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Regulation of gene expression by transcription factors (TFs) is highly
dependent on genetic background and interactions with cofactors.
Identifying specific context factors is a major challenge that requires
new approaches. Here we show that exploiting natural variation is
a potent strategy for probing functional interactions within gene
regulatory networks. We developed an algorithm to identify genetic
polymorphisms that modulate the regulatory connectivity between
specific transcription factors and their target genes in vivo. As a proof
of principle, we mapped connectivity quantitative trait loci (cQTLs)
using parallel genotype and gene expression data for segregants from
a cross between two strains of the yeast Saccharomyces cerevisiae. We
identified a nonsynonymous mutation in the DIG2 gene as a cQTL for
the transcription factor Ste12p and confirmed this prediction empiri-
cally. We also identified three polymorphisms in TAF13 as putative
modulators of regulation by Gcn4p. Our method has potential for re-
vealing how genetic differences among individuals influence gene
regulatory networks in any organism for which gene expression and
genotype data are available along with information on binding pref-
erences for transcription factors.

transcription factors | cofactor interactions | genetic variation in
gene expression | quantitative trait locus mapping

The ability to predict the phenotype of an organism from its
genotype is a long-term goal of biology. The increasing avail-

ability of high-throughput genomic data and systems biology-based
approaches is bringing this closer to reality. Linkage or association
analyses have been used to map quantitative trait loci (QTLs) that
explain phenotypic variation in terms of genetic polymorphism.
However, detectable QTLs typically only account for a small
fraction of heritable trait variation. Even when most of the addi-
tive contribution to the heritability can be explained in terms of
QTLs, as is the case for yeast, most of the contribution from gene–
gene interactions remains unexplained (1). Consequently, there
has been a growing appreciation for the importance of interactions
among genetic loci. For instance, a gene deletion study comparing
two yeast strains that differ by 3–5%, similar to the difference
between unrelated human individuals, identified subsets of genes
that were essential in one strain background but not the other (2).
This study exemplifies one of the computational challenges that
will have to be addressed before phenotype can reliably be pre-
dicted from genotype.
The identification of modifier genes contributing to phenotype is

difficult, because individual contributions are usually too weak to
be detected. Considering genome-wide mRNA abundance along
with information on genotypic variation represents the combined
effect of the latter on the regulatory state of the cell (3–7) and can
yield better prediction of phenotype (8, 9), the combined effect of
allelic variation on transcript abundance (8, 10), the effect of ge-
netic variation on transcription factor activity (11, 12), or transcript
stability (13). However, there are few methods that systematically
identify the effect of genetic modifiers on the strength of the
connection (“connectivity”) between a transcription factor and its
target genes (14–16).

At the simplest level, regulation of gene expression is char-
acterized by binding of a transcription factor (TF) to a promoter
and the concomitant activation or repression of the target gene.
Variation in responsiveness of a target gene to a regulator, either
due to genetic variation or due to a change in the environment,
can affect its expression and the resulting cellular phenotype.
One possible strategy for tuning gene-specific responsiveness is
modulation of TF–target connectivity by specific cofactors. The
interaction between a TF and cofactor can take a number of
different forms. It may require a specific cofactor(s) to tether
effectively to the promoter of a target gene; for example, Met4p is
recruited to the promoters of genes involved in sulfur metabolism
via interaction with Cbf1p and several other DNA-binding proteins
(17–23). Cofactors may also influence TF-dependent recruitment of
the transcription machinery to the transcription start site; for ex-
ample, multiprotein bridging factor 1 (Mbf1p) enhances Gcn4p-
dependent transcriptional activation by simultaneously binding the
DNA-binding domain of general control nonderepressible 4 (Gcn4p)
and a subunit of RNA polymerase II complex (24), or a cofactor
may prevent a TF from binding to the promoters of its targets. In
nutrient-rich conditions in the absence of mating pheromone, the
activator of the mating response, Ste12p, is bound by a down-
regulator of invasive growth protein (Dig2p), which inhibits
binding of Ste12p to the promoters of its target genes (25, 26).
In the presence of pheromone, Dig2p is phosphorylated and
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dissociates from Ste12p, allowing Ste12p to activate transcription of
the mating genes (26).
In all of the above cases, the magnitude and/or kinetics of the

change in transcription rate promoted by a TF may be affected by
natural variation in the amino acid sequence or protein level of a
cofactor. In this work, we explore the effect of genetic variation at
trans-acting loci on the regulatory interaction between a TF and its
targets. This is illustrated in Fig. 1, where allelic variation of a
cofactor modulates the efficiency of interaction between a TF and
the promoter to which it binds. Many studies rely on knowledge of
TF–target interactions to decipher the transcriptional network (27–
30). However, few algorithms are able to identify modulators of
TF–target connectivity at a network level (14–16). These typically
derive information from statistical relationships across conditions
between the mRNA abundance of gene triplets: the TF of interest,
a candidate modulator, and a target of the TF. However, regula-
tion of TF activity and interaction with cofactors often occurs at the
protein level. A complementary approach is therefore needed.
Our method identifies genetic loci whose allelic variation mod-

ulates the regulatory connectivity between a transcription factor
and its target genes in vivo. We call such loci connectivity quanti-
tative trait loci, or cQTLs. cQTLs are distinct from expression QTLs,
for which expression (at the level of mRNA or protein) is linked to a
chromosomal locus or loci and considered a heritable trait (3, 31),
and activity QTLs (aQTLs), for which the (inferred) activity of a TF-
or RNA-binding protein is mapped as a heritable trait (11, 13).
We applied our approach to data from a genetic cross between

two different yeast strains (6). These data comprise genotype and
gene expression data for >100 segregants. We systematically
screened for connectivity for each of >100 TFs for which the
DNA binding specificity has been characterized (32). Building on
earlier work (11), our method exploits prior knowledge about the
binding preferences of the TFs to estimate variation in the dif-
ferential activity levels of the TFs. This variation is due to the
combined natural allelic differences. The profile of differential TF
activity across genetic backgrounds contains valuable regulatory

information (33), which we exploit to estimate the susceptibility
(i.e., responsiveness) of each gene to variation in the differential
regulatory activity of a particular TF. We subsequently treat the
average difference in susceptibility between genetic backgrounds
containing each allele for a given locus as a quantitative trait and
aggregate these differences over the targets of the TF to con-
struct a (χ2) statistic that can be used to map cQTLs. Applica-
tion of our algorithm to yeast data uncovered a cQTL modulating
the pheromone-induced mating response, which we confirmed ex-
perimentally, as well as a cQTLmodulating amino acid biosynthesis.

Results
The goal of our analysis is to detect genetic loci that modulate the
strength of the functional connection between a TF and the ex-
pression of its target genes. We used genome-wide mRNA ex-
pression data for 108 segregants resulting from a genetic cross
between two yeast strains: a laboratory strain (BY4716) and a wild
strain from a vineyard in California (RM11-1a) (10). We also used
a genotype map that specifies the parental allele (BY or RM)
inherited at each of 2,956 chromosomal loci for each segregant (3).

Inferring Segregant-Specific TF Activity. The first step in our
algorithm—estimating the susceptibility of each transcript to
changes in the protein-level activity of a given TF—is illustrated in
Fig. 2. We quantify how the protein-level regulatory activity of
each TF varies across the strains, which requires prior knowledge
about cis-regulatory elements in the promoter regions of genes
(Fig. 2A). To this end, we used a compendium of weight matrices
representing binding preferences for 123 TFs (32) and calculated
the aggregated affinity score for the 600-bp window upstream of
each gene. Fig. 2B depicts how we inferred segregant-specific TF
activities by performing (multiple) linear regression of the differ-
ential mRNA expression level for each segregant (the dependent
variable) on the predicted in vitro segregant-specific binding af-
finities for a particular TF (the independent variable). Each data
point corresponds to a different gene. The regression coefficient

cofactor locus (cQTL) 

TF 
cofactor 

target locus 

aQTL

cofactor allele 
(cQTL) 

protein-level  
TF activity 

mRNA expression  
of target gene 

inactive baseline baseline 

inactive induced baseline 

active baseline baseline 

active induced induced 

Fig. 1. Definition of a cQTL. A cofactor is required for efficient transcription of a target gene by a TF. Polymorphism within the coding sequence of the
cofactor gene or its promoter can change the expression or activity of the cofactor, which can influence the interaction between the cofactor and the TF and
consequently the expression of the target gene. Thus, the “connectivity” between the TF and its target gene is influenced by the allelic identity at the cQTL.
Variation in the activity of the TF is due to genetic variation at one or multiple trans-acting loci (aQTLs). The SNP within the cofactor gene is identified as a
cQTL for the TF. The table shows how the variables are related.
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(slope) for each TF represents its segregant-specific differential
activity. The genetic variation in regulatory activity is driven by
trans-acting polymorphisms at one or more loci. In a previous
study (11), we introduced the concept of identifying such loci
as aQTLs. In the present study, we investigate a more subtle
form of genetic modulation of the regulatory network. This time,
our aim is to identify cQTLs that alter the responsiveness (or
susceptibility) of target genes to variation in the activity of
a particular TF.

Inferring Gene-Specific Susceptibility to TF Activity Variation. To
quantify the relationship between the transcript abundance of a
gene and the activity of a particular TF we perform linear re-
gression. However, here each data point corresponds to a segre-
gant rather than a gene. Another difference is that the dependent
variable is now differential mRNA expression, and the in-
dependent variable is segregant-specific differential TF activity
(Fig. 2C). The regression coefficient (slope) for each gene now

corresponds to the susceptibility. When estimating TF activity, we
avoid circularity by omitting the expression profile of the cognate
gene (Materials and Methods and Fig. S1).

Identifying TFs for Which Regulatory Susceptibility Correlates with
Promoter Affinity. For our analyses, we focused on the TFs
whose functional connectivity (i.e., the susceptibility of each gene
to variation in TF activity) is significantly correlated with the pro-
moter affinity of their targets as predicted from the DNA se-
quence. Only if this condition is met are the data likely to contain
sufficient information to permit identification of one or more
cQTLs. We selected TFs that meet this condition based on the
significance and rank of the correlation between their genome-
wide susceptibility and promoter affinity signatures (Materials and
Methods). We computed the correlation between the promoter
affinity profile and the susceptibility signature for each possible
pair of TFs. Fig. S2A shows the detailed results for 123 TFs, where
the susceptibilities were obtained by performing multiple regression

A

B

C

Fig. 2. Method for inferring TF activities and regulatory susceptibilities. (A) We use binding preferences in the form of a PSAM for 123 yeast TFs as prior
information to calculate aggregated affinity scores on the promoter region for every gene. (B) TF activities are inferred by performing regression of the
genome-wide expression data for each segregant on the aggregated affinity scores (11). The affinity matrix is unique for each segregant and depends on the
genotype. The expression data contains differential mRNA expression (log2) ratios relative to a pool of parental strains. The slope in the scatter plot reflects
the inferred (differential) protein activity level. Here each point represents a different gene. The x axis represents promoter affinity for the transcription
factor Ste12p, and the y axis represents differential expression in segregant 18_1_d. (C) We estimate gene-specific susceptibilities by regressing their mRNA
expression level on TF activities across segregants. In this case, the slope in the scatter plot corresponds to the susceptibility of the expression of FUS1 to
variation in Ste12p activity. Each point now represents a different segregant. Note that the in vitro promoter affinity score of a gene is calculated based on
the underlying genomic sequence. The in vivo susceptibility, by contrast, contains functional regulatory information and is based on the gene’s mRNA ex-
pression profile across segregants.
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of the expression levels on the activity of all TFs. A TF was selected
for further study if its susceptibility signature correlated more
strongly with the promoter affinity scores calculated using its own
position-specific affinity matrix (PSAM) (Materials and Methods)
than with those calculated from the PSAMs of the other 122 TFs.
This indicates that the regulation is likely to be specific for the TF.
This correlation was significant for 12 TFs (Fig. S2A). Fig. 3A shows
a representative scatter plot of susceptibility vs. promoter affinity
for one of these factors, Gcn4p. We also estimated susceptibilities
using univariate regression, which is less computationally in-
tensive. The correlation of these alternative susceptibilities with
the promoter affinities is shown in Fig. S2B. For TFs that also pass
this alternative selection criterion, it is reasonable to believe
that the correlation between the susceptibility and promoter
affinity signatures is not due to overfitting, and that the sus-
ceptibility to each particular TF is independent of tran-
scriptional regulation by other TFs. Seven TFs—Cha4p, Gcn4p,
Ino4p, Leu3p, Msn2p, Rcs1p, and Ste12p—passed both selection
criteria and were therefore deemed robust candidates for further
analysis (Fig. 3B).

Validation of Susceptibility Signatures Using TF Overexpression Data
and Gene Ontology Categories. To further assess the quality of the
susceptibility signature derived for Gcn4p, we took genome-wide
data on mRNA abundance obtained over a time course after
synthetic induction of the TF (34). For Ste12p, we used mRNA
expression data generated from cells treated with α-pheromone
(35). As a positive control, we first confirmed that the expression
responses to GCN4 and STE12 induction were highly correlated
with the promoter affinity scores for Gcn4p and Ste12p, re-
spectively (Fig. S3). This indicates that the affinity scores contain
sufficient information to elucidate the function of the TF. Next,
we considered the relationship between the overexpression data
and the susceptibility signatures. A high level of correlation be-
tween the two suggests that the inferred susceptibilities, derived
from the segregant expression data, capture the functional re-
sponse of genes to variation in the activity of the TF. Fig. 4A
shows significant correlation between the genome-wide response
to GCN4 overexpression measured 45 min postinduction. The
correlation between the susceptibility signature for each of the
123 TFs and GCN4 overexpression data at different time points
is summarized in Fig. 4B. The correlation improves with time,
consistent with the delay between activation, expression of the
Gcn4 protein, and the expression of Gcn4p targets. Susceptibil-
ities, in contrast, were inferred from a steady-state condition and
therefore reflect both direct and indirect targets. A plot showing

correlation between the response to Ste12p induction over time
and inferred susceptibilities associated with each of the 123 TFs
is presented in Fig. S4. In the case of Ste12p, the correlation
rapidly decreased after 30 min in the presence of pheromone,
consistent with known negative feedback due to pheromone-
induced degradation of Ste12p (36). For both TFs, significant
correlation with the susceptibility signature is seen over a portion
of the overexpression time course. We conclude that the sus-
ceptibilities we calculated capture the functional connectivity
between Gcn4p and Ste12p and their target genes.
We also validated our susceptibility signatures using Gene

Ontology (GO) categories (37). This was to test whether the
susceptibility signatures are associated with the known biological
function or molecular structure role for the seven selected TFs.
We used the Wilcoxon–Mann–Whitney test to score GO asso-
ciations with the susceptibility signature for TFs (Materials and
Methods). The results of GO enrichment analysis for the seven
selected TFs are shown in Dataset S1. For the Gcn4p signature,
there is significant association with “amino acid biosynthetic
process” (P = 3.6 × 10−11) and for Ste12p with “site of polarized
growth” (P = 1.7 × 10−10) and “reproductive process” (P = 1.5 ×
10−5). These results fit with the known activities of the TFs be-
cause Gcn4p activates genes involved in amino acid biosynthesis
in response to amino acid starvation (38) and Ste12p is the ac-
tivator of mating response pathway (39). Our findings are thus
consistent with the functional and biological annotations expected
for these TFs.

Mapping cQTLs. The second step in our method is illustrated in
Fig. 5. To test whether a polymorphic locus is a cQTL for a
particular TF, the segregants are first split into two subsets based
on the allele (BY or RM) inherited at each locus. For every gene
we perform univariate regression of mRNA abundance on the
activity of the TF within each subset (Fig. 5A). The regression
coefficients (slopes) are susceptibilities that quantify the extent
to which each gene responds to variation in TF activity with each
allele. For each gene, we assess the statistical significance of the
difference in susceptibility between the two subsets, by comput-
ing a t value t(Δβ) = Δβ/SE(Δβ), where SE(Δβ) denotes the SE
of the difference of the slopes Δβ = βBY − βRM (Fig. 5B). Finally,
we aggregate evidence over genes by constructing a χ2 statistic
equal to the sum of the squares of these t values. The known null
distribution of χ2 is used to compute a P value that quantifies
statistical significance. Where this P value is small enough, we
conclude that the locus globally acts as a cQTL for the TF (Fig.
5B). Using all genes in the genome to obtain the χ2 statistic may

A B

Fig. 3. Procedure for selecting transcription factors for further analysis. (A) Scatterplot of susceptibility signature vs. promoter affinity scores for Gcn4p.
(B) Pearson correlation (t value) between the susceptibility signature of the seven selected TFs and the promoter affinity scores of all 123 TFs. A red dot
denotes the same TF and a gray dot other TFs. The arrow points to the t value of the correlation depicted in A. We accepted the TFs whose susceptibility was
most strongly correlated to promoter affinity computed using the PSAM for the same TF. The blue line represents a 1% FDR threshold (t = 4.22, P = 3.9 × 10−6).
Susceptibilities were obtained by performing multiple regression of the mRNA expression level of each gene on the activities of all TFs.
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reduce the statistical power to detect cQTLs when a large
number of nonsusceptible genes are included. We therefore
considered an alternative χ2 statistic based on only the positive
targets of the TF of interest (i.e., genes that are induced when TF
activity is high; see Materials and Methods for details) and found
that it performed better.
Linkage disequilibrium reduces the precision with which the

location of the cQTL can be determined. To select a nonredundant
set of representative markers, we performed forward selection of
distinct multilocus cQTL “regions” that independently influence

the susceptibility signature. Briefly, we removed the effect of the
previously selected markers from the t(Δβ) signature using linear
regression and used the residuals in the next iteration (seeMaterials
and Methods for details). To reveal potential underlying molecular
mechanisms, we looked for genes in each cQTL region whose
protein product physically interacts with the TFs based on protein–
protein interaction data (Materials and Methods). As described
below, this process predicted modulatory polymorphisms in TAF13
and DIG2, which encode cofactors of the transcription factors
Gcn4p and Ste12p, respectively.

A B

Fig. 4. Validation of susceptibility signature of Gcn4p. (A) Scatterplot of the susceptibility signature for Gcn4p vs. the genome-wide response to GCN4
overexpression after 45-min induction. (B) Correlation across a time series of GCN4 overexpression data. Each point represents the correlation of transcript
abundance with the susceptibility signature of each of the 123 TFs. Here the black arrow indicates the t value of correlation displayed in A. See Fig. S4 for a
similar plot for Ste12p.

A

B

Fig. 5. Overview of our method for identifying cQTLs. (A) For each TF, we calculate allele-specific susceptibility by first splitting the segregants based on the
parental allele (BY or RM) inherited at locus m. Next, susceptibilities, βBY and βRM, are obtained for each segregant subset independently by performing
univariate regression of the differential mRNA abundance of each gene, g, on the activity of each TF. mRNA abundance is measured relative to a mixed pool
derived from the parental strains (6). The scatterplot shows how HYM1 mRNA abundance (y axis) responds to Ste12p activity (x axis) and how this re-
sponsiveness differs between segregants that have inherited the BY and RM allele, respectively, at the DIG2 locus. To avoid circularity, Ste12 activity was
inferred using all genes except HYM1. (B) Using allele-specific susceptibility data, we construct a matrix in which each element contains a t statistic corre-
sponding to the susceptibility difference between βBY and βRM for each gene/locus combination. The last step involves calculating a χ2 statistic for each locus
by summing the squared t values for all positive targets of Ste12p and converting it to a P value based on the standard null distribution of the χ2 distribution
(the larger χ2, the smaller the P value). Loci that reach statistical significance after correcting for multiple testing (red line) are classified as cQTLs.

Fazlollahi et al. PNAS | Published online March 10, 2016 | E1839

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517140113/-/DCSupplemental/pnas.201517140SI.pdf?targetid=nameddest=SF4


Searching for Genetic Modulators of Gcn4p-Mediated Amino Acid
Biosynthesis. The cQTL profile for Gcn4p, based on its positive
regulatory targets, is shown in Fig. 6 and Fig. S5. We accounted
for parallel testing of all markers by requiring the Bonferroni-
corrected P value to be <0.01 (equivalent to a raw P = 3.4 × 10−6

and χ2 statistic = 332.4). The most statistically significant cQTL
region is located on chromosome XIII and encompasses 59
genes, including TAF13 (Fig. 6). Taf13p, a TATA binding pro-
tein-associated factor, is a subunit of TFIID that interacts with
Gcn4p in vivo (40). We identified three nonsynonymous SNPs
within the coding region of TAF13 between RM and S288c, a
strain similar to BY: A137G, A138V, and G158A. According to
the BioGRID database (thebiogrid.org/), a total of 55 proteins have
direct physical interaction with Gcn4p. Therefore, the probability of
finding one protein–protein interaction for this cQTL region by
chance is <0.1 (hypergeometric distribution). Together, these ob-
servations suggest that polymorphism in Taf13p may affect the ef-
ficiency of transcription initiation by Gcn4p. We also identified a
region on chromosome XV that contains 67 genes including SNF2.
This gene encodes the catalytic subunit of the SWI/SNF chromatin
remodeling complex (41, 42) and interacts physically with Gcn4p
(40, 43, 44). There are nine amino acid polymorphisms in Snf2p
between the RM and S288c strains. Neither the TAF13 nor the
SNF2 locus was detected as an aQTL (11) for Gcn4p, so the
polymorphisms in these cQTL regions modulate the responsiveness
to variation in the activity of the Gcn4p transcription factor protein,
as opposed to affecting Gcn4p activity directly (Table S1).

DIG2 Is a Genetic Modulator of the Ste12p-Mediated Mating Response.
The cQTL profiles for Ste12p are presented in Fig. 7 and Fig. S6.
Using again only the positive targets of Ste12p to construct the
χ2 statistic, and requiring a Bonferroni-corrected P value <0.01
(raw P = 3.4 × 10−6 and χ2 statistic = 227.2), we identified three
distinct cQTL regions on chromosomes IV, IX, and XV. The
cQTL region on chromosome IV includes DIG2 (Fig. 7). This
locus was not previously detected as an aQTL for Ste12p (11)
(Table S1). Dig2p is a known inhibitor of Ste12p activity (25,
26, 45). We identified a single nonsynonymous polymorphism
at amino acid position 83 that corresponds to isoleucine (I) in RM
and threonine (T) in S288c. Upon induction by pheromone, two

MAPKs, Kss1p and Fus3p, phosphorylate Dig2p and other target
proteins on serine or threonine residues (46). The I83T poly-
morphism is located between a threonine and a serine and
might therefore influence the interaction with either MAPKs at
a posttranslational level.
To experimentally test our prediction that variation in the amino

acid sequence of Dig2p influences the strength of the Ste12p-
mediated gene expression response to mating pheromone, we cre-
ated allele replacement strains in which the DIG2 allele from RM
was placed in a BY strain background, and vice versa. To capture
the response from multiple targets of Ste12 we monitored the ex-
pression of a lacZ reporter gene, driven from an upstream promoter
region containing three pheromone response elements (PREs).
This sequence is found upstream of Ste12-activated genes. Ste12p
activates lacZ expression through the PREs in response to the ad-
dition of the mating pheromone, alpha-factor. In the RM back-
ground (Fig. 8A), robust induction of the reporter in response to
alpha-factor is seen, but this induction is absent when DIG2 is
replaced by the BY allele (Table S2). In the BY background (Fig.
8B), a stronger and faster response to alpha-factor is seen. Again,
the degree of induction is greater in the presence of the RM allele of
DIG2. In summary, our validation experiments show that (i) varia-
tion in a single amino acid in Dig2p has a dramatic effect on the
amplitude of the Ste12p-mediated mating response for both the
BY and RM strain backgrounds and (ii) the response at 30 and 60
min postinduction is consistently stronger if the strain bears the RM
allele of the cofactor Dig2p, as predicted by our algorithm (compare
the red and blue regression lines in the right panel of Fig. 5A).

Discussion
Many studies use gene expression data collected under steady-
state conditions, or in response to external perturbations, to
study regulatory networks. However, parallel gene expression
and genotype data across many samples allows one to take ad-
vantage of the natural genetic variation of the regulatory net-
work within a population. Most of the QTL mapping approaches
focus on variation in expression of individual genes (3, 5, 47, 48),
or cis-regulatory variation in the binding of transcription factors
(12, 30, 49, 50). Although these studies have greatly improved
our knowledge of gene regulation, the data can further be used
to infer more complex regulatory structures, including detection
of genetic loci that modulate transcriptional or posttranscriptional
regulation. Among QTL studies, there are only a few that identify

Fig. 6. cQTL detection for Gcn4p. cQTL analysis was performed using pos-
itive targets of Gcn4p (233 genes). We performed forward selection to de-
tect peaks with a Bonferroni-corrected P value <0.01. These loci are marked
with black circles, and statistically significant regions around each selected
locus are shown in red. Green dots indicate the location of genes within the
significant cQTL regions encoding a protein that has a direct physical in-
teraction with Gcn4p (indicated in the legends as 1-step P–P interaction).
The horizontal red line represents the P value threshold at 1% level with
Bonferroni correction (raw P = 3.4 × 10−6). We were able to detect loci
containing TAF13 and SNF2 (marked with black arrows).

Fig. 7. Detection of Dig2p as a putative connectivity modulator for Ste12p.
Significant cQTL regions were detected by using positive targets of Ste12p
(139 genes). The locus closest to DIG2 was identified by performing forward
selection (black arrow). There is a single polymorphism between the RM and
S288c strains that corresponds to an isoleucine in RM and a threonine in
S288c at position 83 within the Dig2p coding sequence. See Fig. 6 for
annotation.
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modulators of transcription factor activity and the effect on ex-
pression of their target genes (11, 13–16).
We have described an approach for identifying loci that

modulate the connectivity of transcription factors and their tar-
get genes, which requires only information on gene expression,
genotype, and TF binding preferences. Our method infers gene-
specific susceptibilities, which capture the responsiveness of
genes to variation in the activity of their cognate transcription
factors. Treating these susceptibilities as quantitative traits, a χ2

statistic is calculated for every genetic marker to test the signif-
icance of the linkage. Using a single statistic for testing linkage
associations has advantages because it reduces the multiple-
testing problem, which is significant for conventional QTL
mapping methods, due to the large number of trait/locus com-
binations. Our method does not require variation in the mRNA
abundance of the cofactor gene among samples/segregants. It
can, therefore, also detect polymorphisms that affect the in-
teraction of the cofactor and TF posttranslationally.
As a proof of principle, we applied our method to data from a

population of yeast segregants and detected putative modulators
of TF–target connectivity for Gcn4p and Ste12p. In particular,
we identified a locus on chromosome XIII containing TAF13 as
cQTL for Gcn4p. Taf13p is a subunit of the TFIID complex that
is involved in RNA polymerase II transcription (51). TFIID in-
duces DNA bending that may facilitate interactions between
regulatory factors and promoters of their targets (52). Considering
that Taf13p and Gcn4p physically interact (40), polymorphism
within TAF13 plausibly affects the efficiency of transcription of
Gcn4p target genes. Mbf1p is a coactivator of Gcn4p-dependent
transcription (24). However, we did not detect this locus on chro-
mosome XV among the positive targets of Gcn4p, because there

are no polymorphisms within the coding region or promoter of
MBF1 or the UTRs of its mRNA between S288c and RM.
We also detected a cQTL on chromosome IV near DIG2 as

putative modulator of the connectivity of Ste12p to its targets.
Dig2p is a known inhibitor of Ste12p activity that acts in the
absence of pheromone. However, the mechanism underlying this
regulation is not clear. The nonsynonymous polymorphism re-
siding in the coding sequence of DIG2 may have a role in
inhibiting transcriptional activation by Ste12p and influence how
target genes respond to Ste12p activity. We directly tested the
effect of polymorphism at the DIG2 locus and found that it in-
deed modulates the Ste12-mediated transcriptional response to
mating pheromone.
The DIG2 locus was not identified in a previous study that

specifically examined the genetic basis of variation in Ste12p
binding within a population of yeast segregants treated with
pheromone (53). Instead two distinct trans-acting loci containing
AMN1, a gene encoding an antagonist of mitotic exit network,
and FLO8, encoding a transcription factor required for floccu-
lation, were identified as likely modulators of Ste12p binding.
Our method identifies a significant peak at the AMN1 locus on
chromosome II; however, this region did not pass our forward
selection criteria when searching for independent significant χ2

regions. We did not detect a significant peak near the FLO8
locus. The polymorphism composition between the wild parental
strain in this study and YJM789, the wild strain used in ref. 53, is
not identical, which may explain why FLO8 was not detected.
S288c, a strain similar to BY, has a truncated version of FLO8
(54), which may affect the interaction between Flo8p and Ste12p.
The same single amino acid polymorphism in Dig2p between
S288c and RM is present in the parental strains used in the study
that monitored variation in Ste12p binding (53). However, there
are two synonymous SNPs within the coding regions of DIG2
between RM and YJM789: A474G and G693A. These could
affect DIG2 expression and function between RM and YJM789.
In summary, our method detects novel loci that modulate the

connectivity of Ste12p with its targets and adds a new layer of
complexity toward understanding the regulatory network of the
cell. Validation of linkage to TAF13 and SNF2 loci could also be
pursued empirically using the allele replacement method.
Our algorithm is not designed for a specific organism and is

applicable to any organisms for which gene expression and ge-
notype data are available along with information on binding
preferences for transcription factors. Many complex human
diseases are influenced by genetic variation at trans-acting loci
that affect the regulatory network within the cell. Because these
approaches are based on the genotype of individuals, they could
be used in developing models for precision medicine and in
identifying more effective approaches to therapy.

Materials and Methods
Strain Construction. Allele replacement was carried out using the diletto
perfetto method (55) using the pGSKU-CORE plasmid. The RM1-11a (Mata,
ura3Δ0, ho::KanMX) strain containing the BY version of the DIG2 allele
(IMY295) was made using the same method, except that the KanMX cassette
at the ho locus was first replaced with NatMX (13). Allelic replacement at
DIG2 was confirmed by sequencing. Primers used for delitto perfetto were
5′-GCGTGCGTTTGTGTTGGAGTTGAAGAATATGGGTAGCATGGTACTGGTGGT-
TCGTACGCTGCAGGTCGAC-3′ (RevDIG2+PI KURA Side) and 5′-AGACCCACA-
CAAGAGCAAATATCAACTGTTCAGGAAAATGATCCCAGGATAGGGATAACAGG-
GTAATCCCGCGTTGGC-3′ (DIG2+SceI+PII Gal1-1-SceI Side).

β-Galactosidase Assay. Parental and allele-replacement strains were trans-
formed with the plasmid pGA1706 (56) containing three copies of the PRE,
which drives expression of the lacZ reporter. Measurement of fluorescein
was carried out as previously described (57).

mRNA Expression and Genotype Datasets. Genome-wide mRNA expression
data included transcript abundance for two strains of yeast, a laboratory
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Fig. 8. Validation of the prediction that DIG2 is a cQTL that modulates the
activity of Ste12p. The transcriptional response to mating pheromone, in
different genetic backgrounds, for a reporter driven by a promoter con-
taining three PREs bound by Ste12p is shown. (A) In the RM background,
activation of Ste12p by alpha-factor is robust, but when its DIG2 allele is
replaced by that of BY the response is noticeably absent. (B) The BY strain
shows a greater response, a fourfold induction that is steady across time.
When the DIG2 allele from RM is substituted in BY, the degree of induction
is even stronger. All P values were calculated using a two-sample t test on
three replicates per strain.
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strain (BY4716) and awild isolate from a vineyard in California (RM11-1a), and
108 segregants grown in glucose (6). For all analyses we used log2(sample/
reference), where the reference data were generated using a mixture of
equal amounts of the parental strains and genotype information at 2,956
markers (3).

Calculation of Promoter Affinity.We used DNA binding specificity information
for 124 transcription factors (32) in the form of position weight matrices
(PWM). We excluded Hap3p whose PWM is identical to that of Hap5p. We
used the convert2psam utility from the REDUCE Suite v2.0 software package
(bussemakerlab.org/software/REDUCE) to convert each PWM to a position-
specific affinity matrix (PSAM) (28, 58, 59). The genome of S288c differs from
BY at only 39 bases (60), based on data from the Saccharomyces Genome
Database (www.yeastgenome.org/). The genome of the RM strain was
obtained from the Broad Institute website (www.broadinstitute.org/). We
used the Bioperl interface for the BLAST software (61) to identify pairs of
orthologous genes between BY and RM by aligning the coding sequences of
the two strains. We used 600 bp upstream sequences of each orthologous
pair to define BY- and RM-specific upstream promoter sequences (600 bp).
Following ref. 11, we calculated aggregated promoter affinity scores (Κ) as
follows:

KϕðSÞ=
XLS−Lϕ+1

i=1

Kϕi =  
XLS−Lϕ+1

i=1

∏
Lϕ

j=1
wϕjbi+j−1 ðSÞ.

Here, the index ϕ labels the TF, S represents the full promoter sequence of
length Ls, w stands for the PSAM of length Lϕ, and b denotes the base
identity at position i+ j− 1within S. The aggregated affinity is defined as the
sum of the relative affinities of a sliding window of length Lϕ along the
sequence S. We used the genotype map and the parental genome sequences
to calculate the allele-specific promoter affinities for every gene within each
segregant based on their inherited allele (11).

Inferring Protein-Level TF Activity. Following the analysis in ref. 11, we esti-
mated segregant-specific TF activities from mRNA expression levels and af-
finity scores based on the following linear model:

log2

��
mRNAg

�
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�
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��
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�
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�
∝
�½ϕ�s − ½ϕ�ref

�
Kϕgs

+ ½ϕ�ref  
�
Kϕgs −Kϕg,ref

�
.

Here [ϕ]s and [ϕ]ref represent the nuclear concentration of free (unbound)
protein ϕ in sample s and the reference pool, respectively. This equation
assumes that the binding between protein ϕ and the promoter of gene g is
proportional to the affinity score, which is true as long as the free protein
concentration is below saturation (28). The first term on the right-hand side
captures all trans-acting effects that cause differences in the activity level of
the protein; cis-effects are captured by the second term on the right-hand
side, which accounts for the differences in the nucleotide sequence of the
preferred binding site on the promoter region of target gene g of protein ϕ.
We can rewrite the equation below to solve for the activities βtransϕs and βcisϕs
(11):

ygs =   β0s +
X
ϕ

βtransϕs   Kϕgs +  
X
ϕ

βcisϕs
�
Kϕgs −〈Kϕg〉ref

�
.

Here ygs is the log2-ratio of the mRNA levels of gene g between the sample
and the reference pool. Because the reference pool is a mixture of equal
amounts of parental strains, the term〈Kϕg〉ref is equal to the average of BY
and RM promoter affinities.

Several of the TFs in the collection are involved in the same complex and
have similar promoter affinity signatures. To address the potential problem
of multicollinearity, we used ridge regression (62) to calculate βtransϕs and βcisϕs.
Ridge regression minimizes the residual sum of squares and includes an L2
penalty term with parameter (λ) to estimate the parameters of the model.
This yielded predictors that are slightly biased, but more precise (variances
are smaller), than those obtained with the standard method. We chose the λ
value that resulted in the smallest cross-validation error. We only used βtransϕs

representing inferred activity levels for all subsequent analyses.

Calculation of Susceptibilities. We used the mRNA expression data yg and the
differential activity levels to infer the susceptibility (βϕg) for each gene. This
is a measure of connection or responsiveness of gene g to variation in the
activity of protein ϕ, that is, it is the partial derivative of the abundance of
the gene g transcript with respect to the activity level of protein ϕ, both of
which depend implicitly on segregant genotype:

βϕg =
∂yg

∂βtransϕ,f−gg
.

Because the explicit form of yg as a function of the activity is not known, we as-
sume a linear relationship as a first-order approximation. Note that βtransϕ represents
a protein-level activity. To calculate the susceptibilities, we used ridge regression of
mRNA levels of gene g on the activity of protein ϕ across the segregants:
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We used the same procedure for determining λ. The regression coefficients
represent the inferred susceptibilities. To obtain the susceptibility of a particular
gene to the variation in activity of a TF, the RNA abundance of g was regressed
on TF activity. The latter was calculated using the mRNA abundances of all
genes including the gene of interest. To avoid circularity the susceptibility of
gene g to protein ϕwas obtained from activity levels that were calculatedwhile
excluding only the mRNA levels of that same gene. We refer to these activities
as βtransf−gg, where f−gg indicates the set of all genes except gene g. This step was
necessary to avoid circularity in calculation of the susceptibilities (Fig. S1).

Selection Criteria for TFs Based on Inferred Susceptibilities. Out of 123 TFs, we
accepted only those for which their genome-wide susceptibility signature was
highly correlated to their promoter affinity signature across all genes. For
promoter affinities, we used the average affinity of BY and RM strains for
each gene. We then calculated t values for the Pearson correlation between
the susceptibilities and the promoter affinities. We accepted a TF only if this
correlation had a higher t value with its own affinity than with that of all
other TF and was significant at a false discovery rate (FDR) below 1%. This
step was repeated by using univariate regression instead of ridge regression.

Validation of Susceptibilities. To test susceptibilities for selected TFs, we used a
time course of genome-wide mRNA levels after synthetic induction of GCN4
using a hormone-controlled artificial transcription factor (34). For Ste12p,
we used the pheromone response pathway induction expression data (35).
We also tested for association between the susceptibilities for each TF and
GO categories with at least 10 genes belonging to each category using the
Wilcoxon–Mann–Whitney rank-sum test. We controlled for multiple testing
by requiring a 1% FDR. An iterative procedure was used to removing the
effect of redundant nested GO categories (63).

Defining Positive Target Sets for the TFs. We used the susceptibilities of the
selected factors to define the set of positive target genes. For each combi-
nation of gene and TF, we obtained the P value for the corresponding
univariate regression coefficient when calculating the susceptibilities. We
considered a gene as a target by requiring significant P value at a 5% FDR
level (64). Among the targets for each TF, we defined those with a positive
regression coefficient as the positive targets.

cQTL Discovery.We used a χ2 statistic and associated P value to test whether the
susceptibilities to factor ϕ are significantly different when the segregants are
split based on the allelic identity at locus m. For every gene g, we first per-
formed ridge regression of ygs on all TF activities to obtain the regression co-
efficients, β. We calculated the t values of the difference of the susceptibilities,
tðΔβϕgmÞ, for every gene at every locus using the equation below. SE stands for
the SE of the slope. One possible approach to calculating the SE is to use
bootstrapping. However, doing so is computationally intensive. Therefore, we
used univariate regression to obtain the slopes and their SEs:

t
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A χ2 statistic was computed for every locus m by squaring the t(Δβ)’s and
summing over all genes:

χ2ϕm =
XNg

g=1

�
t
�
Δβϕgm

��2
.

Here Ng denotes the total number of positive targets of transcription
factor ϕ. We performed forward selection to extract representative significant
loci. At each iteration the effect of the previously selected markers was removed
from the t(Δβ) signature and the residuals were used for the next iteration. We
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iterated until all residual χ2 values corresponded to a P value <0.01. To de-
fine the significant cQTL regions, we extended the region around each selected
marker in each direction until hitting the significance threshold value.

Protein–Protein Interaction Data. To identify putative causal genes, or quan-
titative trait genes, within a cQTL, we used the yeast protein–protein interaction
dataset from the Biogrid website (thebiogrid.org/) as of April 2012. We only
considered physical interactions between the TF and other proteins (i.e., not

genetic interactions). These data were used to identify the genes within each
cQTL region whose protein products physically interact with the TF of interest.
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