials and that male’s (a) sperm swimming
speed (VAP) in the female’s ovarian fluid (OF) and (b) individual male multilocus
heterozygosity (MLH). Each data point is from a single non-competitive fertilization
trial, with the same number of spermatozoa used from each male in each trial.
These plots are based on a linear model, using the proportion of embryos that sur-
vived as the response while controlling for OF concentration, and either (a) VAP or
(b) MLH but not for the random effects of male and female identities (see the
electronic supplementary material, appendix). (Online version in colour.)
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(b) Sperm competition trials
In the 90 replicated competitive fertilization trials, the male

that obtained the majority of fertilizations (the ‘winner’)

realized, on average, 75.7% (72.4, 78.9; 95% CL) (range 50–

100%) of the fertilizations. This fertilization advantage

(additional number of offspring sired) of the winner in

these trials was significantly predicted by the difference

in the sperm swimming speeds (VAP) between the two

competing males (table 1 and figure 1), controlling for

the non-significant effects of both OF concentration and the

difference in MLH between the males. One of the top

models in this analysis also included the difference in

male–female relatedness as a predictor (electronic sup-

plementary material, table S2), suggesting that this variable

might be worth investigating further in a study with a

larger sample size. Thus, in competitive fertilization trials,

the fertilization advantage for the male that fertilized the

majority of eggs increased linearly with the difference in

the competing males’ sperm swimming speeds in both 50%

and 100% OF concentrations (figure 1). Only about 50% of the

eggs were fertilized in each competitive fertilization trial, as

we used a much lower than natural sperm : egg ratio (100 ova

per 108 spermatozoa) in each trial to ensure that fertilizations

were not swamped by the sperm of one male.

This fertilization advantage for the winning male was not

related to the difference in the competitors’ sperm swimming

speeds measured in fresh water (std beta ¼ –0.50 (–7.49,

6.50), F1.0,72.1 ¼ 0.02, p ¼ 0.90), controlling for the effects of

OF concentration and MLH as well as the random effects of

male and female identities. VAP was not included in any of

the top models in this set (see the electronic supplementary

material, table S4).

(c) Embryo survival
In the non-competitive fertilization trials, where there was

no rival male sperm, the proportion of fertilized eggs that

developed successfully (i.e. were still viable at 28 d) was



Table 2. Best-fitting GLMM to predict embryo survival (number of eggs
survived versus died) in the non-competitive fertilization trials (n ¼ 59)
from (i) the male’s mean sperm velocity (VAP in mm s – 1) measured in the
female’s OF, (ii) individual male multilocus heterozygosity (MLH) estimated
from nine polymorphic microsatellite loci, and (iii) his genetic relatedness
(TrioML) to the female (all standardized (std) in this analysis). There was
only one top model (AICc , 2) in this set and it did not include TrioML.
We used fish from two different spawning seasons so the model controls
for potential differences between years in embryo survival, as well as the
random effects of male and female identities. See the electronic
supplementary material, table S4, for an Markov chain Monte Carlo
Generalized Linear Mixed Models (MCMC)-GLMM with this same model
structure, showing the same pattern of results.

parameters (fixed effects only) estimate (95% CL) p

intercept – 0.52 ( – 1.31, 0.27) 0.20

std MLH 0.89 (0.10, 1.67) 0.03

std VAP in OF (mm s21) 1.59 (0.66, 2.52) 0.0008

OF concentration (50 or 100%) 2.50 (1.91, 3.81) 0.0002
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significantly related both to that male’s sperm swimming

speed in the female’s OF (figure 2a) and his MLH

(figure 2b and table 2), controlling for the significant effect

of year in which the male and female were sampled (see

also the electronic supplementary material, table S5).

Although different OF concentrations were used each year,

it seems reasonable to attribute the differences between

years to differences in parental and offspring quality, rather

than to the effects of OF concentration. In these trials,

embryo survival was not significantly related to sperm swim-

ming (VAP) measured in fresh water (GLMM: std beta ¼ 0.65

[–0.48,1.78] p ¼ 0.26), while controlling for fixed effects of

year and both male and female MLH, and the random effects

of male and female identity (see the electronic supplementary

material, table S4).
4. Discussion
(a) Evidence for cryptic female choice
In this study, we found that when the sperm of two male chi-

nook salmon compete to fertilize a clutch of eggs, one of the

males was, on average, 50% more successful, even when there

were (experimentally) the same number of sperm in each

male’s ‘ejaculate’. Siring success was substantially biased

towards the male whose sperm swam faster in the presence

of that female’s OF, and was significantly related to the differ-

ence between the males’ sperm swimming speeds in both

50% and 100% OFs (figure 1 and table 1; electronic sup-

plementary material, table S3). Despite the difference in

spawning seasons with respect to fishes and OF concen-

trations, the relationships between the winning male’s

fertilization advantage and the relative (standardized) differ-

ence between his and his rival’s sperm swimming speeds was

remarkably similar (figure 1; see the electronic supplemen-

tary material, table S3a). However, the effect of actual VAP

(i.e. not standardized) was almost three times as high in

50% OF (slope ¼ 0.42) as in 100% OF solution (slope ¼

0.16), though the difference in estimates between the two
OF concentrations was not significant (see the electronic sup-

plementary material, table S3b). A stronger effect of OF on

VAP might be expected in the more dilute (50%) solution

due to the high viscosity of pure OF [29], but differences

between years might also have been important in this

study. Because the fertilization advantage of the winner

was not related to the difference between the males’ sperm

swimming speeds in fresh water, we conclude that male fer-

tilization success was largely the result of interactions

between his sperm and the female’s OF, and not solely due

to the sperm’s traits.

We have previously shown that, in chinook salmon, OF

surrounding unfertilized ova has a positive effect on sperm

swimming speed [30], that the effect of a given female’s OF

on sperm behaviour varies from male to male [27], and that

the difference in the sperm swimming speed of competing

males predicts differential male fertilization success [7]. This

study confirms that the effect of OF on sperm velocity is

likely to be a mechanism of CFC. These findings contribute

to a growing body of work demonstrating that female-derived

fluids surrounding the unfertilized ova can mediate CFC prior

to gamete contact in a range of external and internal fertilizers

(e.g. in guppies [20], frogs [59], and salmon [18]).

Interestingly, males with faster sperm swimming speed

did not ‘win’ (i.e. have higher fertilization success) in all of

the competitive fertilization trials, nor did they fertilize all of

the female’s ova in most trials. Overall, the male with the

faster swimming sperm ‘won’ 61% of trials, whereas the male

with the slower swimming sperm won 27%, and in 12% of

trials males with different sperm swimming speeds fertilized

the same proportion of eggs. We did not measure other factors

that may have resulted in non-random mating, including:

(i) male–female compatibility at the major histocompatibility

(MHC) complex, which may confer higher pathogen resistance

again egg disease [60–62] and (ii) between-male variation in the

quality of seminal fluid, which is known to contain components

that influence embryo development and viability [63].

The mechanistic basis for the variation in sperm velocity

that we [27] and others [31,34,35] have observed—between

spermatozoa from different males activated in the same

female’s OF—remains unknown. While OF had a strong

effect on fertilization outcomes in our competitive fertiliza-

tion experiments, our results indicate that sperm velocity in

OF was not mediated by the pairwise genetic relatedness

between males and females. These results contrast with a

study in lake trout, Salvelinus namaycush, wherein a 20% OF

solution mediated sperm velocity according to the pairwise

genetic relatedness between males and females [33].

Recently, we have identified 174 proteins in the OF of

female chinook, with variation among females in both the

number and concentrations of proteins [64]. These proteins

may diffuse from the unfertilized ovum’s outer layer to interact

with proteins present on the plasma membrane of the sperma-

tozoa, resulting in differential modification of the ion channels

responsible for flagellar beating and sperm velocity. Small pep-

tides that diffuse from the egg have been isolated in a wide

variety of echinoderm species (e.g. sea urchins and starfish)

and have been shown to alter sperm behaviour [65,66].

Recent research in mammals has also identified several chemo-

kines present in human follicular endometrial fluid that

interact with a receptor common to several chemoattractant

peptides present in mouse and human sperm—peptides that

modify sperm velocity and chemotaxis [67].
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(b) Is cryptic female choice adaptive?
The survival of embryos fertilized by each male—in separate,

non-competitive fertilization trials—was also significantly

related to the male’s sperm swimming speed in that female’s

OF (figure 2a and table 2), as well as to his MLH (figure 2b
and table 2). Thus, whatever the influence of OF on CFC

that was mediated by its effect on sperm behaviour, the

result is that this CFC was adaptive as it enhanced female

reproductive success, as measured by embryo survival. This

is the first evidence that we know of showing that CFC results

in fitness benefits to the female, but more work will be

needed to elucidate the genetic and biochemical mechanisms

underlying that choice, and the reasons for the resulting

increase in embryo survival.

Our measure of female (and male) reproductive success—

embryo survival at day 28 (350 ATUs)—is obviously a crude

surrogate for fitness, in that it measures only survival over a

tiny, albeit extremely important, fraction of the offspring’s

life. It is unknown how that measure of success might influence

true fitness and even whether survival in the benign incubator

environment tells us anything about embryo survival in the

rough and tumble of the natural spawning environment. In

one study, embryo survival to the eyed stage (about 280

ATUs or about 22 days for the conditions in our incubators)

in a natural stream averaged 42.6% [68], suggesting that this

is normally a period when the mortality rate is high.

The relationship between a male’s MLH and the survival

of the embryo that he has sired (figure 2b) suggests that

females benefit from mating with ‘high-quality’, genetically

diverse males, and supports theoretical predictions that

females secure genetic benefits for their offspring by choosing

sperm of males with particular genotypes [36–38]. Offspring

survival may be enhanced when females produce offspring

with high genetic heterozygosity, resulting in either a

reduction in the likelihood of the expression of recessive dele-

terious alleles, or an increase in the number of potentially

useful gene products. For example, offspring diversity at

the MHC locus should allow an individual to respond to a

greater range of pathogens [60,69–71]. Evidence is accru-

ing that interactions between the maternal and paternal

genomes is a strong fitness predictor across a range of species

including birds, mice, and fish [40,69,72,73].

We are cautious about interpreting the correlation between

embryo survival and the sire’s MLH. We used nine, presum-

ably neutral, microsatellite loci to estimate each male’s MLH

as a proxy for genome-wide heterozygosity [41,74] but MLH

may not reflect heterozygosity at other loci and by extension

genomic heterozygosity [75]. Further investigation is required

into the pattern of increased embryo survival, and other

fitness-related traits in the offspring such as growth rate,

survival, and subsequent reproductive success [76].
Other researchers have interpreted a correlation between

offspring survival and the sperm traits possessed by the win-

ning male during sperm competition as evidence in favour of

the ‘good sperm’ hypothesis (GSH) [77]. The GSH predicts

that males with competitively superior sperm will produce off-

spring with better viability. While that is certainly what we

found, the competitive superiority of male chinook sperm was

mediated by the female’s OF, a process that we interpret as

CFC—those males did not have competitively superior sperm

when activated either in fresh water or in the OF of some other

females. This extension to the GSH has been acknowledged

by others [78] but has not previously been documented, to the

best of our knowledge. Given the increasing evidence for CFC

in both internal and external fertilizers [14,18–20,79], the effects

of that choice on sperm behaviour and morphology deserves

further modelling and empirical study.

While the occurrence and mechanisms of CFC may be

easiest to study in external fertilizers, we expect that in most

organisms there will be the potential for male gametes to

encounter female-specific biochemical environments whether

those be OFs, mucous on vaginal and uterine walls, or, in the

case of plants, stigmatic surfaces and stylar tissues [80]. We

suggest that this is a fruitful avenue for further research, both

to explore the biochemical basis for the CFC revealed by the

correlation with male MLH that we observed, and to look

at more comprehensive indices of offspring fitness to deter-

mine what benefits accrue to females making choices at the

gamete level.
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