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Many microorganisms with specialized lifestyles have reduced ge-
nomes. This is best understood in beneficial bacterial symbioses,
where partner fidelity facilitates loss of genes necessary for living
independently. Specialized microbial pathogens may also exhibit gene
loss relative to generalists. Here, we demonstrate that Escovopsis
weberi, a fungal parasite of the crops of fungus-growing ants, has a
reduced genome in terms of both size and gene content relative to
closely related but less specialized fungi. Although primary metabolism
genes have been retained, the E. weberi genome is depleted in carbo-
hydrate active enzymes, which is consistent with reliance on a host
with these functions. E. weberi has also lost genes considered neces-
sary for sexual reproduction. Contrasting these losses, the genome
encodes unique secondary metabolite biosynthesis clusters, some of
which include genes that exhibit up-regulated expression during
host attack. Thus, the specialized nature of the interaction between
Escovopsis and ant agriculture is reflected in the parasite’s genome.
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The highly evolved agricultural lifestyle of leaf-cutting ants has
attracted particular attention because these ants cultivate a

symbiotic fungus that serves as their major food source. These
ants cut leaves, preprocess them into small pieces, and feed them
to the cultivated fungus (1). The capacity of the cultivated fungus to
break down plant material gives ant agriculturalists access to the
vast nutrient stores locked within neotropical plants (Fig. 1A) (2–5).
The symbiosis between fungus-growing ants and their cultivated
fungi has persisted for at least 50 million years (6).
Like human agriculture, ant agriculture is hampered by disease.

The ants’ fungal crops are attacked and consumed by fungal parasites
of the genus Escovopsis (Ascomycota, Pezizomycotina: anamorphic
Hypocreales) (Fig. 1A) (7), which have evolved in association with
the ants and their cultivated fungi (8). Escovopsis infection can have
detrimental impacts on garden health and, consequently, on the
survival of ant colonies (9, 10). Such mycoparasitism, the phenome-
non whereby one fungus is parasitic on another fungus, is rare. It is
most well-known for species from the genus Trichoderma, some of
which are used as biocontrol agents for fungal diseases and others of
which attack human-cultivated fungi (11–13). In contrast to Tricho-
derma species, however, Escovopsis species grow poorly in their hosts’
absence (SI Appendix, Figs. S1 and S2).
Escovopsis species have never been isolated outside of fungus-

growing ant colonies, and different strains of Escovopsis are capable
of attacking the fungi grown by different fungus-growing ant species
(8, 14, 15). The long-term, specialized evolutionary history of the
association between Escovopsis and their hosts provides a unique
venue to explore the consequences of host specialization on patho-
gen genome evolution. Here, we assemble and annotate the genome
of a strain of Escovopsis weberi. Consistent with expectations under
an evolutionary transition toward using a narrow host range, and
similar to many other specialized, host-associated microbes (16, 17),
E. weberi exhibits gene loss. Contrasting other fungal pathogens, the

large genomes of which are expanded with genetic elements that
influence host adaptation (18), the genome size of Escovopsis is small
compared with those of its closest sequenced relatives.

Basic Features of the Small Escovopsis Genome
We sequenced the genome of E. weberi strain CC031208-10 iso-
lated from a fungal garden of the leaf-cutting ant Atta cephalotes,
a widely distributed fungus-growing ant species, the genome of
which has been recently sequenced (19). This strain is closely re-
lated to Escovopsis strains isolated from other leaf-cutting ant
colonies (SI Appendix, Fig. S3). Sequencing performed with the
454 FLX Titanium pyrosequencing platform generated ∼4.4 mil-
lion reads, which assembled into 29 scaffolds with a N50 of 2.58
Mbp and an overall genome assembly length of 27.20 Mbp. The
G+C content of the Escovopsis genome is 55.74%, similar to other
fungi in the Hypocreales (SI Appendix, Table S1). We identified
204 tRNA genes in association with 44 codons and all 20 amino
acids (Dataset S1). Approximately 4% of the assembly consists
of repetitive elements, including simple sequence repeats such as
microsatellites (Dataset S1) and transposable elements (SI Appendix,
Fig. S4). The genome can be viewed through the Genome Browser
at gb2.fungalgenomes.org/.

Significance

Many organisms are specialists living within a narrow range of
conditions. Pathogens are often adapted to efficiently exploit
only a few hosts species, or sometimes, only some genotypes
within a species. The genomes of such parasites are predicted
to maintain genes critical for host utilization and to lose genes
no longer necessary outside their constrained lifestyle. We
demonstrate that the genomic content of a fungal pathogen
specialized to attack and consume fungus cultivated by ants
meets these predictions. Despite a reduced genome size and
gene content in comparison with less specialized relatives, the
genome of this agricultural pathogen retains genes necessary
for production of toxins, a step critical to host attack, and for
breaking down nutrients abundant in its host.
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Using k-mer frequency analysis as an assembly-independent
estimate of genome size (Dataset S2) (20), we estimate the true
genome size to be 29.45 ± 2 Mb in length, among the smallest
known genomes of all Pezizomycotina (Fig. 1), the largest and
most diverse group of ascomycete fungi. Indicative of a complete
genome assembly, we identified 239 of 248 super-conserved Core
Eukaryotic Genes (CEGs) (21, 22). Escovopsis has 6,870 predicted
protein-coding genes (Dataset S3), substantially fewer than other
Pezizomycotina (Fig. 1 and SI Appendix, Table S1). The average
gene length (1,623 bp) and mean content of exons per gene (2.74)
are similar to estimates from closely related Pezizomycotina
(SI Appendix, Table S2). Fifty-five percent of the encoded proteins
were assigned to Gene Ontology terms, and 76% contain a protein
family (PFAM) domain (Dataset S4). Although the number of
predicted genes is greatly reduced compared with most other
Pezizomycotina, PFAM analysis as well as manual functional an-
notation of all genes against the National Center for Biotechnology
Information (NCBI) nonredundant database (Dataset S3) indicate
that the largest gene families in Escovopsis are also common in
closely related fungi (SI Appendix, Table S3).

Potential Loss of Sex
An inability of E. weberi to undergo sexual reproduction is sug-
gested by the striking absence of a functional Mating-Type (MAT)
locus, as no complete MAT1-2 and MAT1-1 loci were identified
(see SI Appendix, Fig. S5, for details). E. weberi also has no ho-
mologs to the small peptide pheromones necessary for sexual re-
production in Trichoderma reesei (23). These findings are consistent
with the fact that there is no described teleomorph for E. weberi
and suggest that this fungus—unlike most others that are pre-
dominantly found in their anamorphic form (24)—is asexual.
Identification of STE2 and STE3 genes in the genome, homologs
of T. reesei receptor proteins necessary for sexual reproduction
(23), does suggest that E. weberi—or an ancestor—has a history of
sexual reproduction.

Loss of sex in E. weberi would be surprising because Escovopsis
presumably must adapt to an array of defenses mounted by its
fungal host and associated symbionts, and sexual recombination
can provide an advantage in terms of facilitating the generation
of variants that are able to counter changing defenses (25, 26). In
response to Escovopsis infection, the cultivar can use antibiotics
that inhibit Escovopsis growth (14), the ant agriculturalists mount
a number of behavioral defenses to remove the pathogen (27),
and the ants support bacteria that produce Escovopsis-inhibiting
antibiotics (28). All of these defenses could potentially change
(either plastically or evolutionarily) in response to Escovopsis
infection. There are several important considerations in the case
of complex symbiotic systems such as that of the fungus-growing
ant symbiosis, however. First, the cultivar, likely under the stron-
gest selection to evolve defenses to counteract Escovopsis attack,
reproduces mostly asexually, and somatic incompatibilities limit
genetic exchange between strains (29, 30); the cultivar may be
constrained to not evolve rapidly so as to maintain a mutualism with
the ants [i.e., Red King hypothesis for slow evolution of mutu-
alistic partners (31)]. Second, Escovopsis too can benefit from
symbionts [e.g., black yeast that inhibit growth of antibiotic-
producing bacteria (32)], which in turn themselves could evolve
in response to changing defenses. These combined features may
lessen selection to maintain sexual recombination.

Lack of Repeat-Induced Point Mutation
One important consequence of the loss of sex for the genome would
be the hindrance of continued Repeat-Induced Point mutation
(RIP), which requires sexual recombination (33). RIP, originally
described in Neurospora crassa (33) and later shown to be active in
Trichoderma (34), a genus of fungi closely related to Escovopsis (Fig.
1B and SI Appendix, Fig. S6), is a common (SI Appendix, Table S4),
irreversible fungal-defense mechanism that preferentially alters C:G
to T:A nucleotides and acts mainly on transposable elements but also
on protein-coding genes (35), potentially leading to gene inactivation
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Fig. 1. Escovopsis weberi, a specialized mycoparasite of the fungus-growing ant symbiosis, has a small genome compared with other Pezizomycotina fungi.
(A) Both fungus-growing ants and the mycoparasite E. weberi use the ants’ cultivated fungi as their primary food source. The ability of the cultivated fungi to
efficiently break down plant material gives both consumers access to the biomass of neotropical plants. (B) Size and protein-coding gene content of genomes
of diverse fungi in the Pezizomycotina. Bayesian phylogeny estimated using partial amino acid alignments of three genes (Rpb1, Rpb2, ef1-α). All posterior
probabilities are greater than 0.95. Phylogeny is rooted with Sacchormyces cervesiae (not shown). (C) Relationship between genome size and gene content. A
list of genomes included in this panel is in SI Appendix, Table S1.
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and genome reduction. The E. weberi genome lacks four genes
involved in RIP: qip, qde1, qde3, and sad1 (SI Appendix, Table
S5). Similar RIP deactivation in Blumeria graminis and other
specialized plant pathogens is postulated to have led to extensive
retrotransposon proliferation and genome-size expansion (16),
contrasting the genomic architecture of E. weberi, which along
with its reduced genome size, has a paucity of transposable
elements (SI Appendix, Fig. S4) and gene paralogs (only four;
SI Appendix, Table S6). One possibility is that RIP deactivation
in E. weberi is a fairly recent phenomenon: the genome does
contain footprints of past RIP operation (SI Appendix, Table S7),
suggesting that RIP may have limited genome expansion in the past.

Genomic Similarities to Closely Related Fungi
Phylogenetic placement of Escovopsis within the Hypocreales (SI
Appendix, Fig. S6) confirms that the most closely related fungi to
Escovopsis with available genome sequences are within the genus

Trichoderma, which diversified from a mycoparasitic ancestor
(36). Escovopsis diverged from Trichoderma ∼50 million years
ago (SI Appendix, Fig. S7), coincident with the evolution of ant
fungiculture (6, 37). Pairwise sequence comparison of the ge-
nome sequences of E. weberi with both Trichoderma atroviride
and Trichoderma virens (Fig. 2A) revealed a high degree of micro
mesosynteny, indicating that genome segments have a similar gene
content but shuffled order and orientation, likely due to intra-
chromosomal rearrangements (38). Compared with T. virens, only
6% of E. weberi’s genes are located outside of shared syntenic
blocks; 42% of these nonsyntenic genes are species-specific to
E. weberi and encode proteins of unknown function. Similarities to
Trichoderma will facilitate further functional analyses of this ant
agricultural pathogen.
Orthology analysis, based on bidirectional best BLAST hits,

between the E. weberi gene set and those of three Trichoderma spp.
(T. atroviride, T. reesei, T. virens), which, like Escovopsis spp., are
mycoparasites, revealed that 80% of E. weberi’s genes have ho-
mologs in all three Trichoderma genomes, and an additional 5%
are found in at least one of the Trichoderma genomes (Fig. 2B and
Dataset S3). E. weberi shares more orthologs with T. virens and
T. atroviride (Fig. 2B), which may be driven by their substantially
higher gene content than T. reesei (Fig. 1B). Most of the 1,066
genes unique to E. weberi relative to Trichoderma spp. are of un-
known function, and only 128 of these genes exhibit homology
to proteins in other Pezizomycotina (Dataset S5), including Meta-
rhizium, Fusarium, and Colletotrichum species (SI Appendix, Table S8).
The latter is intriguing as Colletotrichum is not closely related to the
genus Escovopsis but is a genus containing obligate pathogens (39).

Genomic Similarities to Other Specialized Fungi with
Small Genomes
Although some specialized, host-associated fungi exhibit genome
expansion, in part due to proliferation of retrotransposons [e.g.,
B. graminis (16)], other specialized, host-associated fungi have
small genomes. For example, the Yeast Like Symbiont (YLS), an
obligate, specialized fungal endosymbiont of the aphid Cerata-
phis brasiliensis (40), is predicted to have had strict association
with its host insects for millions of years, replacing the role of
Buchnera aphidicola, an obligate bacterial symbiont found in
other aphid species (41). Trichophyton rubrum, another example,
is a human skin-specific fungal pathogen and causative agent of
athlete’s foot (42). Like E. weberi, YLS and T. rubrum have two of
the smallest estimated genome sizes among the Pezizomycotina
(∼25 and 22 Mb, respectively). Fifty-one percent of E. weberi’s
6,870 protein-coding genes have orthologs in both YLS and
T. rubrum (SI Appendix, Fig. S8), indicative of a core gene set for
these host-associated, although ecologically distinct, taxa. This
overlapping core set consists mostly of housekeeping genes in-
volved in central metabolism and in DNA, RNA, protein, and
organelle biosynthesis. Genes unique to E. weberi, relative to those
shared between the three genomes, are enriched in transcription
factors (Zn2Cys6 and C2H2 type) and glycosyl hydrolases, which
assist in the hydrolysis of glycosidic bonds in complex sugars
(SI Appendix, Table S9). Of the 1,834 genes unique to E. weberi
relative to YLS and T. rubrum, 1,064 are found in the mycoparasite
T. virens of which 459 encode uncharacterized putative proteins. Of
note, the glycosyl hydrolases present in the core set (i.e., those
shared among YLS, Trichophyton, and Escovopsis) and those
shared only between T. virens and E. weberi exhibit a clear bias:
whereas the core set contains all of the GH13 amylolytic and GH16
β-glucanolytic hydrolases, the 1,064 genes shared with T. virens are
strongly enriched inGH3,GH5, andGH12 endo- and exo–β-glucanases
and particularly in GH18 chitinases (SI Appendix, Table S9),
which may play a role in Escovopsis breaking down the chitin
within the cell walls of host fungi.
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Fig. 2. Similarities between Escovopsis and Trichoderma. (A) Mesosynteny be-
tween E. weberi and T. virens. Scaffolds of E. weberi are multicolored. T. virens
scaffolds are black. Only scaffolds containing syntenic regions are shown. (B) Gene
content overlap between E. weberi and three Trichoderma species. Like Escovopsis
spp., Trichoderma spp. are mycoparasites (fungi that attack and consume other
fungi), although they are less specialized and are also able to obtain nutrients from
dead organic matter. Orthologs were assigned using all-against-all BLASTP for
amino acids and inparanoid/multiparanoid (sequence overlap coverage ≥50%).
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Specialization and Gene Loss
In some respects, fungus-growing ants and Escovopsis occupy a
similar niche, obtaining nutrients from the cultivated fungus,
which has the capacity to break down diverse, abundant plant
material into nutrients that the ants and parasite can use (Fig.
1A) (2, 3). Thus, there should be many degradation capacities of
the cultivated fungi that Escovopsis spp. do not require. E. weberi
is able to grow on several carbon sources in absence of its fungal
host (SI Appendix, Fig. S2 and Dataset S6), and a specific search
for presence of genes encoding enzymes of primary metabolism
(i.e., carbohydrate, amino acid, lipid, and nucleic acid anabolism
and catabolism) revealed that the E. weberi genome contains all
genes required for growth on media containing an organic car-
bon source and salts except for genes required for the synthesis
of dehydroascorbic acid, an oxidized form of ascorbic acid. When
E. weberi growth was compared with that of T. atroviride using
phenotype microarray plates, however, it exhibited much slower
growth on most carbon sources (SI Appendix, Fig. S2 and Dataset
S6). In these assays, E. weberi grew most rapidly on the α-glucans
trehalose and maltose, which is consistent with the findings that
E. weberi has retained genes encoding α-glucan–degrading en-
zymes and that the associated genes are up-regulated when
E. weberi is growing toward and overgrowing the fungal cultivar
(SI Appendix, Fig. S9 and Dataset S7). It is possible that E. weberi
may have specialized in the utilization of these simple and un-
branched α-glucans as these are the most abundant carbohy-
drates in its host fungus (43).
In contrast to T. reesei and T. virens, E. weberi is depleted in

genes encoding amino acid transporters and major facilitator su-
perfamily transporters, which transport small solutes. It also con-
tains many fewer cytochrome P450 proteins, flavin-dependent
monooxygenases, ankyrins, and PTH11 receptors, which have
been implicated in host recognition by fungal pathogens (44) (SI
Appendix, Table S3 and Dataset S8). Most interestingly, relative
to Trichoderma spp., E. weberi exhibits strong reduction in sev-
eral gene families encoding polysaccharide depolymerizing en-
zymes (a.k.a., carbohydrate active enzymes, CAZmyes) (Fig. 3
and SI Appendix, Table S10). E. weberi lacks all cellobiohy-
drolases [Glycoside Hydrolase family 6 (GH6) and GH7], all
xylanases (GH10, GH11, GH30), and also auxiliary proteins like
polysaccharide monooxygenases (GH61) and the expansin-like
protein swollenin. Consistent with the fact that Escovopsis breaks
down the ants’ cultivated fungus but not leaves collected by the
ants to feed to their fungus (7), cellulose-binding domains, which
are a hallmark of fungi that use plant material for nutrients (34),
are also strongly reduced and present only in two endo–β-1,4-
glucanases (GH5, GH7; orthologous to T. reesei endo–β-1,4-
glucanases EGL and EGL1) and in two chitinases (GH18). The
genome of E. weberi also contains only one GH family member
that encodes enzymes for hydrolysis of α-galactosides and of
α-arabinofuranosides (GH27, GH51); these glycoside hydrolases
are expanded in Trichoderma (34, 36). This reduction is remi-
niscent to that found in some plant pathogens that also lack
some GH enzymes (45). On the other hand, E. weberi has a
similar number of chitinases (GH18, GH20) and of β–1,3/β-1,4-
glucanases (GH16) as T. reesei, indicating that the potential for
attacking the host fungus’ cell wall has been maintained. In-
terestingly, proteomic, transcriptomic, and draft genome sequenc-
ing have identified some of these missing enzymes to be present
and highly expressed in the ant-cultivated fungus Leucoagaricus
gongylophorus (Fig. 3 and SI Appendix, Table S10) (2, 3). Taken
together, these losses are consistent with previous findings that the
specialized mycoparasite Escovopsis breaks down fungal but not
plant material (7) and suggest that E. weberi has lost the ability to
feed on lignocellulosic plant material, an ability retained by other
microbial members of fungus-growing ant gardens (46).

Further Genomic Signatures of Exploitation of a Fungal
Symbiosis
E. weberi has been shown to kill the fungi cultivated by the ants
from a distance (7), a process that likely involves the secretion of
toxins. Using SignalP (47), a secretion-specific signal peptide was
predicted for 4.8% of E. weberi’s proteins (Dataset S9), about
half the percentage found for Trichoderma (9.0, 8.6, and 8.7%
in T. reesei, T. atroviride, and T. virens, respectively) (48). The
E. weberi secretome is dominated by genes with no known
function, particularly in comparison with Trichoderma (55.8% for
E. weberi versus 25–30% for Trichoderma spp.).
Toward identification of low-molecular-weight toxins, we used

antismash 2.0 (49) to identify 17 putative secondary metabolite
biosynthesis clusters in the genome (SI Appendix, Table S11),
three of which are unique to E. weberi. All three unique clusters
are predicted to code for terpene synthases, metabolites known
to be involved in the production of mycotoxins (50). Other
clusters are predicted to code for polyketide synthases (PKS).
Expression of some genes within these PKS clusters was signif-
icantly up-regulated when E. weberi was growing toward its host
(Fig. 4 and Dataset S7). One such gene (ESCO_001469) encodes
a protein with an amino-terminal extracellular cysteine-rich
EGF-like (a.k.a. CFEM, or Common in several Fungal Extra-
cellular Membrane proteins) domain (51). Proteins bearing this
domain in the rice pathogen Magnaporthe grisea are involved in
virulence (51), and CFEM proteins in the human pathogen
Candida albicans influence cell-surface characteristics and biofilm
formation (52). InterProScan analysis revealed seven CFEM-
domain proteins in E. weberi (SI Appendix, Table S12), the largest
domain family in those genes that are unique to E. weberi relative
to Trichoderma spp. based on orthology analysis (SI Appendix,
Table S13).
There is also evidence of retention of nonribosomal peptide

synthases (NRPSs), enzymes known to synthesize a multitude of
secondary metabolites (53). The E. weberi genome encodes two
peptaibol synthases (ESCO_001464 and ESCO_003769), NRPSs
that have been found only in Trichoderma and a few close rela-
tives (54). These enzymes have been shown to inhibit cell-wall
resynthesis by Trichoderma hosts when they are being attacked by
Trichoderma’s cell-wall hydrolases (55). Finally, the E. weberi
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Fig. 3. The E. weberi genome encodes a reduced number of carbohydrate
active enzymes. Carbohydrate active enzymes are divided into families. Each
point represents the relation between the number of members of a given
CAZmye family for E. weberi plotted against the average number of family
members for the less specialized mycoparasites T. virens and T. atroviride.
Members of some of these families, indicated in orange, are known to be
highly expressed in E. weberi’s host fungus (2, 3). Additional details are in SI
Appendix, Table S10.

3570 | www.pnas.org/cgi/doi/10.1073/pnas.1518501113 de Man et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sd06.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sd06.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sd06.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sd07.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sd08.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sd09.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sd07.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518501113/-/DCSupplemental/pnas.1518501113.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1518501113


genome encodes three β-lactamases (ESCO_006545, ESCO_005342,
ESCO_005794) and one tetracycline resistance gene (ESCO_002770),
which inactivate antibiotics. The observation that these genes have
been maintained in E. weberi despite general genome reduction
suggests a similar mycoparasitic mechanism for Escovopsis when
attacking the ants’ cultivated fungi and maintenance of mechanisms
to combat antagonists within the complex microbial community
of fungus-growing ant gardens.

Conclusions
Specialization over evolutionary timescales can facilitate gene
loss and genome reduction. Fungus-growing ants and Escovopsis
use the same fungus as a primary food source, and this obligate
dependency is reflected in genetic modifications relative to the
closest relatives of each. The genome of the ant A. cephalotes,
for example, is depleted of genes related to nutrient acquisition,
including serine proteases, genes involved in arginine bio-
synthesis, and a hexamerin involved in amino acid sequestration
during development in other insects (19). Here we show that
E. weberi has a small genome and reduced gene content relative
to its closest sequenced relatives with broader host ranges. The
E. weberi genome is depleted in genes associated with plant
degradation yet has retained genes associated with attacking
fungal hosts. Thus, dependence on the cultivated fungus shapes
the genomes of the ants and Escovopsis, unrelated but ecologi-
cally linked organisms.
Although the reduced functional capacity of E. weberi is consistent

with loss of genes no longer necessary given its highly specialized,
mycoparasitic lifestyle, its relatively small genome, with few mobile
elements and duplications, is harder to attribute to specific evolu-
tionary processes, particularly given the inactivation of RIP, the loss
of which should allow for genome expansion. Although specialized
bacteria, and in particular obligate symbionts, consistently exhibit ge-
nome reduction, which is facilitated by several evolutionary processes
(17), specialized fungi vary greatly in genome size. Some obligately
parasitic fungi have large genomes with many transposable elements
(16, 18). This is hypothesized to be in part because eukaryotes with
small effective population sizes can tolerate accumulation of slightly
deleterious transposable elements, multiple introns, and gene dupli-
cations (56) and in part because mobile elements can facilitate rapid
adaptation in some organisms (18, 57). However, some obligately
parasitic fungi, such as the microsporidium Encephalitozoon cuniculi,
have reduced genomes with few mobile elements, which is likely due
to sustained drift-influenced genome reduction (58). Interestingly,
Pezizomycotina fungi with genomes less than 75Mbp, such as E. weberi,
exhibit a pattern of decreased genome size with increased drift
(59). This may be coupled with selectively beneficial loss of genes

and other genomic content no longer essential for a host-asso-
ciated, specialized lifestyle.
Specialization of Escovopsis spp. goes beyond just specializing

on fungus-growing ant fungi in general. Different Escovopsis spp.
have different host ranges. For example, strains isolated from
colonies of Atta spp. ants, like the strain genomically described
here, are typically able to infect fungi cultivated by Atta and
other leaf-cutting ant species but have narrow abilities to attack
fungi grown by non–leaf-cutting ant species (60). In fact, even
within a symbiosis involving a single ant species and its associated
fungi, there can be variation in host range, suggesting genotype-
by-genotype specificity (14, 15, 60). Therefore, the annotation of
this first Escovopsis genome provides a starting point to in-
vestigate the genomic changes underlying a dynamically evolving
host–pathogen system.

Materials and Methods
Detailed descriptions of materials and methods are provided in SI Appendix. In
brief, we sequenced the genome of a single strain of E. weberi isolated from an
A. cephalotes colony from Gamboa, Panama, using the 454 FLX Titanium
pyrosequencing platform with both fragment and paired-end approaches (2.5
whole-genome shotgun fragment run, one 8-kpb insert paired-end library run).
We assembled the genome using the De Novo GS Assembler v 2.6 from the
Newbler software package developed by Roche. The raw dataset is deposited
at DNA Data Bank of Japan/European Molecular Biology Laboratory/GenBank
under PRJNA253870, and the whole-genome assembly is deposited under acces-
sion LGSR00000000. The version described here is version LGSR01000000. RNA-seq
reads are deposited in the Sequence Read Archive under accession SRP049545.

We assessed genome assembly completeness using three independent meth-
ods: (i) we calculated basic statistics, including total length and fragmentation of
the assembled sequences; (ii) we identified CEGs in our genome assembly using
CEGMA 2.4 (22); and (iii) we took a K-mer–based genome size estimation ap-
proach. For the latter, we generated a frequency distribution of unique 31-mers in
the raw sequencing reads with Jellyfish 1.1.11 (61) and included K-mers with
more than 12 copies in the genome, those located to the right of the inflection
point (Dataset S2), for computation of genome size.

We used MAKER 2.28 for gene discovery with exon support provided by
alignment of RNA-seq transcripts from E. weberi grown in the presence and
absence of its host and by available Trichoderma ESTs and proteomes, other
fungal proteomes, and NCBI’s NR database. Protein-coding genes were
predicted with the ab initio gene predictors Augustus 2.7 (62), SNAP 0.15.4
(63), and GeneMark 2.5 (64) using exon hits from the protein and RNAseq
transcript evidence. We functionally annotated all predicted proteins using
InterProScan 5–44.0 (65). The genome annotation can be visualized at gb2.
fungalgenomes.org/ with GBrowse (66).

We assessed evidence for RIP by computing RIP indices [TA/AT > 0.89 and
CA+TG/AC+GT < 1.03 are considered evidence for RIP (67)] for the five most
prevalent repeat families within the E. weberi genome and the unmapped
reads using RIPCAL 1.0 (68). We also searched for orthologs of genes known
to be involved in the RIP process in N. crassa (69).
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Fig. 4. Up-regulation of gene expression within a
secondary metabolite cluster during interaction with
cultivated host fungi. Gbrowse genome browser
view of 1 of 16 secondary metabolite clusters in the
E. weberi genome. Below the scaffold are three
tracks illustrating RNAseq-based gene expression
when E. weberi is growing toward its host (Top),
when it has overgrown its host (Middle), and in the
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predictions are illustrated below. Photographs
next to each RNAseq track illustrate the growth of
E. weberi under each condition. Each Petri dish was
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(when present) and E. weberi near the center 1 wk
later; photographs were taken 3–4 d after E. weberi
inoculation. Note that E. weberi grows much more
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host. See SI Appendix, Fig. S1 for additional images.
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