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We present a systematic investigation of well-characterized, experimentally pure polystyrene (PS) 

rings with molar mass of 161 000 g/mol in dilute solutions. We measure the ring form factor at θ- 

and good-solvent conditions as well as in a polymeric solvent (linear PS of roughly comparable 

molar mass) by means of small-angle neutron scattering (SANS). Additional dynamic light 

scattering (DLS) measurements support the SANS data and help elucidate the role of solvent 

quality and solution preparation. The results indicate the increase of ring dimensions as the solvent 

quality improves. Furthermore, the experimental form factors in both θ-solvent and linear matrix 

behave as ideal rings and are fully superimposable. The nearly Gaussian conformations of rings in 

a melt of linear chains provide evidence of threading of linear chains through rings. The latter 

result has implications for the dynamics of ring–linear polymer mixtures.

Graphical Abstract

I. INTRODUCTION

Ring polymers have always been considered exceptional and fascinating because they have 

no free ends. Yet, it is established that the presence of free ends in polymers is important for 

the understanding of their motion. Hence, questions relating to the size and dynamics of ring 

polymers have been of interest for a long time. Ring polymers are also important in biology. 

For example, mitochondiral and plasmic DNA are cyclic, and therefore, ring polymers are 

ideal models for a number of fundamental biophysical problems.1–5,53 The organization of 

chromatin in the cell nucleus can be understood by drawing analogies to the conformation 

and dynamics of densely packed rings. Chromatin fibers are packed in vivo at a reasonably 

high density, like a melt of linear chains. However, the different chromosomes in the nucleus 

do not intermix, but instead segregate in different stable distinct regions, by analogy with the 

conformation in a melt of pure nonconcatenated rings. This type of segregated conformation 

appears typical for the cells of higher eukaryotes, including humans. In addition, the 

fundamental understanding of structure and dynamics of rings is particularly relevant to 

applications ranging from DNA separation to enzymology and from protein structure 

stabilization to drug delivery.3,4 Therefore, a thorough understanding of the physics of ring 

polymers is necessary for many of their applications. In spite of the progress made to date in 
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both experimental5–7 and simulation8,9 studies of rings, a number of issues remain elusive. 

For example, the adjustment of a ring conformation to changing environment (e.g., solvent 

quality or mixture) is very important for understanding its dynamics, yet its detailed 

investigation remains elusive. In the same light the issue of whether cyclization conditions 

like e.g. the choice of a θ-solvent or a good solvent, which locks in different fractions of 

knots, lead to measurable different chain dimensions and according form factor 

modifications is still to be solved.

Here, we address this fundamental challenge by studying the role of solvent quality on the 

conformation and size of well-characterized, i.e., critically fractionated rings. We consider 

polystyrene (PS) rings of weight-average molar mass 161 000 g/mol that were synthesized 

in cyclohexane, which is a θ-solvent.10 The ring polymer was studied in three different 

solvents: d8-toluene (a good solvent), d12-cyclohexane (a θ-solvent at 31.5 °C), and a melt of 

linear chains of comparable molar mass. In the latter case excluded volume interactions are 

expected to be screened based on Flory’s theorem,11 and this blend is mainly used in order 

to explore the entropic ring–linear interactions. To support our results, we provide additional 

experimental evidence with another sample of well-characterized polystyrene rings, 

synthesized in a THF/heptane mixture, but having a different molar mass of 13 800 g/mol.12 

The article is organized as follows: in section II we present the materials and methods and in 

section III the results and interpretation. The main conclusions are summarized in section IV.

II. EXPERIMENTAL SECTION

II.1. Materials

The PS rings with weight-average molar mass Mw = 161 000 g/mol were synthesized 

anionically in dilute solution of a θ-solvent cyclohexane, as described in ref 10. This 

procedure reduces the probability of uncoupled linear chains, although it does not 

completely eliminate it.13 However, although not explicitly mentioned in ref 10, the ring 

closure was indeed started in cyclohexane, but the successive addition of the living polymer 

must have created rapidly a good solvent environment. In particular, the linear difunctional 

precursor was anionically prepared in a 50/50 mixture of benzene/THF (about 50 mL) at 

0 °C with sodium naphthalenide as the initiator. The cyclization for this sample was brought 

about through stepwise addition of small amounts of the linear precursor solution to a larger 

amount of cyclohexane (about 100–120 mL) at 25 °C with simultaneous slow introduction 

of a less than stoichiometric amount of dimethyldichlorosilane as the coupling agent.10,31 

Hence, while these initial conditions may be below the θ-temperature, the increasing 

presence of added benzene and THF should rapidly produce good solvent conditions. 

However, we have shown that even the possible presence of a few knots does not affect the 

dynamic6 properties of rings, and our results here indicate that their conformation is 

Gaussian. The sample was subsequently purified by the liquid chromatography at the critical 

condition (LCCC) procedure14,5 and characterized by size exclusion chromatography (SEC). 

Following the above procedure, we obtained an “as pure as currently possible” ring PS 

sample, coded further as R161. A sample of smaller PS rings with weight-average molar 

mass 13 800 g/mol was synthesized in a THF/heptane mixture,12 purified by LCCC, 

characterized by SEC, and coded as R14. In addition, fully hydrogenous and deuterated 
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linear PS samples were obtained by anionic polymerization with sec-BuLi in benzene and 

characterized by SEC and off-line light scattering. The weight-average molar masses of 

these two linear samples were virtually identical (250 000 ± 4000 g/mol). All polymers had 

polydispersity indices Mw/Mn < 1.1.

II.2. Small-Angle Neutron Scattering (SANS)

SANS experiments were performed at the KWS1 spectrometer of the Jülich Centre for 

Neutron Science at the FRJ-2 research reactor in Forschungszentrum, Jülich, Germany. Data 

were collected at different sample-to-detector distances to cover a scattering vector range q 
between 0.002 and 0.2 Å−1 using a neutron wavelength λ = 7 Å and wavelength spread Δλ/λ 

= 0.20. The scattering vector q is related to the scattering angle θ via q = (4π/λ) sin(θ/2). 

Two-dimensional recorded scattering intensities were collected in 128 × 128 channels each 

of 5.2 mm × 5.2 mm and corrected pixel-wise in a standard way for empty cell, background, 

dark current scattering, and detector sensitivity, after which the radial averaging was 

performed. Transmissions were measured in situ in forward direction at q = 0 using a 

neutron monitor inside the beam stop. Absolute intensities [cm−1] were obtained by 

calibration with a 1.5 mm thick secondary Plexiglas standard. Dilute solutions of ring R161 

in d8-toluene (about 0.5 wt %) and d12-cyclohexane (about 1 wt %) were contained in 

Hellma quartz cells with path lengths 1 mm. The overlap concentrations for rings in these 

solvents are estimated to be 1.8 and 14.7 wt %, respectively. The cells were held in a brass 

furnace at a temperature 35 ± 1 °C which implied a minimum temperature of 33 ± 0.5 °C in 

the sample, based on a calibration curve that takes into account as good as possible 

temperature gradients over the furnace, the cells, and their contents. This temperature is 

close to or just above the expected θ-temperature of hydrogenous PS rings in d12-

cyclohexane (vide inf ra) within the uncertainties of the experiment. As a consistency check, 

the θ-temperature was independently redetermined from SANS measurements of the smaller 

R14 sample in d12-cyclohexane in a concentration range 0.8–2.4 wt % (dilute). Eventual 

deviations from the above temperature by a few degrees are not expected to affect the SANS 

results (33 °C < T < 35 °C).15 The blend of hydrogenous rings and deuterated linear chains 

as well as a reference isotopic blend consisting of pure linear chains was prepared by 

solution blending with subsequent vacuum drying. At the SANS concentration, no effects of 

χ-interactions between the components are expected. The blends were press-molded under 

vacuum at T = 150 °C for 20 min to a thickness of 1 mm. The samples were fixed at a 

cadmium frame which was positioned right before the outcoming neutron beam.

II.3. Dynamic Light Scattering

The measurements of ring and linear polystyrenes in dilute solution (at concentrations c ≤ 

0.5 wt %) in both solvents were carried out using an ALV goniometer setup and an ADLAS 

Nd:YAG laser operating at λ = 5320 Å. The Brownian motion of the polymer was detected 

through the concentration fluctuations of solutions at different scattering wavevectors q = 

(4πn/λ) sin(θ/2), where n is the refractive index of the solvent and θ is the scattering angle. 

The time autocorrelation function of the scattered intensity G(q,t) was determined with the 

aid of an ALV-5,000/E fast multi-τ correlator in the time range 10−7–103 s. The 

measurement consisted of obtaining the intermediate scattering (field) function C(q,t) = 

[(G(q,t) − 1)/f*]1/2 in the polarized (VV) geometry, where f* is an instrumental factor 
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relating to the coherence area.16 The data were analyzed using the CONTIN program which 

yielded the distribution of relaxation times. From the q-dependence of the characteristic 

relaxation time at the peak of a mode’s distribution, the respective diffusion coefficient D 
was extracted. The hydrodynamic radius Rh was calculated from the measured diffusion 

coefficient using the Stokes–Einstein–Sutherland relation, Rh = kT/(6πηD), where k is the 

Boltzmann constant and η is the solvent viscosity.

III. RESULTS AND DISCUSSION

III.1. SANS from Dilute Ring Solution

There are only limited scattering studies of the structure of ring polymers, 12,17–19 due to the 

limited availability of rings, and especially highly pure rings. The differences in the structure 

between rings and linear chains are associated with the closed topology of the ring polymer. 

We use SANS as the ideal microscopic tool to validate the ring shape in three different 

solvents as well as to verify the absence of quantifiable amounts of linear impurities. For the 

present R161 sample the contamination after LCCC was detected rheologically and reported 

to be below 0.1 wt %.5 Whereas such a low percentage of linear chains most probably 

cannot be detected in SANS, the most sensitive low-to-intermediate q-region in the form 

factor may be affected. This led to the necessity to focus on the best possible ring samples, 

both obtained from LCCC fractionation as discussed above. The temperature control of the 

experiment is crucial for the investigation of the unperturbed polymer dimensions. The θ-

temperature of R14 was obtained from temperature-dependent SANS measurements. Figure 

1 depicts the extracted second virial coefficient A2 as a function of temperature in d12-

cyclohexane. These results were obtained from simultaneous fits of the form factors at three 

different concentrations well below c*. The extrapolation to A2 = 0 yields a value of θ = 35 

± 1 °C for the R14 ring polymer.15 This result can be rationalized by using literature 

estimates20–22 and taking into account deuterium composition and structural effects. The θ-

temperature of a hydrogenous PS ring in cyclohexane was reported earlier to be 27.7 °C,20 

whereas for its linear counterpart a value of 34.5 °C was found. The cyclization thus lowers 

the θ-temperature by 6.8 °C.23 Considering experimental uncertainties, a temperature 

decrement of 6.8 ± 0.3 °C due to the ring structure is reasonable. Isotopic changes due to 

solvent alteration from h12-cyclohexane to its d12-analogue lead to an experimental 

temperature increment of 3.8 °C, i.e., a θ-temperature of linear PS of 38.3 °C.24 This 

increment, which depends slightly on molecular weight, was also estimated by Siporska et 

al.,21,25 who found a similar value, as 3.5 °C. Hence, entirely on the basis of experimental 

facts,24 we estimate the θ-temperature of the R161 PS ring to be 31.5 ± 1 °C (i.e., close to 

the extracted value of 35 ± 1 °C for R14 which exhibits a broader θ-range due to the lower 

molecular weight). For practical reasons, the SANS measurements of R161 in d12-

cyclohexane and d8-toluene were performed at the same temperature of 33 ± 1 °C, which is 

just above its θ-temperature. As such, no precipitation or appreciable collapsing is to be 

expected. The same temperature was used in ref 26. We note, however, that a systematic 

study of the isotope effect the θ-decrement upon cyclization as well as the presence of 

knots7,52 and its molecular weight dependence, although interesting, has not been pursued at 

this stage as it was not within the scope of the present investigation.
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Since in this study we shall modify the extent of excluded volume interactions through the 

choice of solvent, second virial coefficients A2 will be included in the SANS analysis as 

described below. First, we consider the form factor of an ideal cyclic polymer without 

interactions. The mean-square distance between any pair of monomers i and j out of N 
monomers of the ring with statistical segment length l can be written within the Gaussian 

approximation as19,27,28

(1)

where the subscript “0” represents unperturbed chain dimensions.

Similarly, any mean-square distance between monomers i and j on a linear chain in a good 

solvent can be estimated within Flory’s mean-field approximation27,29 as

(2)

where we define 1 + ε = 2ν, ν being the excluded volume exponent. The ε-notation is chosen 

for easier comparison to the literature. For cyclic polymers, Bensafi et al.19 presented 

various expressions for the form factor of dilute rings in good solvents. They differ only in 

the empirical treatment of the closure condition. For simplicity, we use the Zimm–

Bloomfield result30:

(3)

Very similar fits are obtained for two other models presented in ref 18. Since the treatment 

of the closure in good solvents is not analytical and always leads to empirical formulations, 

we do not concentrate in the present paper on the differences between the approximations, 

which are beyond the scope of this article. Our focus here is to perform a self-consistent 

comparison of the size and conformation of rings in different solvents.

The form factor P(q) of ring polymers in the general discrete representation is then given by

(4)

and is thus determined by the mean-squared distance between pairs of monomers only. The 

latter can be simplified as

(5)
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Figure 2 presents the scattering function I(q) of the polystyrene rings in three different 

solvents.32 It is characterized by three main features demonstrated for the good solvent case: 

at low q values the typical Guinier region is observed. Here, the exponential decay of I(q) ~ 

exp(−(qRg)2) is valid up to q < 2/Rg. At intermediate scattering vectors (q ≥ 3 × 10−2 Å−1) 

the experimental intensity decays with a steeper q-dependence in a θ-solvent than in the 

good solvent case. At the highest q values in the so-called Porod region, the statistics of the 

chain can be identified. For random walk statistics the scattering intensity scales as q−2 

whereas in the good solvent limit (like d8-toluene) it is expected to scale as q−1/ν, where ν = 

0.59 is the scaling exponent in the good solvent. The increase of intensity in the lowest q 
range for both θ-solvent and linear polymer matrix is discussed later.

The ring nature can be prominently identified from the Kratky representation of the 

intensities, i.e., from the plot of Iq2 as a function of scattering vector q, e.g., as shown in 

Figure 3. A peak is expected at qRg ~ 2.05 according to the numerical calculation of a ring 

form factor in θ-solvent.19 This is consistent with a more compact structure of cyclic 

polymers in comparison to linear polymer configurations. The peak position allows for a 

rough size estimate only.

Having introduced the form factor of an ideal ring polymer, the scattered intensity in 

different solvents can be evaluated from absolute scattering intensities by including two-

body interactions using the second virial coefficient A2. This yields

(6)

In eq 6, Δρ2 is the neutrons contrast factor between the solute and the solvent, NA is the 

Avogadro number, ϕ = c/d is the volume fraction at mass concentration c, d the bulk density, 

and Vw the molar volume of the (ring) polymer. I(q) is given in [cm−1] and A2 in [cm3 mol/

g2]. From inspection of eq 6 it is expected that the forward scattering (at q = 0) is lowered. 

Moreover, for low q, expanding P(q) yields the classical Guinier expression (A2 = 0) or the 

more general Zimm approximation (A2 ≠ 0).31

At the lowest range of scattering vector q another distinctly different power law behavior 

~q−α with 3 < α < 4 is observed in Figure 2 for both θ-solvent and linear polymer matrix. 

This q-range excludes any relation to the PS ring dimensions and relates to length scales of 

the order of 700 Å, if a description by means of a Beaucage approach is assumed.33 The 

excellent comparison of the experimental extrapolated forward scattering intensities P(q → 

0) with the computation on the basis of the volume fraction, Mw, and A2 = 0 following eq 6 

points to other origins.34 The low-q/large-scale dynamics in the θ-solvent cyclohexane was 

investigated by DLS, and the results are discussed in section III.2. Concerning the further 

form factor analysis from SANS, the parasitic intensity was treated as an incoherently added 

signal and optimized along with the form factor which is affected by less than 1%. With all 

these facts, the scattering results can be interpreted as follows:

θ-State—A simple Guinier fitting of the lowest q-data yields a radius of gyration, 

independent of any assumptions about the shape of the particle and in the absence 
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ofinteractions except for the parasitic (low-q upturn) scattering treatment. In d12-

cyclohexane, the chain size of R161 corresponds to Rg,0 = 72.3 ± 0.7 Å. Here, the scattering 

vector range q < 0.02 Å−1 was used. The best determination is obtained if one considers the 

full accessed q-range in θ-state, allowing for a residual second virial coefficient parameter to 

be fitted. Therewith an estimate of A2 = (4 ± 0.2) × 10−4 cm3 mol/g2 and a ring size (Figures 

2, 3, and 4) Rg0 = 76 ± 0.5 Å result. This value is in good accordance with the approximate 

size estimate from the experimental peak in the Kratky plot of our data, which is observed at 

qpeak ≈ 0.0275 ± 0.002 Å−1, yielding Rg0 ≈ 75 ± 6 Å. The latter is based on an assumption 

of Gaussian ring conformation. Note that the peak coincides with the crossover of two 

different q-dependencies as discussed earlier in the context of Figure 2. The ring dimensions 

are summarized in Table 1.

Good Solvent—For rings in good solvent d8-toluene there is no peak in the classical 

Kratky (i.e., Iq2 vs q) representation. The disappearance of the peak is due to the different 

excluded volume exponents (0.59 instead of 0.5). However, a pronounced peak reappears at 

q ≈ 0.02 Å−1 if one plots Iq1.6 instead of Iq2 vs q. A rough estimate of the swollen ring Rg 

from the peak position (which is solvent dependent) as discussed above yields 105 Å. 

Likewise, from a Guinier fitting neglecting deliberately the second virial interactions, an 

apparent Rg = 108 ± 0.7 Å can be derived. The latter analysis is hampered, however, by the 

nonseparability of the polymer–solvent interactions (A2), as can be easily seen from eq 6 in 

the Guinier expression of ln[I(q)] vs q2.

Finally, the full form factor of the ring polymer in the respective solvent was evaluated. We 

have again applied the Bloomfield–Zimm description for the ring19,30 and took into account 

explicitly non-negligible ring–solvent interactions (A2). The swollen ring in d8-toluene was 

fitted exactly (as discussed above) in the full q-range, and we obtained Rg = 108 ± 0.8 Å. 

The best-fit excluded-volume-related exponent was ε = 0.093 ± 0.004, with Rg
2 ~ N1+ε, i.e., 

conforming to earlier studies by Roovers35 and Fetters et al.36 With only one concentration 

measured due to the minute amount of LCCC-purified ring available, a value of A2 = (1.04 

± 0.08) × 10−3 cm3 mol/g2 > 0 was extracted, which is about 2 orders of magnitude larger 

than that in cyclohexane. This value differs somewhat from reports in the literature,10 but 

this may have to do with the uncertainty from an estimation from one only concentration as 

well as with the present purified R161 sample. On the other hand, it compares reasonably 

well with the value of 5 × 10−4 cm3 mol/g2, which was extracted from a compilation of 

Fetters et al.36 for a linear PS of similar molar mass in toluene at 34 °C. By analogy of the 

linear chain configuration,11 here we consider self-avoiding walks of thermal blobs, each 

consisting of about gth ≈ 100 monomers. However, the influence of this configuration on the 

intensity at low q (see eq 1) cannot be neglected and prohibits the use of any simple Guinier 

or Zimm law. It appears that this correction was not considered in ref 18. This contribution is 

responsible for a reduction of the intensity to about 1/4, fading away toward higher 

scattering angle along with the decay of the form factor. Furthermore, for further consistency 

we compared our fitted ε value with published Mark–Houwink parameters, α, in the 

literature.35 The Mark–Houwink function relates the product of intrinsic viscosity [η] and 

molar mass M to the chain hydrodynamic volume Vh:
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(7)

By identifying (1 + α)/3 = (1 + ε)/2, we obtain ε = (2 + 2α)/3 − 1. Our value of ε = 0.093 

± 0.004 in toluene corresponds to the Mark–Houwink exponent α = 0.64 ± 0.01, which is in 

reasonable agreement with the reported α= 0.67 at 35 °C for a similar cyclic PS.35 

Furthermore, following Bensafi,19 A2 bears additional useful information. With

(8)

and by measuring the swelling factor s = Rg,linear/Rg,ring independently, an additional 

consistency check of our data is possible. Here, we made use of the Gaussian relation of the 

radii of gyration between identical ideal linear and ring polymers. For the present R161 

sample, A2 can be estimated in principle and compared with the experiment.11,37 Moreover, 

absolutely calibrated neutron scattering data can confirm the results of molecular 

characterization of R161.10,14 For example, with knowledge of the contrast factor Δρ2 

between hydrogenous ring and deuterated solvent, A2 and the form factor P(q) (which is 

normalized to 1 at q = 0), its weight-average molar mass was found to be Mw = 156 000 

± 2600 g/mol, which is in view of all the efforts to calibrate the neutron intensities in very 

good agreement with the cited value of 161 000, which is derived from low-angle-light 

scattering within ±9000 g/mol.35

Furthermore, the swelling factor due to excluded volume interaction of the PS ring in 

toluene is s = Rg,toluene/Rg,θ = 108/76 = 1.42, using the full form factor fits above.19 If we 

calculate the g-factor, previously defined in ref 38 as (1/s)2, we obtain (76/108)2 = 0.495 

± 0.02, in fair agreement with Roovers’ value of 0.519.10 Relying on the relations for Rg and 

molecular weight of linear PS in cyclohexane, Rg = 0.279M0.5 and in toluene, Rg = 

0.12M0.596,36,38 the ratio Rg,lin,toluene/Rg,lin,cyclohexane = 0.43M0.096 = 1.36. All radii of 

gyration are given in Å, and therewith the prefactors have dimension [Å mol1/2/g1/2]. Our 

experiment thus indicates that the R161 PS ring expanded 5% more than a linear polymer, 

within the limits of accuracy. Based entirely on these values, from eq 8 A2 in toluene is 

predicted to be 1.2 × 10−3 cm3 mol/g2, consistent with our earlier analysis.

III.2. DLS Analysis

We performed dynamic light scattering (DLS) measurements with the R161 samples of the 

SANS experiments in deuterated solvents. The key results are summarized in Figure 4. The 

DLS data of ring R161 in d8-toluene at a temperature of 33 °C and concentration of 0.5 wt 

% revealed a clear unimodal single-exponential decay for the intermediate scattering 

function, with purely diffusive character (inset Figure 4a). A characteristic example of 

intermediate DLS function is shown in Figure 4a for two scattering angles. The extracted 

hydrodynamic radius Rh ≈ 70 ± 5 Å conforms to the SANS data. In fact, the ratio Rg/Rh for 

rings in good solvent is expected to be about 1.25,39 i.e., slightly smaller than the respective 

of linear chains (1.27). Given the fact that the purpose of the DLS study was different and 

we did not perform a systematic study over many q-values, the extracted ratio of 1.1 is 
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considered reasonable. However, the situation is very different in d12-cyclohexane 

(concentration about 1.2 × 10−4 wt %). As can be seen in Figure 4b, a single-exponential 

decay is observed at temperatures above θ (T = 40 and 50 °C), consistent with the toluene 

data of Figure 4a and yielding an estimated size of Rh ≈ 80 ± 4 Å. The higher value 

compared to toluene (at lower temperature) reflects slight experimental issues including a 

small number of q-values and a far from perfect baseline due to the second mode (apparent 

at lower temperatures). The main finding, however, is the unambiguous observation that, in 

contrast with this high-temperature data, a second slow mode is clearly detected at a 

temperature of 33 °C (close to but just above the best possible θ-temperature estimate for the 

ring PS but below that of the respective linear PS).40 This mode grows in intensity at lower 

q’s whereas its relaxation rate remains constant, pointing to dynamic clusters (upper inset of 

Figure 4b). Here, at a temperature of 33 °C, the fast diffusive mode yields approximately the 

same Rh, whereas the slow mode is nondiffusive (data not shown). Hence, it bares 

similarities with the low-q intensity upturn of the respective SANS data at the same 

temperature. At the same time, it becomes stronger and slower at lower temperatures, 

pointing to possible tendency for phase separation. What is remarkable, however, is that 

upon heating this mode melts away, and upon cooling back to 33 °C, it does not reappear at 

least within 1 h (which exceeds the DLS measurement time). On the basis of this 

observation, we reflected on the used experimental protocol. It turns out that during 

preparation of the sample for SANS or DLS measurements a trace amount of ring was 

diluted to a vial containing a preweighted amount of solvent, at room temperature and under 

continuous gentle stirring. For d8-toluene that was sufficient. However, this was apparently 

not the case for d12-cyclohexane where the dissolution was performed below the θ-

temperature. This prompted the question about the possible role of macromolecular 

architecture; hence the same sample preparation protocol was applied to a linear PS (250 

000 g/mol, 2.3 × 10−4 wt %) in d12-cyclohexane. In this case, under identical preparation 

procedures no slow mode was observed below the θ-temperature (lower inset of Figure 4b). 

Hence, the issue is unsettled, but it is tempting to speculate that the local microstructure 

plays a role; e.g., some kind of “frozen” fluctuations” and/or aggregates of few remaining 

linear chains even after critical fractionation might have been present in the sample before 

heating and then disappeared thereafter. Nevertheless, the DLS results suggest that for the 

present discussion, the SANS analysis is reliable: the sample protocol allowed sufficient 

time between dilute solution preparation and measurement. Therefore, one can safely ignore 

the low-q mode without losing information on the ring conformational properties. The 

Gaussian ring characteristics are opposite to crumbled or segregated-collapsed 

conformations, typically expected for temperatures below the critical temperature.

III.3. SANS Ring–Linear Melt Analysis

The interesting and still open question is whether rings in θ-solvent have the same 

conformations as rings in a blend of linear polymers at the same dilute concentration. Rings 

in a melt of medium-to-large-sized rings are known to collapse considerably compared to the 

Gaussian conformation.28,41–45 This was demonstrated by theoretical arguments and 

computer simulations29,8,42,43,46–50 as well as experimentally by SANS by some of us on a 

series of blends of H and D PEO rings.28,44,45,51
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Upon strong dilution of rings in linear polymers below their overlap concentration cring
*, 

contributions from inter-ring interactions can be excluded and the form factor of rings, 

dispersed in linear matrix, can be measured directly. Figure 5 illustrates the overlap of the 

data in both θ-solvent and the linear matrix. The scattering functions are virtually 

isomorphous and illustrate already the ideal Gaussian statistics in both “solvents” at least at 

length scales smaller than ~Rg/3. In addition, Figure 5 contains rescaled data for the form 

factor of the linear matrix chain which is ideal as well. Although the random walk-based 

Gaussian relation between Rg and the M is well established for linear PS,27 here, it is 

rechecked for internal consistency. This was done on a dilute isotopic blend of the 

monodisperse linear hydrogenous (H) and deuterated (D) chains with the same molar masses 

of 250 000 g/mol of which the D version was also used as the matrix for the PS ring, Rg,linear 

was found to be 138 Å. This result confirms the relationship Rg = 0.28√M (in Å).36 The 

prefactor of 0.28 can be computed theoretically from the chain stiffness parameter as 

(C∞nbl02/6m0)1/2. Here, nb is the number of backbone bonds per monomer, m0 its molecular 

weight, and l0 the mean bond length. Furthermore, if one considers the R161 ring polymer 

as an effective linear chain of molar mass Mw,ring/2 = 80 000 g/mol, using the relation 

above, the Rg of the Gaussian ring PS can be estimated to be 79 Å. The agreement with the 

size determined before in θ-solution from the full form factor (76 Å) is very reasonable and 

therefore suggests that a cyclic polymer dispersed in a linear matrix remains nearly 

Gaussian. This conjecture is supported by results from computer simulations41,43 with 

blends of rings and linear chains having the same degree of polymerization N. They showed 

Gaussian statistics and size for ϕring → 0. Despite the close similarity of the overall Rg, the 

corresponding scattering curve would not lead to a peaked Kratky shape. Note that the 

expected size of the respective linear chain with Mw,linear = 160 000 g/mol (= Mw,ring) is 112 

Å if we use √2 factor in connection with the N/2-mer similarity. For the present analysis and 

in view of the simulation results for this particular limit of ring in linear chains,43 the 

Gaussian linear chain dimension Rg,0,linear, as implicit in eq 1, was fitted to the data. This 

experimental linear analogue (without the closure correction) has Rg,lin = 101.9 ± 0.7 Å. The 

Gaussian ring then has Rg = Rg,lin/√2 ≈ 72 Å. The comparison with the θ-solvent results 

within 4% is satisfactory. Note that a random phase approximation (RPA) treatment 

considering explicitly the linear matrix yields the same Rg = 71.6 ± 0.1 Å for the ring 

component. The Rg of the linear chain was defined before when the numerical prefactor 

linking the size and molecular weight was obtained. This result can be considered identical, 

and therefore single chain characteristics were obtained. Hence, we confirm that the ring in a 

long linear homopolymer matrix can be considered as Gaussian. The so-obtained ratio 

Rg,lin/Rg,ring ≈ 102/76 = 1.34 ≈ √2 is in good agreement with results from simulations of 

dilute symmetric ring–linear blends.41,42 Beside the overall chain dimension, also the full q-

dependence of the Gaussian ring form factor is confirmed.

We close with a remark on ring threading by linear chains, which has been invoked to 

explain the dynamics of ring–linear blends.5,41 The observed (non)swelling from θ-state to a 

blend of rings and linear by threading is in favor of quasi-ideal ring statistics and does hardly 

exceed the Gaussian limit within the factor 76/72 =1.05. Although we are aware that our 

observations are based on the investigation of a single molecular weight and concentration, 
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they are consistent due to the three different solvent cases and constitute a unique data set on 

the most pure cyclic polymers in three different solvents.

IV. CONCLUSIONS

We have critically examined the quality and conformation of a well-characterized model PS 

ring polymer by means of the combination of SANS and DLS close to or just above the 

critical temperature for PS rings in deuterated solvent. The variations of θ-temperature with 

both architecture and isotope labeling could be accounted for with a comparison with a 

smaller PS ring. The main results from this work is that we have demonstrated that the cyclic 

polymer configuration in dilute θ- like state (i.e., θ-solvent or linear homopolymer) is 

virtually Gaussian, in agreement with available simulations, and that structural parameters 

could be determined with high accuracy. The homopolymer case as polymeric solvent is 

particularly important as it confirms the threading of rings by linear chains. Excess parasitic 

scattering was noted in the unperturbed state in both θ-solution and in a homopolymer 

polymer mixture of which the origin is not yet fully elucidated, but precipitation of clusters 

can be excluded. Based on DLS evidence, it is suggested that it does not influence the 

accuracy of the presented ring conformation data.
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Figure 1. 
Second virial coefficient of R14 in d12-cyclohexane as a function of temperature, obtained 

from SANS.14 The average extrapolated θ-temperature is about 35 ± 1 °C. The maximum 

width of uncertainty is determined from the error bars to be about ±3 °C.
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Figure 2. 
Scattering functions and representative slopes for the overall and internal structure of ring 

polymers in various solvents at different length scales. The linear polymeric matrix in the 

ring/linear blend is congruent with the θ-solvent.
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Figure 3. 
Kratky plot of rings dissolved in different solvents. Inset: a characteristic peak in either 

solvent is prominent in generalized Kratky plots with scaled ordinate axes Iq1/ν. Solid lines 

are best fits to the data using eq 4. Dashed lines represent the limiting slopes of I(q) vs q 
curves of Figure 2. The upturn at the lowest q is due to the parasitic scattering. Its 

contribution was computed as Aq−B. Dashed line is the form factor calculation without 

considering the latter.
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Figure 4. 
(a) Intermediate light scattering function for a ring PS R161 solution in d8-toluene (0.5 wt 

%) at 33 °C. Data are shown for the lowest and highest scattering angles, 30° (circles) and 

150° (squares). The respective distributions of relaxation times obtained from CONTIN 

analysis are also shown. Inset: the q-dependence of the extracted characteristic relaxation 

rate. (b) Intermediate light scattering function for the same R161 solution in d12-

cyclohexane (0.012 wt %) and different temperatures and scattering angles, indicated in the 

plot: 33 °C and 30° (open squares); 40 °C and 30° (bold circles); 50 °C and 30° (open stars). 

The respective distributions of relaxation times obtained from CONTIN analysis are also 

shown. Insets: (top) Respective q-dependent characteristic relaxation rates at 40 and 50 °C. 

The slow mode 40 °C is depicted by bold triangles. (bottom) Intermediate light scattering 

function for a linear PS (250 000 g/mol) solution in d8-toluene (0.024 wt %) at a scattering 

angle of 150° and two temperatures, 25 °C (bold symbols) and 50 °C (open symbols).
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Figure 5. 
Comparison of the experimental ring form factor in θ- solvent and in a comparable linear 

matrix. Intensities were normalized to the same concentrations and rescaled to overlap at 

high scattering vectors. Symbols are explained in the figure legend. Solid lines are best fit 

curves to the ideal Gaussian ring form factor. A small difference in the radius of gyration, 

i.e., 72 to 76 Å, can be noticed from the peak positions. For further comparison also the 

form factor of the linear matrix chain which is a perfect random walk Debye chain is 

included. The inset shows the direct intensity comparison (I vs q) for latter ideal linear chain 

blend and the ring–linear blend.
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Table 1

Extracted Experimental Sizes of R161 PS Ring in Different Solvents

size

solvent

d12-cyclohexane d8-toluene linear PS

Rg,peak [Å] 75 ± 6 105 ± 8 75 ± 6

Rg,P(Q) [Å] 76 ± 0.5 108 ± 0.8 72 ± 0.7

A2 [cm3 mol g−2] (4 ± 0.2) × 10−4 (1.04 ± 0.08) × 10−3 0
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