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Variation and selection are the core principles of Darwinian evolution,
but quantitatively relating the diversity of a population to its capacity
to respond to selection is challenging. Here, we examine this problem
at a molecular level in the context of populations of partially ran-
domized proteins selected for binding to well-defined targets. We
built several minimal protein libraries, screened them in vitro by phage
display, and analyzed their response to selection by high-throughput
sequencing. A statistical analysis of the results reveals two main find-
ings. First, libraries with the same sequence diversity but built around
different “frameworks” typically have vastly different responses; sec-
ond, the distribution of responses of the best binders in a library
follows a simple scaling law. We show how an elementary probabi-
listic model based on extreme value theory rationalizes the latter
finding. Our results have implications for designing synthetic protein
libraries, estimating the density of functional biomolecules in sequence
space, characterizing diversity in natural populations, and experimen-
tally investigating evolvability (i.e., the potential for future evolution).
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Diversity is the fuel of evolution by natural selection, but
translating this concept into quantitative measurements is

not straightforward (1). A simple count of the number of dif-
ferent individuals in a population, for instance, fails to account
for the very different responses to selection that two populations
with the same number of different individuals may elicit. The
problem is even acute at the molecular scale, where it also takes
a very practical form: libraries of diverse proteins are routinely
screened as a way to identify biomolecules of interest (binders,
catalysts, etc.), and a proper “diversity” is critical for success (2,
3). However, beyond a general agreement that maximizing the
number of different elements is desirable, there is no general
rule for engineering and comparing diversity in these libraries.
A common design of many protein libraries is to concentrate

variations at one or a few variable parts located around a fixed
“framework,” which is shared by all members of the library (2, 3). The
natural design of antibody repertoires, the pools of immune proteins
with potential to recognize nearly every molecular target, follows this
pattern. Most of the sequence variations in antibodies are, indeed,
concentrated at a few loops extending from a common structural
scaffold (4). This architecture has inspired the conception of artificial
protein libraries built on frameworks other than the Ig fold (5).
Here, we present an approach to quantitatively characterize

the selective potential of molecular libraries. To develop this
approach, we designed and screened 24 synthetic protein li-
braries with identical sequence variations but different frame-
works and analyzed their response to well-defined selective
pressures by high-throughput sequencing. Between libraries, we
find that selective potentials vary widely and define a hierarchy
of frameworks. Within libraries, we find that selective potentials
exhibit a simple scaling law, characterized by few parameters.
The essence of these results is captured by an elementary proba-
bilistic model based on extreme value theory (EVT).

Previous work has quantified the functional potential of totally
or partially random biomolecules by counting the number of
positive hits resulting from successive rounds of selections and
amplifications of a large sample of these biomolecules (6–11).
Our results lead us to propose a different approach to characterize
the selective potential of a population. Compared with previous
analyses, this approach does not depend strongly on the sensitivity
of the experimental assay or the number of copies in which each
distinct biomolecule is present in the initial population.

Experimental Approach
Library Design. We built 24 minimal libraries with different frame-
works but identical sequence diversity (Materials and Methods, Fig.
1, SI Appendix, Fig. S1, and Dataset S1). Twenty frameworks consist
of single-domain antibodies taken from natural heavy-chain genes
of diverse origins (VH fragments), typically sharing 40% of their
amino acids (SI Appendix, Fig. S2); they originate from matu-
rated antibodies, which are mutated relative to their germ-line
form, except for the S1 framework that comes from a germ-line
(naïve) antibody. Three additional frameworks are more closely
related and correspond to the germ-line and two maturated
forms of the same human antibody, with the maturated frame-
works sharing 65% and 85% sequence identity with the germ
line. Finally, one framework consists exclusively of glycines to
serve as a control. Diversity is limited to four consecutive amino
acids at the complementarity determining region 3 (CDR3), the
part of antibody sequences most critical for specificity (12).

Significance

Evolution by natural selection requires populations to be suf-
ficiently diverse, but merely counting the number of different
individuals provides a poor indication of the potential of a pop-
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high-throughput sequencing. We find that selective potentials in
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the selective constraints). Our results provide an approach to
quantitatively measure the selective potential of a population.
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Structurally, the CDR3 forms one of three loops that define the
binding pocket of a VH domain (4); in our design, the two other
loops (CDR1 and CDR2) are, thus, part of the framework. Our
libraries are minimal on two accounts: the framework consists of
a single domain of ∼ 100 amino acids, and the total diversity is
204 = 1.6× 105—all combinations of 20 natural amino acids at
the four varied sites. For comparison, the most commonly used
antibody libraries consist of two domains (VH and VL) and
have >108 variants, with variation introduced at different CDRs
(13). Libraries based on VH only are, however, known to be effective
(14). “Minimalist libraries” have also been built by restricting the
alphabet of amino acids at the variables sites but contained >1010
variants (8–10). One of the simplest libraries shown so far, built on a
synthetic scaffold, still contained >106 variants randomly sampled
from a much larger pool of potential sequences (11).

Selection.We screened our libraries by phage display for binding to
one of two targets: a neutral synthetic polymer, polyvinylpyrrolidone
(PVP), and a short DNA loop of 9 nt (Materials and Methods).
Two previous studies established the capacity of antibody phage
display to select binders for these targets (15, 16). Phage display is a
standard high-throughput screening technique (17). It is based on
the fusion of each antibody sequence to the sequence of the pIII
surface protein of the filamentous bacteriophage M13, a natural
virus of the bacterium Escherichia coli with the shape of a 1-μm-long
and 10-nm-wide cylinder (17). The engineered phage encapsulates
the DNA sequence of an antibody and displays the corresponding
polypeptide at its surface. Populations of up to 1014 phages dis-
playing a total diversity of up to 1010 different antibodies can, thus,
be manipulated. A round of selection consists of retrieving the
phages bound to either the bottom of a plate, where the PVP target
is attached, or magnetic beads, where the DNA target is coated. It is
followed by a round of amplification achieved by infecting bacteria
with the selected phages. We performed experiments where each
sequence is initially present in at least 104 copies and where targets
are provided in at least a 100-fold excess. Starting either from a
single library (single framework) or a mixture of different libraries,
three rounds of selection/amplification were performed. Although
the enrichment of some of the sequences is intended to reflect
binding to the specified targets, other factors may contribute, such
as sequence-specific differences in amplification. In our experi-
ments, such nontarget-specific selective factors can be detected but
are nondominant (SI Appendix). Our analysis and its interpretation,
however, do not rely on the precise nature of the selective pressure.

High-Throughput Sequencing. We sequenced samples of 106 − 107
sequences at different rounds of selection by Illumina Miseq
paired-end high-throughput sequencing (18). The results give us
an estimation of the relative frequencies f ti of each sequence i in
the population at each round t= 0,  1,  2,  or  3. In estimating these
frequencies, we take into account both sequencing and sampling
errors (Materials and Methods).

Provided that a sequence i is present in many copies nt−1i and nti
before and after selection, its probability to be selected can be
estimated as s0i = nti=n

t−1
i . Practically, because only the relative

frequencies f t−1i = nt−1i =
P

jn
t−1
j and f ti = nti=

P
jn

t
j are experimen-

tally accessible, s0i can be inferred up to a multiplicative factor
from the ratio f ti =f

t−1
i (19). We, thus, define the selectivity to a

target of each sequence i as

si = a 
f ti
f t−1i

, [1]

where we fix a so that
P

isi = 1. This choice is arbitrary but ensures
that si values are defined independently of the round t of selection;
we explain below how our conclusions depend on this choice. We
compare the frequencies between rounds t= 3 and t− 1= 2, where
sequences with highest selectivities are best represented.
Previous studies have applied next generation sequencing to

the outcome of phage display screens as a way to identify a large
number of binders (20, 21) or infer sequence–function relation-
ships (19) but have not investigated the statistical properties of the
distribution of the relative selectivities of these binders.

Reproducibility and Specificity. Several observations based on the fre-
quencies and amino acid patterns of the sequences in populations
under selection validate our experimental approach. (i) Screening
the same library against the same target in separate experiments
yields reproducible frequencies f ti at the last round t= 3 (SI
Appendix, Fig. S3). (ii) Screening the same library against different
targets yields target-specific amino acid patterns (SI Appendix, Fig.
S4). (iii) Screening two libraries against the same target yields li-
brary-specific amino acid patterns (SI Appendix, Fig. S4). Taken
together, these results show that enrichment of some of the se-
quences is reproducible and that it arises from selection for spe-
cific binding to the targets.
We note that one feature of our experiments is critical for

reproducibility: the initial populations have a large degeneracy
(the number of copies of each sequence) and not just a large di-
versity (the number of distinct sequences). For a sequence i with
probability s0i to pass a round of selection to be reproducibly se-
lected, its number n0i of copies in the initial population must, indeed,
be large compared with 1=s0i ; if instead, n

0
i ∼ 1=s0i , the sequence will

be lost in ∼ 1=3 of the experiments. The initial degeneracy, thus,
controls the range of selectivities that we can reliably infer.

Results
Hierarchy Between Libraries. To compare the selective potentials
of libraries built around different frameworks, we performed
experiments in which the initial population of sequences consists
of a mixture of libraries with distinct frameworks—a metalibrary.
The results of these experiments reveal a striking hierarchy. Diverse
members of the same library (i.e., sequences sharing a common
framework) typically dominate. When repeating the experiment
with an initial mixture of libraries that excludes the dominating
library, another library dominates (Fig. 2). Libraries not selected
when mixed with other libraries, nevertheless, do contain se-
quences with detectable selectivities as shown by screening them in
isolation (SI Appendix, Fig. S4). These results are not explained by
uneven representations of the libraries in the initial population
(because the distribution of frequencies at round 2 is remarkably
different from the distribution at round 1) or framework-specific
differences during amplification (SI Appendix, Fig. S5).
Differences in frameworks are, thus, generally more significant

than differences between variable parts, although these parts are
clearly under selection for binding (different CDR3s have different
selectivities) (Fig. 3 B and D). This result may not be surprising for
very dissimilar frameworks, but our frameworks are all expected
to share the same structural fold, and some frameworks have few

library-specific framework diversity fixed framework

V  segment CDR3 D J  segmentH H H

Fig. 1. Library design. We designed a total of 24 libraries with distinct frame-
works and identical sequence diversity consisting of all 204 = 1.6× 105 combina-
tions of 20 natural amino acids at four consecutive positions. The design follows
the natural design of the variable (V) region of the heavy chain (H) of antibodies,
which is assembled by joining three gene segments: the variable (VH), diversity
(DH), and joining (JH) segments. The library-specific parts of the frameworks
(blue) are from natural VH, and diversity is introduced at CDR3 (red) at the
junction between VH andDHJH, a part of the sequence critical for specific binding
to antigens; the DH and JH segments (black) are common to all libraries.
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sequence differences. In particular, the dominating framework
when selecting the mixture of all 24 libraries against the DNA
target (Fig. 2) is a germ-line human VH framework, which domi-
nates two libraries built on frameworks derived from it by affinity
maturations that share 65% and 85% of their amino acids. The ob-
served hierarchy is target-dependent: different frameworks dominate
when screening themetalibrary against different targets. Remarkably,
when screening 24 libraries against the PVP target (SI Appendix, Fig.
S6), the dominating framework is the only other germ-line framework
of the mixture (the S1 framework). As noted previously, differences
between frameworks also appear in the patterns of amino acids that
are selected at the level of CDR3s (SI Appendix, Fig. S4 C–E).

Scaling Within Libraries. To compare the selectivities of sequences
sharing a common framework and therefore, differing by, at most,
four amino acids (Fig. 1), we rank these sequences in decreasing
order of their selectivity si and plot these selectivities vs. the ranks
on a double logarithmic scale—a representation of the cumulative
distribution of selectivities within a library. For several experiments,
this representation reveals a power law: if sðrÞ is the selectivity of the
sequence of rank r, then for the sequences with top ranks,

sðrÞ∼ r−κ. [2]

Fig. 3A shows an example where the exponent is κ ’ 0.5. Although
this power law is observed for several libraries (different frameworks)
and selective pressures (different targets), it is not systematic: devi-
ations are often observed for the very top sequences (Fig. 3B), and
for several experiments, a power law cannot be justified (Fig. 3D).
Both the power law and its various deviations can, however, be

rationalized under an elementary mathematical model. This model
rests on two assumptions. First, it assumes that the selectivity of
each sequence in a library is drawn independently at random from
a common probability density ρðsÞ, which may depend on the
framework and the target. Second, it assumes that the sequences
with top selectivities are in the tail of this probability density.
The model is, thus, probabilistic, although—barring experimen-

tal noise—the experiments have no inherent stochastic element.
To the extent that selectivity reflects binding at thermodynamic
equilibrium, the selectivity si of antibody i is, indeed, determined by

its binding free energy ΔGi to the target: si ∝ e−ΔGi=kBT, where T
represents the temperature, and kB is the Boltzmann constant. The
binding free energy ΔGi is a physical quantity that, in principle, is
fully determined by the sequence of amino acids. In the spirit of
applications of randommatrix theory to nuclear physics (22), it may,
nevertheless, be advantageous to discard this microscopic de-
scription in favor of a coarser probabilistic description, which treats
the selectivity si as an instance of random variables independently
drawn from a common probability density ρðsÞ. In contrast to nu-
clear physics, no symmetry constrains ρðsÞ a priori, but if concerned
only with the largest si, results from EVT, the branch of probability
theory dealing with extrema of random variables (23), do constrain
the form of the tail of ρðsÞ from which they originate, thus allowing
for nontrivial predictions.
EVT, indeed, indicates that random variables s independently

drawn from the tail of a common probability density have them-
selves a probability density of the form (24)

fκ,τ,sp ðsÞ= fκ

�
s− sp

τ

�
, [3]

with fκ necessarily belonging to the generalized Pareto family:

fκðxÞ=

8><
>:

ð1+ κxÞ−κ+1
κ if   κ≠ 0

e−x if   κ= 0
, [4]

where the exponential for κ= 0 is just the continuous limit of
fκðxÞ when κ→ 0. Here, sp represents a threshold above which

Fig. 2. Hierarchy between libraries. Frequencies of the different libraries,
mixed together, in two successive rounds of selection against the DNA target
(here, we represent frequencies and not selectivities, because the selectivity of
a population of diverse sequences is ill-defined: it varies from round to round as
the composition of the population varies). Black bars report selection of all 24
libraries, and white bars show selection of a subset of 21 libraries, excluding 3
libraries above the red dotted line. The labels HL, HM, etc. refer to the different
frameworks (SI Appendix, Fig. S17). (Right) At the second round, the pop-
ulation is enriched in sequences from one particular library, the HG library, in
contrast to what is observed (Left) at the first round. The subset of 21 libraries
excludes the library dominating the mixture of all 24 libraries, which leads
another library, the CH1 library, to dominate. Within the two libraries, several
different CDR3s are selected (Fig. 3 B and D). Enrichment from the other li-
braries can also be observed when they are screened in isolation (SI Appendix).

BA

C D

Fig. 3. Scaling relations within libraries. The selectivities si of the sequences are
represented vs. their ranks ri for four experiments differing by the input library
and the choice of the target against which it is selected. (A) S1 library against the
PVP target. (B) HG library against the DNA target. (C) F3 library against the PVP
target. (D) CH1 library against the DNA target. In A, the distribution of the
top ∼ 1,000 sequences follows a power law with exponent κ ’ 0.5. This behavior
is consistent with the prediction of EVT when the shape parameter is positive: κ> 0
(Fig. 4 shows the analysis that justifies this conclusion). Although not obvious from
this representation, the data in B are also consistent with EVTwhen κ> 0, whereas
the data in C andD are consistent with EVTwhen κ= 0 and κ> 0, respectively. The
green dotted line indicates smin* , a value of s above which the data are well-fitted
by the model from EVT (Fig. 4); in B and D, the fit, thus, extends far beyond the
range of selectivities thatmay be described by a power law (SI Appendix, Fig. S19).
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the tail of ρðsÞ is defined, τ is a scaling factor (that absorbs the
factor a introduced in Eq. 1), and κ ≥ − 1 is the so-called shape
factor (independent of a), which defines the universality class to
which the distribution of selectivities belongs: the probability
densities ρðsÞmay differ, but if they are associated with the same
κ, events drawn from their tails will share similar statistical prop-
erties. The value of κ depends on the nature of the tail of the
distribution. Distributions with a light tail and unbounded support,
such as the exponential, normal, and log-normal distributions, thus
belong to the same class with κ= 0. However, distributions with a
heavy tail, such as the Cauchy or Lévy distributions, are asso-
ciated with κ> 0, and distributions with bounded support, such
as the uniform distribution in an interval, are associated with
κ< 0 (illustrations are in SI Appendix, Fig. S18).
As suggested by the notations, when κ> 0 but only when κ> 0,

this model predicts that the top-ranked sequences follow a power
law with exponent κ as described by expression 2. Mathematically,
when considering a large number N of samples, the rank rðsÞ is,
indeed, related to the cumulative distribution of selectivities by

rðsÞ∼N
Z∞

s

ρðxÞdx. [5]

If ρðsÞ∼ s−ðκ+1Þ=κ for large s as predicted by Eq. 4, for κ> 0, we
must then have

R∞
s ρðxÞdx∼ s−1=κ, and therefore, rðsÞ∼ s−1=κ,

which is equivalent to expression 2. In other words, the power
law seen in Fig. 3A corresponds to the expected relationship
between the rank and the values of random variables drawn from
the tail of a probability density when this density belongs to a
class associated with κ> 0.
To precisely assess the ability of our model to describe all of

the different cases, we followed the point over threshold ap-
proach, a standard method in applications of EVT to empirical
data (24). This approach consists of fitting the data si satisfying
si > sp by a function of the form fκ,τ,spðsÞ for different values of the
threshold sp and then, estimating whether a threshold spmin exists,
such that, for sp > spmin, the inferred parameter κ̂ðspÞ is nearly
independent of sp. To apply this method, we inferred the pa-
rameters κ̂ðspÞ and τ̂ðspÞ by maximum likelihood from the data
si > sp for every value of sp. For the data presented in Fig. 3A, an
illustration is provided in Fig. 4A, with error bars indicating
95% confidence intervals (SI Appendix discusses the analyses
of other experiments). In this example, we observe that κ̂ðspÞ
becomes nearly constant (of the order of 0.5) for sp > spmin ’ 4× 10−4

(a smaller value of spmin could also work in this case). The de-
termination of spmin is performed by visual inspection, but any
choice of sp > spmin should give equivalent results.
Given sp > spmin and the associated values of κ= κ̂ðspÞ and

τ= τ̂ðspÞ inferred from maximum likelihood, the next step is to
estimate whether this best fit is, indeed, a good fit. The diagno-
sis is commonly performed visually using probability–probability
(P-P) and quantile–quantile (Q-Q) plots (24). The P-P plot com-
pares the empirical and modeled cumulative distributions by
representing the quantile function qðsÞ= rðsÞ=N (the fraction of
the data above s) against the cumulative Fκ̂,τ̂,sp ðsÞ=

R s
0 fκ̂,τ̂,spðxÞdx.

As indicated by expression 5, a straight line y= x is expected if the
fit is perfect, which Fig. 4B, Inset shows to be nearly the case in this
example. The Q-Q plot makes a similar comparison but by rep-
resenting s against F−1

κ̂,0,0ðq−1ðsÞÞ, where q−1ðxÞ represents the value
of s above which a fraction x of the data is located. This repre-
sentation has two advantages over the P-P plot: it relies only on
the estimation of κ, and it displays more clearly the contribution of
the most extreme values. A straight line is expected if the fit is
perfect but this time, with a slope τ and a y-intercept sp. Fig. 4B
indicates, again, a very good fit in the illustrated case.

Performing the same analysis on results of selections of vari-
ous libraries against various targets, we find that the model is
able to describe all of the experiments (SI Appendix, Figs. S8–
S12). Different values of κ are obtained with differences that are
statistically significant (SI Appendix, Table S1). In particular, the
three cases, κ> 0, κ= 0, and κ< 0, are each represented.
Although many models can lead to a power law (25), our

probabilistic model has the merit of explaining the various de-
viations from this behavior that the data exhibit. First, when
κ> 0, EVT predicts a power law with exponent κ for the top-
ranked sequences but accounts for deviations for both the very
top-ranked sequences, which under the model may vary widely
(SI Appendix, Fig. S7), and sequences of smaller selectivities,
where fκ in Eq. 4 can provide an excellent fit well beyond the
point where the power law applies (spmin in Fig. 3 B and D and SI
Appendix, Fig. S19). Second, EVT predicts behaviors differing
from a power law if the probability density ρðsÞ belongs to a
universality class associated with κ≤ 0, consistent with the results
of some of the experiments (Fig. 3D and SI Appendix, Fig. S10).

Discussion
We presented a quantitative analysis of in vitro selections of
multiple libraries of partially randomized proteins with variations
limited to four consecutive amino acids. The distribution of se-
lectivities of the top-ranked sequences is described by few pa-
rameters, with an interpretation provided by an elementary
probabilistic model based on EVT.
Within a library with members that share a common framework,

this distribution is characterized by a shape parameter κ, which
may be positive, negative, or zero. This parameter is independent
of the factor a in Eq. 1 and has several interpretations. For in-
stance, it controls the relative spacing between selectivities: ranking
the sequences from best to worst, the expected difference of se-
lectivity between sequences at rank r and r+ 1, Δr =E½sr − sr+1�,
satisfies Δr=Δ1 ∼ r−ðκ+1Þ (i.e., the larger the κ, the wider the
spread between phenotypes in the library) (SI Appendix). The
shape parameter also provides a statistical answer to the following

A B

Fig. 4. Extreme value analysis by the point over threshold approach. (A) Values
of the inferred parameter κ̂ðs*Þ from selectivity si > s* as a function of the
threshold s*. The inference is made by maximum likelihood, and the error bars
indicate 95% confidence intervals. (A, Inset) Similarly for τ̂ðs*Þ, the second pa-
rameter of the model, which is estimated jointly to κðs*Þ. For sufficiently large
s*, s* > smin* , κðs*Þ should be constant, and τ̂ðs*Þ should increase linearly with
slope κðs*Þ. These relations are observed here for smin* ’ 4× 10−4 (red dotted line)
with κ= 0.45± 0.22 and τ= 1.6× 10−4 ±10−5; κ= 0 can be excluded by likeli-
hood ratio test with a P value <10−4. (B) Q-Q plot representing the data si
against predictions from the model based on the inferred value of κ only. A
straight line is expected for a good fit with a slope and the y intercept given
by the two other parameters τ and s*. (B, Inset) The P-P plot comparing the
empirical cumulative distributions from the data with the cumulative distribu-
tion from the inferred model, showing an excellent agreement. The data come
from the selection of the S1 library against the PVP target as in Fig. 3A (SI Ap-
pendix, Figs. S8–S10 shows similar analyses of the data shown in Fig. 3 B–D).
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question: if sampling N sequences yields a top-ranked sequence of
selectivity s1, what best selectivity s1′ may we expect from sampling
N′>N sequences? The difference E½s1′− s1� is a sharply increasing
function of κ (SI Appendix, Fig. S13); as a consequence, multiplying
by a factor of 1,000 the number of sequences when κ= 0 is expected
to have the same effect as multiplying it by a factor of 2 when κ= 0.2
if starting with N = 105 sequences.
Other than the shape parameter κ, the other parameters are the

scaling parameter τ, the threshold of selectivities parameter sp that
defines where the tails starts, and the fraction ϕ of the data above
this threshold (there is some freedom in the choice of sp, on which
both τ and ϕ depend, as shown in SI Appendix). Within our ex-
perimental setup, where the selectivities are determined only up
to a multiplicative factor (Eq. 1), the values of sp, ϕ, and τ
obtained from different experiments cannot be directly com-
pared, but our selections with mixtures of libraries suggest that
sp varies from library to library on a scale larger than the scale of
the differences of selectivity within libraries. All of the param-
eters of the model are found to be both framework- and target-
dependent (SI Appendix, Table S1).
Based on these results, we propose these parameters as

general descriptors of the selective potential of a population of
random variants facing a given selective constraint. In partic-
ular, these descriptors could be applied to revisit the funda-
mental problem of estimating the density of functional proteins
or RNA in sequence space. Previous studies have estimated this
density by counting the number of different sequences enriched
in in vitro selections (6, 7). The results of such experiments
depend on experimental noise, which sets a lower limit snoise on
detectable selectivities. In turn, our approach is dependent only
on the library content and the selective pressure provided
sp > snoise.
Power laws are seemingly ubiquitous in distributions of

protein features (26, 27). Most closely related to our work, the
distribution of abundances of distinct antibody sequences in
zebrafish has been shown to follow a power law with exponent
α ’ 1 (28, 29). Only instantaneous frequencies, not selectivities,
are accessible in such a case, but assuming a homogeneous initial
distribution of sequences, frequencies and selectivities have the
same distribution, and α= κ if κ> 0. However, repeating n times
the same selection leads to α= nκ, which does not account for a
stable exponent α> 0 that may arise in natural repertoires from
fluctuating selective pressures (30). One possible extension of our
approach could be to explore this scenario by changing the target
between successive rounds of selection.
Although many models can be consistent with a power law,

our model based on EVT covers without additional assumption
the deviations from a power law observed in the data; in par-
ticular, it can fit the data over a wider range of selectivities and
account for nonpower law behaviors. Our work is, however, not
the first application of EVT to the description of biological
variation: Gillespie (31, 32) first introduced it in models of
evolutionary dynamics as a way to constrain the distribution of
beneficial effects obtained when mutating a wild-type individ-
ual. Gillespie (31, 32) assumed κ= 0, arguing that this class
includes all “well-behaved” distributions, among which are the
exponential, normal, log-normal, and gamma distributions. Math-
ematical models for the distribution of affinities in combinatorial
molecular libraries have also proposed that it should have universal
features but only considered distributions in the exponential class
κ= 0 (33, 34).
Several experimental studies have recently investigated the

value of κ applicable to the distribution of beneficial effects in
viral or bacterial populations (35, 36). The sample sizes avail-
able in these studies are, however, insufficient to conclusively
validate or invalidate the EVT hypothesis. In these experi-
ments, the number of mutants found in the tail has, indeed,
been so far very low (of the order of a dozen); estimating the

sign of the shape parameter κ can be attempted (37), but
assessing the validity of the fit using Q-Q plots as in Fig. 4 is not
possible with such limited data. Our rich dataset provides a
thorough test of the applicability of EVT to the analysis of
biological diversity.
Comparable datasets are now being increasingly produced. In

particular, several groups have characterized the phenotype of
every single-point mutant of a protein (38). Our model may be
viewed as a mathematical formalization of the concept of a
random library, from which single-point mutants may deviate.
We note, however, that selectivities from nonrandom subsets of
one of our libraries do follow the same model as the full library
(SI Appendix, Fig. S14). In any case, significant deviations will
have to be quantified against our null model.
Beyond protein libraries, the model is relevant to the screen-

ing of synthetic chemical libraries, including the combinatorial
libraries of small molecules developed in the pharmaceutical
industry for drug discovery (39, 40). In this context, one previous
study was performed with enough data points to possibly dis-
criminate between different universality classes but considered
only the exponential case κ= 0 (41).
Finally, our work raises a question for future studies: if the

selective potential of a partially randomized library is captured
by few parameters and if these parameters can vary from library
to library, what controls them? More simply, what features of the
framework define a universality class? For instance, how does
extending the variable parts to other sites change κ? The patterns
of amino acids forming the sequences, which we have analyzed
here only to confirm the reproducibility of the experimental re-
sults and their specificity with respect to the targets and libraries,
may provide valuable insights (29).
The question may also be asked at another level: can we or

natural evolution control these parameters to optimize the se-
lective potential of a population? This question relates to the
debated “evolution of evolvability” (42, 43), cast here into a
concrete conceptual and experimental setting. Antibodies po-
tentially define an excellent model system to experimentally study
this question, because they are subject to selection and maturation
toward a diversity of targets as part of their natural function. The
approach and concepts introduced in this work provide the means
to address the problem with quantitative experiments.

Materials and Methods
Phage Display. PVP plates were prepared as described in ref. 15. The DNA
target was prepared by self-assembly of a hairpin DNA, labeled with biotin
at its 5′ end (5′-biotin: AAAAGACCCCATAGCGGTCTGCGT), and purchased
from Eurogentec. E. coli TG1-competent cells were purchased from Lucigen
Lt. Phage production, phage display screens based on the pIT2 phagemid
vector, and helper phage KO7 production were performed following the
standard protocol from Source BioScience (lifesciences.sourcebioscience.com/
media/143421/tomlinsonij.pdf) and our own previous work (15, 44), with some
modifications as specified in SI Appendix.

Sequencing Data. Library phagemids were purified from E. coli stocks after
each selection round using Midiprep Kits from Macherey-Nagel. v3 Illumina
MiSeq sequencing was performed by Eurofins Genomics. The MiSeq paired-
end technology was used. Frameworks were recovered on the forward read,
and only the reads having all of the expected restriction sites and less than
four errors on 126 base pairs were kept. The CDR3s were accessible on the
reverse read, and only the reads having all of the expected restriction sites
and an average value of quality read Q > 30 on 12 base pairs defining the
CDR3 were kept (SI Appendix, Table S2 has an estimation of sequencing
errors). Datasets (Datasets S2–S19) are provided, with the identity of the
framework in the column 1, the CDR3 sequence in column 2, and the count
in column 3.

Computational Analysis.We infer the selectivity si of an amino acid sequence i
by Eq. 1 with t = 3 (third round of selection). The frequencies are simply
given by f ti =nt

i =
P

jn
t
j , where nt

i is the number of sequences i present in the
sample. Given sampling errors, estimated as Δsi=si = 1=

ffiffiffiffiffiffi
n2
i

q
+ 1=

ffiffiffiffiffiffi
n3
i

q
, and
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given sequencing errors, estimated at ∼5% over 12 base pairs of the CDR3 (SI
Appendix, Table S2), the estimation of si is meaningful only for sequences
that are sufficiently present at each round: nt−1

i >n0 and nt
i >n0. We took

n0 = 10 and verified that the results are not sensitive to this exact value
(SI Appendix, Table S3). With n0 = 10, relative sampling errors are, in the
worst case, as high as 2=

ffiffiffiffiffiffi
n0

p
∼ 60%, but assuming that sampling errors are

uncorrelated, this uncertainty has no major incidence on the estimation of
aggregated properties of the distribution of the largest si, which involves
several hundreds of different sequences i.

Extreme Value Statistics. We followed the standard approach for modeling
threshold excesses (24). The parameters κ and τ were estimated by maxi-
mum likelihood, and the 95% confidence intervals shown in Fig. 4A were

obtained under the hypothesis of normality by calculating the inverse of
Fisher’s information. To ensure that the data allow us to discriminate
between κ=0 and κ≠ 0, a P value was calculated by a likelihood ratio test,
whose distribution was estimated by numerical simulations. Maximum
likelihood estimations are calculated on at least 50 data points. Codes in
the format of an ipython notebook are provided in SI Appendix to facili-
tate similar analyses with other datasets.
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