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Abstract

Plasma homocysteine, a metabolite involved in key cellular methylation processes seems to be 

implicated in cognitive functions and cardiovascular health with its high levels representing a 

potential modifiable risk factor for Alzheimer’s disease (AD) and other dementias. A better 

understanding of the genetic factors regulating homocysteine levels, particularly in non-white 

populations, may help in risk stratification analyses of existing clinical trials and may point to 

novel targets for homocysteine-lowering therapy. To identify genetic influences on plasma 

homocysteine levels in individuals with African ancestry, we performed a targeted gene and 

pathway-based analysis using a priori biological information and then to identify new association 

performed a genome-wide association study. All analyses used combined data from the African 

American and Yoruba cohorts from the Indianapolis-Ibadan Dementia Project. Targeted analyses 

demonstrated significant associations of homocysteine and variants within the CBS (Cystathionine 

beta-Synthase) gene. We identified a novel genome-wide significant association of the AD risk 

gene CD2AP (CD2-associated protein) with plasma homocysteine levels in both cohorts. Minor 

allele (T) carriers of identified CD2AP variant (rs6940729) exhibited decreased homocysteine 

level. Pathway enrichment analysis identified several interesting pathways including the GABA 

receptor activation pathway. This is noteworthy given the known antagonistic effect of 

homocysteine on GABA receptors. These findings identify several new targets warranting further 

investigation in relation to the role of homocysteine in neurodegeneration.
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INTRODUCTION

Homocysteine (HCY) is a sulfur-containing amino acid produced in the metabolism of the 

essential amino acid methionine. It exists at a critical biochemical juncture between 

methionine metabolism and the biosynthesis of the amino acids cysteine and taurine. HCY 

(Fig. 1) is normally metabolized via two biochemical pathways: re-methylation, which 

converts homocysteine back to methionine, and trans-sulfuration, which converts 

homocysteine to cysteine and taurine. Abnormally high blood levels of HCY signal a 

breakdown in this biochemical process, resulting in far-reaching biochemical and life 

consequences such as increased cardiovascular risks and cognitive decline in Alzheimer’s 

disease (AD). Increased HCY levels have been associated with cerebral atrophy [1-3] and 

cognitive impairment [4-7]. Meta-analyses have demonstrated a positive association between 

increased HCY levels and dementia risk and cognitive function in AD patients [8, 9] 

although the results have been inconsistent [10-15]. Recent metabolomics studies have 

revealed that methionine and the pathway leading to cysteine and glutathione production 
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may be dysregulated in AD patients [16] suggesting aberrant methylation processes that can 

contribute to disease pathogenesis (see the study by Fuso and Scarpa [17] for short review). 

Most studies with homocysteine have been conducted using participants with European 

ancestry. Population differences in the role of HCY regulation remains under-investigated. 

Two studies have employed participants of South Korean [14] and African ancestry [11] and 

showed positive associations between elevated HCY and increased dementia risk.

Potential mechanisms of HCY effects contributing to cardiovascular diseases and dementias 

include upregulation of arterial smooth muscle cell collagen production [18], extracellular 

matrix remodeling [19], potassium channel inhibition [20], microvascular remodeling and 

increased permeability of the blood-brain barrier by reducing gamma-aminobutyric acid 

(GABA)-A receptor [21, 22], cytoskeletal remodeling [23, 24], increased cell adhesion [25], 

and induction of MMP-9 (matrix metalloproteinase-9) activation that can lead to blood-brain 

barrier dysfunction [26]. HCY can also increase neurotoxicity through overstimulation of N-

methyl-D-aspartate receptors [27] and promote apoptosis by increasing DNA damage in 

neurons [28].

Considering the high estimated heritability (57%) of HCY [29], it is likely that there is 

substantial genetic predisposition regulating blood levels of HCY. There are several genome-

wide association studies (GWAS) of HCY in clinical samples [30, 31], normal older controls 

[32] and healthy women [33]. A case-control GWAS in a dementia cohort [34] found the 

gene MTHFD1L (methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like) 

that was involved in the folate-pathway. Most genetic studies with HCY levels including 

these GWAS except one GWAS with Filipino women [33] have investigated genetic factors 

in participants of European ancestry. Even though HCY increased dementia risk in African 

ancestry population [11], no studies to date were carried out to identify genetic factors 

influencing HCY in populations of African ancestry. Here we performed a genetic 

association analysis to investigate genetic influences on HCY by analyzing data from 

African American and Yoruba Ibadan Nigerian participants who participated in the 

Indianapolis-Ibadan Dementia Project.

MATERIALS AND METHODS

Indianapolis-Ibadan Dementia Project (IIDP)

The IIDP is a longitudinal prospective community-based study, started in 1992, of the 

prevalence, incidence, and risk factors for AD and dementia in two populations of African 

origin: older African Americans living in Indianapolis, Indiana, USA and Yoruba living in 

Ibadan, Nigeria. The study was approved by the institutional review boards of Indiana 

University School of Medicine and University of Ibadan. Informed consent was obtained 

from all participants. Details of the study design and participants have been described 

elsewhere [11, 35-38] and are briefly summarized here. In the IIDP, all participants were 

regularly followed-up for cognitive and functional evaluation every two to three years after 

baseline evaluation. Each evaluation was conducted in a two-stage design: 1) in-home 

cognitive and functional evaluation for all participants and 2) a full diagnostic evaluation of 

selected participants based on their cognitive test performance. The Community Screening 

Interview for Dementia (CSID) for a cognitive assessment [39] and an interview with a close 
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relative for evaluation of daily function were used in the in-home evaluation. Diagnostic 

evaluation used 1) a neuropsychological battery, 2) a standardized neurologic and physical 

exam, and 3) a structured interview with a close relative, and diagnosis was made in a 

consensus conference of clinicians based on these assessments. Since the beginning of the 

IIDP, 1,893 African Americans and 1,939 Yoruba have been added to 1,649 participants of 

the original cohort in 2001. The original participants and additional participants were similar 

in basic demographics. From 2,764 out of these participants, blood samples were collected 

in 2001.

Participants

Included in this study are the IIDP participants, African Americans and Yoruba. Of 2,764 

participants whose blood samples were obtained in 2001, 1,858 participants had genome-

wide genotype data, blood biomarkers (levels of homocysteine, folate, vitamin B12), and 

cognitive performance measures administered in 2001 and were included in this study. 

Participant characteristics are shown in Table 1.

Cognitive assessment

Cognitive function of study participants was assessed by the Community Screening 

Interview for Dementia (CSID), a widely used screening tool for dementia that evaluates 

multiple cognitive domains including language, attention, memory, orientation, praxis, 

comprehension, and motor response [39]. The CSID was administered for all participants 

every two or three years. The CSID total score is the sum of all domain scores with a score 

range from 0 to 80 with higher score indicating better cognitive function [38].

Biomarkers and quality control procedures

Peripheral blood samples were collected in 2001. They were drawn in 10-mL EDTA 

Vacutainer tubes and frozen plasma and buffy coat biosamples were shipped to and 

processed at Indiana University. Levels of plasma homocysteine (HCY), folate, and vitamin 

B12 were measured by using commercial kits from BioRad, Hercules, CA, and Diasorin, 

Stillwater, MN, USA [11]. HCY underwent further quality control (QC) procedures 

including log (base 10) transformation due to skewed distribution and removal of outliers 

(samples more than ±4 standard deviations from mean).

Genetic data and quality control procedures

Genome-wide genotype data were collected by using the Illumina HumanOmni1-Quad for 

African Americans and HumanOmni2.5-8v1 BeadChips (San Diego, CA, USA) for Yoruba. 

Collected genotype data underwent standard QC procedures using PLINK v1.07 [40] (http://

pngu.mgh.harvard.edu/purcell/plink/) in the two samples independently. Sample and 

genotype markers were excluded based on the following criteria: call rate per sample <95%, 

gender ambiguity, groups of genetically related individuals by identity-by-descent (IBD) 

check, call rate per marker <95%, minor allele frequency (MAF) <1%, and Hardy-Weinberg 

Equilibrium (HWE) test p < 1 × 10−6 in cognitively normal participants only. For each 

sibling pair identified by IBD analysis, only one sample was randomly selected and after QC 

steps, population stratification analysis was performed to make sure that all samples in this 
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study were grouped with Africans in HapMap3 samples by using a procedure described 

elsewhere [41]. After standard QC, genotype data were imputed to the 1000 Genome 

reference panel (http://www.1000genomes.org/) following the Enhancing Neuroimaging 

Genetics through Meta-Analysis 2 (ENIGMA 2) imputation protocol (http://

enigma.ini.usc.edu/wp-content/uploads/2012/07/ENIGMA2_1KGP_cookbook_v3.pdf) as 

described previously [41-43]. Some imputed single nucleotide polymorphisms (SNPs) were 

removed based on the following criteria: r2 < 0.5 between imputed and the nearest 

genotyped SNPs, MAF <5%, and HWE p < 1 × 10−6. Apolipoprotein E (APOE) ε4 allele 

was a risk factor for AD in these cohorts [36] and APOE genotype was separately collected 

from genomic DNA derived from peripheral blood [37]. APOE genotype data were merged 

with the imputed genotype dataset. After all QC steps for HCY and genotype data, there 

were a total of 1858 samples with HCY and genotype data available for analysis (Table 1).

Statistical analysis

All genetic association testing utilized linear regression based on an additive model of SNP 

effect. We performed combined analyses including all available African Americans and 

Yoruba. Principal components (PC) were computed by using commonly genotyped SNPs in 

the two genotype platforms and the 1st PC was selected for inclusion as a covariate based on 

scree plot analysis. Because levels of folate and vitamin B12 can affect HCY metabolism, a 

multiple linear regression model was applied to determine if levels of folate and B12 were 

associated with HCY. Vitamin B12 level was significantly (p < 0.05) associated with HCY. 

Therefore, multiple regression model included age at the time of HCY measure, gender, the 

1st PC, and level of vitamin B12 as covariates. Dichotomous diagnosis (cognitively normal 

control (CN) versus demented) made in 2001 was also included in the model.

Candidate gene- and pathway-based analysis

As shown in Fig. 1, one-carbon metabolism pathway is involved in production and 

degradation of HCY and there are multiple genes involved in one-carbon metabolism that 

can affect HCY level. Given this extensive a priori biological information, as a first step we 

investigated effect of enzyme-coding genes in this pathway on HCY. An analysis was 

performed with 15 genes (shown in oval circles in Fig. 1). Chromosomal position of each 

gene was determined based on hg19. 2,222 SNPs within ±10 kb from the 15 gene 

boundaries existed in the data and were analyzed. Association with p < 2.25 × 10−5 

(Bonferroni correction threshold: 0.05/2,222 SNPs) was considered significant in the 

targeted genetic association analysis.

Genome-wide association analysis

Considering the high estimated heritability (57%) of HCY, there may exist other genes 

beyond ones in one-carbon metabolism pathway affecting HCY level. Therefore, GWAS was 

performed as an unbiased approach. Association with p < 5 × 10−8 in the GWAS results was 

considered genome-wide significant based on the Bonferroni correction of one million 

independent SNP tests [44]. A Manhattan plot of GWAS results was created with Haploview 

[45].
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Pathway enrichment analysis

As a complementary approach to extend the GWAS findings, a pathway enrichment analysis 

was performed to identify biological pathways enriched in the GWAS results. GSA-SNP 

[46] was used with three curated pathway sets (BioCarta, KEGG, and Reactome) 

downloaded from the Molecular Signature Database, version 5.0 (http://

www.broadinstitute.org/gsea/msigdb/index.jsp). In order to reduce the potential bias due to 

gene-set size, analysis was restricted to pathways with 5–100 genes [47]. All SNPs within 

±10 kb from each gene boundary were included in the analysis and the false discovery rate 

(FDR) was used to correct p-values for pathway-level multiple comparisons [48]. All 

pathways with corrected p-value <0.01 were considered significant.

RESULTS

Candidate gene- and pathway-based analysis

In the candidate gene- and pathway-based analysis, four SNPs in and near cystathionine-

beta-synthase (CBS) gene were significantly associated with HCY after correction for 

multiple testing (p < 2.25 × 10−5). The most significant SNP (rs28635199; p = 5.68 × 10−06) 

is located within 5 kb downstream of the gene. This SNP (rs28635199) accounted for 1% 

additional variation while 7.2% of the total variation of HCY was accounted for by a 

statistical model without this SNP. The regulome DB (http://regulome.stanford.edu/index) 

indicates its function as transcription factor binding or DNase peak. The association of this 

SNP with HCY was strong in each cohort separately. All four SNPs are in strong linkage 

disequilibrium (LD) (pairwise r2 > 0.95).

GWAS results

GWAS identified one novel finding, a significant association of SNP (rs6940729; p = 4.71 × 

10−08) in the intronic region of CD2-associated protein (CD2AP) gene (Table 2). This SNP 

explains 1.5% additional variation while 7.2% of total variation of HCY was explained by a 

statistical model without the SNP in these cohorts, independent of the effect of CBS SNP 

(rs28635199). To date, there is no study reporting the direct association of CD2AP gene with 

plasma homocysteine. Of note, rs6940729 is not in strong LD with AD candidate SNPs in 

CD2AP (all pairwise r2 < 0.2) in European ancestry population [49-51]. The association of 

rs6940729 with HCY was tested separately for the African Americans and Yoruba to check 

whether this association was driven only by one cohort and association in both cohorts was 

strong, resulting in the genome-wide significance in the combined samples. In both cohorts, 

minor allele (T) of rs6940729 was associated with decreased level of HCY. Genomic 

inflation factor (λ = 1) indicated that the GWAS results did not seem to be inflated by other 

confounding factors. Several nearby SNPs showed similar significance although they did not 

reach genome-wide significance. Beyond CD2AP, there are several SNPs near DTW domain 

containing 2 (DTWD2), dynein, cytoplasmic 1, intermediate chain 1 (DYNC1I1), JRKL 

antisense RNA 1 (JRKL-AS1), baculoviral IAP repeat containing 8 (BIRC8) genes at 

suggestive association level (p < 1 × 10−6). Figure 2 shows the Manhattan plot of GWAS 

results displaying the genome-wide significant and suggestive loci.
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Pathway enrichment analysis results

Pathway enrichment analysis found nine significant biological pathways (FDR-corrected p < 

0.01, Table 3), including pathways related to blood vessels and cardiovascular risk factors 

and one pathway related to GABA receptors in which function has been reported as 

dysregulated in the AD brain tissue [52].

DISCUSSION

In order to assess the influence of enzyme-coding genes involved in one-carbon metabolism 

pathway where HCY is produced, targeted gene association analysis was employed. Main 

effects of rs28635199 in CBS on HCY may indicate that this gene is a potential genetic risk 

factor for AD and/or dementia considering that HCY is a potential risk factor for AD and/or 

dementia. CBS is located at chromosome 21q22.3 and encodes an enzyme catalyzing the 

conversion of homocysteine to cystathionine as the first step of trans-sulfuration pathway 

that subsequently produces glutathione, taurine, and alpha-ketobutyrate (αKB). Careful 

regulation of CBS activity is very important to prevent subsequent disordered conditions. 

Hyperhomocysteinemia and homocystinuria, characterized by an abnormally upregulated 

homocysteine, can be caused by CBS deficiency [53, 54]. Upregulation of CBS can cause 

increased ammonia level, decreased glutathione synthesis and high loss of methyl groups 

due to increased process of homocysteine through trans-sulfuration pathway instead of re-

methylation cycle although clinical outcomes of CBS upregulation can vary individually. In 

addition, one large-scale GWAS of human blood metabolites [55] identified the minor allele 

(T) of another SNP (rs2851391) in CBS gene significantly associated with decreased plasma 

betaine levels, which can reduce AD-like pathological changes and memory impairment 

induced by HCY [56] while high HCY is known to deplete betaine [57].

Considering that HCY has been shown to be elevated in patients with AD and the minor 

allele (C) of CSB SNP (rs28635199) was associated with decreased level of HCY in this 

study, this SNP appears to be a protective variant against elevation of HCY. However, 

relationship between CBS enzyme and HCY may not be simple and need to be thought from 

a more complex systems biology perspective [58] considering many other genes and 

environmental factors that can affect the level of HCY and CBS enzyme. One study found 

that the CBS 844 in 68 polymorphism (a 68 bp insertion at 844 in the exon 8) was associated 

with mild hyperhomocysteinemia and could be a risk factor for AD [59], while another 

study showed that CBS enzyme level was increased in postmortem brains of Down’s 

syndrome patients who often develop AD compared to levels in brains of normal individuals 

and CBS enzyme was located to astrocytes and those surrounding senile plaques in the 

brains of Down’s syndrome patients [60].

This study is the first GWAS of plasma HCY in samples of African ancestry at risk for AD 

or other dementia. By analyzing 1,858 plasma homocysteine samples collected from older 

African Americans and Yoruba Nigerians, we identified one novel genomewide significant 

association of SNP (rs6940729) in CD2AP gene. The CD2AP gene is also one of the AD 

candidate genes for the white European ancestry population and three SNPs (rs9349407, 

rs9296559, rs10948363) in CD2AP have been identified as susceptibility loci for AD 

[49-51] and one AD candidate SNP (rs9349407) in this gene was associated with neuritic 
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plaque burden [61]. These SNPs failed replication attempts in other African American 

cohorts [62, 63]. However, the GWAS SNP in this study is not in strong LD with these SNPs 

(all pairwise r2 < 0.2). The effect of this SNP (rs6940729) as a genetic risk factor for AD 

and/or dementia needs to be further investigated in larger Africa-originated cohorts.

CD2AP is a protein-coding gene with 18 exons located at chromosome 6p12 and its product 

is proposed to play important roles in the immune system, endocytosis, cytoskeletal 

reorganization, cell adhesion, and vesicle trafficking [64-70]. Suppression of CD2AP in an 

APP transgenic mouse model resulted in decreased Aβ release and lower Aβ42/Aβ40 ratio in 

brain [71] and a drosophila AD model with knockdown of CD2AP fly ortholog showed 

enhanced tau toxicity [70]. However, CD2AP mRNA expression was not altered in AD 

brains [72] although the gene was expressed in brain [71]. These inconsistent findings of 

CD2AP in relation to gene expression in AD brains and AD relevant biomarkers may imply 

an indirect influence of CD2AP variation on AD through interaction with other genes/

pathways and/or genetic influences on other AD mechanisms including cardiovascular risk 

factors.

To date, it is unknown how CD2AP affects the level of plasma homocysteine as no study has 

investigated the relationship between CD2AP and plasma homocysteine. Considering that 

CD2AP is a regulator of cytoskeletal structure and remodeling, while HCY potentially exerts 

its effects on cells through effects on cytoskeletal structure and production of reactive 

oxygen species (ROS), genetic variation in CD2AP may influence the relative sensitivity 

(resistance) of neuronal cells to the cytoskeletal and ROS effects of HCY, thus impacting the 

balance of cell life and plasticity and cell death [23, 24]. Another potential mechanism 

linking CD2AP and HCY may be cell adhesion in which both CD2AP and HCY are 

involved [70]. Due to lack of studies, potential mechanisms to connect CD2AP and HCY 

deserve investigation.

Suggestive associations in the GWAS results (Fig. 2) included SNPs near DTWD2 that was 

associated with subcutaneous adipose tissue (SAT) in European ancestry men [73]. Although 

visceral adipose tissue is more strongly correlated with metabolic risk factors than SAT [74], 

SAT can increase cardiometabolic risk which may affect AD risk subsequently [75]. Two 

variants in DYNC1I1 were associated with fat oxidation and total energy expenditure in the 

Hispanic population [76], implying genetic influence on cardiovascular risk. JRKL-AS1 was 

associated with formal thought disorder in schizophrenia in European ancestry cohort [77], 

but no studies to date reported the association with HCY.

Our enriched pathway analysis indicates HCY as a cardiovascular risk by upregulating 

arterial smooth muscle cell collagen production [18], remodeling extracellular matrix [19], 

inhibiting potassium channels [20], and antagonizing GABA-A receptor inducing 

microvascular remodeling [21] and increasing permeability of blood-brain barrier [22], all of 

which are related to vascular dysfunction. Among enriched pathways, GABA receptor 

activation appears particularly interesting in light of data on GABA from reactive astrocyte 

impairing memory in an AD mouse model [78] and its disruption in AD patients (see the 

study by Lanctot et al. [79] for review). Subunits of GABA-A receptors were dysregulated in 

AD brain compared to normal brains [52]. In addition, enhanced GABA-A receptor activity 
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was shown to reduce HCY-induced MMP-9 activation by ERK (extracellular signal-

regulated kinase) pathway [26] and plasma level of MMP-9 was shown to be increased in 

AD patients [80].

This study has some limitations, including unbalanced sample size between cognitively 

normal controls and demented participants and mixed dementia patients. Due to the small 

number of demented patients (n = 71), it is difficult to exactly assess diagnostic potential of 

genetic findings in this study and all finding should be replicated in larger well-balanced 

cohorts in the future study. The dementia group contained some mixed dementia patients 

although 65 of 71 patients were diagnosed with AD perhaps limiting this influence. The 

issue of whether HCY is an AD risk factor and the role of identified SNPs on AD 

pathophysiology warrants further investigation from a systems biology perspective in a 

carefully controlled environment considering that biological networks are complicatedly 

interconnected affecting one another to maintain its homeostasis via potential regulatory 

feedback networks. This study did not consider B vitamin metabolism in relation to HCY 

metabolism because B vitamin metabolism is beyond the scope of the present manuscript 

although this topic is interesting and potentially important. We hope to include this in future 

studies.

In conclusion, we discovered a novel association of CD2AP with plasma homocysteine in 

participants with African ancestry and found a new variant in the candidate gene CBS 
associated with HCY. Many clinical trials investigating HCY reduction as a potential 

modifiable risk factor employed vitamin B6, B12, and folic acid (B9) to reduce HCY 

although the clinical benefit is still under debate [81-84]. The inconsistent results of clinical 

trials may partly be due to unexplained genetic factors influencing HCY. Therefore, the 

findings in this study merit further investigation regarding their potential role as modifiable 

AD risk factors.
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Fig. 1. 
Schema of one-carbon metabolism pathways. DHF, dihydrofolate; THF, tetrahydrofolate; 

SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; SLC19A1, solute carrier 

family 19 (folate transporter), member 1; MTHFR, methylenetetrahydrofolate reductase 

(NAD(P)H); TAT, tyrosine aminotransferase; MTRR, 5-methyltetrahydrofolate-

homocysteine methyltransferase reductase; BHMT, betaine–homocysteine S-

methyltransferase; MTR, 5-methyltetrahydrofolate-homocysteine methyltransferase; CBS, 

cystathionine-beta-synthase; CTH, cystathionase (cystathionine gamma-lyase); IL4I1, 

interleukin 4 induced 1; MAT2B, methionine adenosyltransferase II, beta; AHCYL1, 

adenosylhomocysteinase-like 1; DNMT1, DNA (cytosine-5-)-methyltransferase 1; LAP3, 

leucine aminopeptidase 3; ANPEP, alanyl (membrane) aminopeptidase; GGT6, gamma-

glutamyltransferase 6.
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Fig. 2. 
Manhattan plot of GWAS results. Red solid line indicates the genome-wide significant level 

(p = 5 × 10−8) and blue line shows p = 1 × 10−6.
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Table 1

Sample characteristics

Characteristics ALL CN Dementia p *

Indianapolis + Ibadan

 N 1,858 1,787 71

 Age (years; mean ± SD) 77.2 ± 5.46 77.0 ± 5.31 82.2 ± 6.77 3.22E-15

 Gender (male/female) 644/1214 615/1172 29/42 2.64E-01

 APOE (ε4−/ε4+) 1159/699 1130/657 29/42 1.34E-04

 Vitamin B12 (pg/mL; mean ± SD) 699.4 ± 332.3 704.8 ± 333.7 562.0 ± 262.3 3.78E-04

 HCY_LOG10 (umol/L; mean ± SD) 1.210 ± 0.16 1.208 ± 0.16 1.261 ± 0.18 5.23E-03

Indianapolis

 N 898 853 45

 Age (years; mean ± SD) 77.6 ± 5.47 77.3 ± 5.31 82.5 ± 6.25 3.00E-10

 Gender (male/female) 308/590 284/569 24/21 5.78E-03

 APOE (ε4−/ε4+) 572/326 556/297 16/29 5.63E-05

 Vitamin B12 (pg/mL; mean ± SD) 612.4 ± 342.6 618.6 ± 345.8 496.0 ± 250.0 1.93E-02

 HCY_LOG10 (umol/L; mean ± SD) 1.201 ± 0.17 1.198 ± 0.16 1.257 ± 0.17 2.03E-02

Ibadan

 N 960 934 26

 Age (years; mean ± SD) 76.8 ± 5.42 76.7 ± 5.29 81.5 ± 7.66 7.93E-06

 Gender (male/female) 336/624 331/603 5/21 8.74E-02

 APOE (ε4−/ε4+) 587/373 574/360 13/13 2.37E-01

 Vitamin B12 (pg/mL; mean ± SD) 780.7 ± 300.6 783.6 ± 301.5 676.3 ± 247.3 7.26E-02

 HCY_LOG10 (umol/L; mean ± SD) 1.219 ± 0.15 1.217 ± 0.15 1.268 ± 0.19 8.28E-02

CN, cognitively normal; APOE, apolipoprotein E; HCY, homocysteine.

*
p-values are computed using chi-square test for categorical variables and one-way analysis of variance for continuous variables.
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Table 2

Significant genetic association results. Significant SNPs associated with homocysteine in the GWAS and 

targeted approach are shown. For the most significant SNPs from the GWAS and targeted approach, 

association results in each cohort are presented. Significant association p-values are highlighted in bold face

Cohorts CHR SNP BP Minor Allele MAF Gene BETA p

GWAS

 Indianapolis + Ibadan 6 rs6940729 47552920 T 0.4775 CD2AP −0.027 4.71E-08

 Indianapolis 0.4773 −0.032 2.65E-05

 Ibadan 0.4777 −0.020 1.44E-03

Targeted (One carbon metabolism pathway)

 Indianapolis + Ibadan 21 rs28635199 44469734 C 0.1717 CBS −0.030 5.68E-06

 Indianapolis 0.1635 −0.030 2.99E-03

 Ibadan 0.1793 −0.028 6.78E-04

 Indianapolis + Ibadan 21 rs8127973 44474949 T 0.177 CBS −0.029 6.74E-06

 Indianapolis + Ibadan 21 rs28825153 44471639 T 0.1711 CBS −0.029 7.03E-06

 Indianapolis + Ibadan 21 rs12613 44473691 T 0.1711 CBS −0.029 7.38E-06

CHR, chromosome; BP, base position; SNP, single nucleotide polymorphism; MAF, minor allele frequency; BETA, regression coefficient of SNP; 
GWAS, genome-wide association study.

J Alzheimers Dis. Author manuscript; available in PMC 2016 October 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim et al. Page 21

Table 3

List of significant canonical pathways

Pathways (Source database) Set size* uncorrected p-value corrected p-value

COLLAGEN_FORMATION (Reactome) 54 (58) 4.12E-07 4.00E-04

POTASSIUM_CHANNELS (Reactome) 96 (98) 4.75E-06 2.31E-03

EXTRACELLULAR_MATRIX_ORGANIZATION (Reactome) 82 (87) 9.98E-06 3.23E-03

SIGNALING_BY_RHO_GTPASES (Reactome) 100 (113) 2.27E-05 5.51E-03

INSULIN_SYNTHESIS_AND_PROCESSING (Reactome) 20 (21) 4.47E-05 8.68E-03

GABA_RECEPTOR_ACTIVATION (Reactome) 50 (52) 5.58E-05 9.02E-03

HEPARAN_SULFATE_HEPARIN_HS_GAG_METABOLISM (Reactome) 46 (52) 5.79E-05 9.02E-03

ETHANOL_OXIDATION (Reactome) 10 (10) 7.18E-05 9.02E-03

ION_CHANNEL_TRANSPORT (Reactome) 48 (55) 7.41E-05 9.02E-03

*
Number of genes from study data (number of genes in the pathway).
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