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Synthetic biology approaches achieving the reconstruction of specific
plant natural product biosynthetic pathways in dedicated microbial
“chassis” have provided access to important industrial compounds
(e.g., artemisinin, resveratrol, vanillin). However, the potential of
such production systems to facilitate elucidation of plant biosyn-
thetic pathways has been underexplored. Here we report on the
application of a modular terpene production platform in the char-
acterization of the biosynthetic pathway leading to the potent
antioxidant carnosic acid and related diterpenes in Salvia pomifera
and Rosmarinus officinalis. Four cytochrome P450 enzymes are
identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8),
the combined activities of which account for all of the oxidation
events leading to the biosynthesis of the major diterpenes pro-
duced in these plants. This approach develops yeast as an efficient
tool to harness the biotechnological potential of the numerous
sequencing datasets that are increasingly becoming available
through transcriptomic or genomic studies.
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Chemical synthesis of industrially important plant secondary
metabolites is often hampered by their complex stereochemistry

and environmental concerns regarding the use of toxic catalysts and
solvents. Production of the compounds of interest in heterologous
microbial systems can provide a sustainable and environmentally
friendly alternative. Several groundbreaking efforts have been
reported, including the production of the antimalarial drug artemi-
sinin (1–3), the fragrances sclareol and santalol (4–7), the flavoring
agent vanillin (8, 9), and the antioxidant resveratrol (10). Recently,
the complete pathway of opioid biosynthesis comprising more than
20 enzymatic activities was reconstructed in yeast, demonstrating the
potential of synthetic biology to contribute in the sustainable pro-
duction of highly complex chemicals (11). In addition to the devel-
opment of dedicated platform strains (12), such approaches also
require detailed knowledge of the biosynthetic pathways and the
genes involved. Elucidation of plant secondary biosynthetic pathways
can be a demanding process, involving the acquisition of tran-
scriptomic or genomic sequence information and the analysis of a
large number of candidate proteins for the identification of the
activity responsible for a specific biosynthetic step. Frequently, this
approach also requires the time-consuming chemical synthesis of
precursors and the structure elucidation of pathway intermediates.
Synthetic biology can expedite this process by enabling functional
characterization of gene products and synthesis of substrates or
intermediates on the same microbial platform. Here, we report on
the application of a modular yeast terpene production platform in
the elucidation of the biosynthesis of carnosic acid and related
diterpenes.
Carnosic acid (1) and carnosol (8) are potent antioxidant (13),

antiadipogenic (14), and anticancer agents (15, 16), whereas sev-
eral carnosic-acid–related diterpenes, such as 12-methoxy-carnosic
acid (9) and pisiferic acid (7; Fig. 1A) have strong antiparasitic,
antifungal, and antibacterial activities (17–19). These compounds
belong to the group of labdane-type diterpenes (20), which also

includes several other members with bioactive properties, such as
tanshinones (2–4), which exhibit strong antiinflammatory activity
(21) and are effective against various cardiovascular and cerebro-
vascular disorders (22, 23), and forskolin (5), which activates ade-
nylyl cyclase and increases the intracellular levels of cAMP (24–26)
(Fig. 1A). Despite their industrial importance, these compounds
still remain largely inaccessible by chemical synthesis, calling for
the development of biotechnological methods for their production.
The 20 carbon atom skeletons of labdane diterpenes, which

are characterized by a bicyclic decalin core, are synthesized from
geranylgeranyl diphosphate (GGPP; 12) in a modular fashion.
Initially, protonation-initiated cyclization by class II diterpene
synthases (diTPSs) gives rise to a diphosphate precursor, which is
then converted to the basic diterpene skeleton through a divalent-
cation–dependent ionization reaction catalyzed by a class I diTPS
(reviewed in ref. 20). Subsequent decoration of the various skel-
etons by modifying enzymes, such as cytochrome P450s (CYPs)
(27), gives rise to a plethora of secondary metabolites (28, 29). In
Rosmarinus officinalis and Salvia fruticosa, carnosic acid and car-
nosol are synthesized from (+)-copalyl diphosphate (CPP; 13)
through the intermediates miltiradiene (14), abietatriene (15), and
ferruginol (16) (Fig. 1B) (30–32). In Salvia miltiorrhiza, the same
precursors give rise to the different members of the tanshinone
group (33, 34). However, the steps that follow synthesis of 16 and
the point where the tanshinone and carnosic acid pathways
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disentangle are not yet understood, hampering efforts for het-
erologous pathway reconstruction.
Aiming to elucidate carnosic acid biosynthesis, we set out to

develop yeast as a tool for the rapid functional characterization
and screening of terpene-targeting CYP genes revealed by next
generation transcriptomic analyses. The yeast Saccharomyces cer-
evisiae offers a convenient host for the functional expression of
membrane-bound CYPs due to the resemblance of its in-
tracellular compartments with those of higher eukaryotes. Het-
erologous expression and isolation of yeast microsomal fractions
has provided a valuable tool for in vitro characterization of nu-
merous CYPs (35). In addition, the presence of only three en-
dogenous CYPs (involved in sterol metabolism) prevents
unwanted side products in heterologous CYP-expressing engi-
neered yeast. Recently, we developed a terpene production system
to recreate the diversity of labdane-related structures in yeast (36).
Here, we use this modular platform to set up a rapid and ef-
ficient screening system by which different CYPs can be tested
for activity against a predefined pathway product and applied it
to the characterization of a next-generation transcriptome se-
quencing dataset obtained from analysis of glandular trichomes
of the Eastern Mediterranean species of sage Salvia pomifera.

Results
Whole-leaf extracts of S. pomifera are rich in carnosic-acid–related
compounds, including 9, 8, 7, salviol (6), O-methyl-pisiferic acid
(10), and 2α-hydroxy-O-methyl-pisiferic acid (11) (Fig. 1A and ref.
37). To elucidate the pathway leading to carnosic-acid–related
diterpenes, the transcriptome of S. pomifera glandular trichomes
was analyzed by next generation sequencing, revealing the class II
and class I terpene synthases responsible for the synthesis of 14
[CPP-synthase (CDS) and miltiradiene synthase (SpMilS), re-
spectively] and 81 contigs with similarity to CYP genes (37). To
analyze the biosynthetic steps following formation of 14, 15 of
these contigs were shortlisted for further analysis based on two
criteria: transcript abundance in the trichome cDNA library (SI
Appendix, Table S1), and similarity with other plant CYPs be-
longing to the CYP71 and CYP76 families, members of which
have previously been implicated in terpene biosynthesis (28).

A platform aiming to reconstruct the chemical diversity of
diterpene biosynthesis in yeast using module-specific parts has
recently been reported (36). In this platform, terpene biosynthesis
is split into three conceptual modules: prenyl diphosphate substrate
synthesis (M1), terpene skeleton synthesis (M2), and terpene
skeleton decoration (M3). In the case of labdane diterpenes, M2 is
composed of two submodules, one responsible for the synthesis of
the labdane diphosphate precursor by a class II diTPS (M2a) and
one for the conversion of this diphosphate to the labdane skeleton
by a class I diTPS (M2b) (Fig. 2A, a). Using standardized vectors,
module-specific parts can be exchanged to give rise to a diverse
array of structures. To functionally characterize the selected CYPs,
this platform was configured to produce 14 by using fixed M1, M2a,
and M2b parts (SI Appendix, Fig. S1). The fusion between the yeast
farnesyl diphosphate synthase (Erg20p) and the GGPP synthase
from Cistus creticus (Erg20p-CcGGPPS) (5) was used as the M1-
specific part (under uracil selection), the S. fruticosa CPP synthase
(SfCDS) as the M2a part (tryptophan selection), and S. pomifera
miltiradiene synthase (SpMilS) as the M2b part (histidine se-
lection). Strain AM102 (Mat a/α, PGAL1-HMG2(K6R)::HOX2,
ura3, trp1, his3, PTDH3-HMG2(K6R)X2-::leu2 ERG9/erg9, UBC7/
ubc7, SSM4/ssm4) (38) was used as the “chassis” (SI Appendix,
Table S2).
To test for oxidation of 14, the selected CYPs were introduced

into the yeast dual-expression vector pESC-LEU, under the control
of the galactose-inducible PGAL10 promoter, together with the
poplar CYP reductase CPR2 (39) under PGAL1, and exchanged at
M3 (Fig. 2A, b). GC-MS analysis of miltiradiene-producing AM102
cells expressing the different CYPs revealed only one active enzyme,
CYP76AH24, which produced 16, as confirmed by comparison with
authentic standard and characterization of the purified yeast-
produced compound (Fig. 2B and SI Appendix, Figs. S4–S6).
CYP76AH24 was the most abundant CYP transcript in the
glandular trichome cDNA library used in the transcriptomic study
and exhibits almost 80% identity at the amino acid level with
CYP76AH1, the ferruginol synthase from S. miltiorrhiza (34) and
91% identity with CYP76AH4, the ferruginol synthase from
R. officinalis (32).

Fig. 1. Chemical structures and biosynthesis of labdane-type diterpenes. (A) Chemical structures of the bioactive labdane-related diterpenes carnosic acid (1),
cryptotanshinone (2), tanshinone IIA (3), tanshinone I (4), and forskolin (5) (Top). The main diterpenes isolated from S. pomifera leaves include salviol (6),
pisiferic acid (7), carnosol (8), 12-methoxy-carnosic acid (9), O-methyl-pisiferic acid (10), and 2α-hydroxy-O-methyl-pisiferic acid (11) (Bottom). (B) The biosynthesis
of tanshinone and carnosic acid begins with the cyclization of GGPP (12) by a class II diTPS to produce (+) copalyl diphosphate (CPP) (13), which is in turn converted
to miltiradiene (14) by a class I diTPS. Spontaneous oxidation of 14 gives rise to abietatriene (15), which is oxidized to ferruginol (16) by a CYP enzyme. However,
uncharacterized subsequent events lead to carnosic acid (1) and tanshinones (2–4).
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Examination of the structures of the main S. pomifera compounds
(Fig. 1A) suggested that 16 is likely their common precursor and
that additional CYPs are possibly responsible for the further
modification of 16 to the different compounds. To enable
analysis of the steps downstream of synthesis of 16, the yeast
modular platform was modified to improve production of 16
and to allow for the simultaneous expression of multiple CYPs.

To improve overall diterpene titers and to make better use of the
available auxotrophic selection markers, the Erg20p-CcGGPPS
fusion (used as the M1 part) and SfCDS (used as the M2a-specific
part) were replaced by a fusion between a mutant form of the
yeast FPP synthase [Erg20p(F96C)] and SfCDS. Erg20p(F96C)
has been shown to be more efficient in supporting diterpene
production than CcGGPPS (5), whereas fusion of a class II
synthase N terminally to Erg20p(F96C) was found to facilitate
substrate channeling and improve coupling of the subsequent
biosynthetic step (5). Coexpression of SfCDS-Erg20p(F96C)
(M2a-M1) with SpMilS (M2b) and CPR/CYP76AH24 (M3)
resulted in a threefold increase in the ferruginol titer, from 2.7
to 8.4 mg/L (Fig. 2A, c and SI Appendix, Fig. S2 A and B).
High-level expression of CYPs in yeast may impose stress by

heme depletion, and engineering the endogenous heme biosynthetic
pathway has been found to improve CYP activity (40). To opti-
mize the platform for CYP expression, one copy of the yeast
HEM3 gene, encoding for the rate-limiting enzyme in the pathway,
was introduced in the FLO5 locus of AM102 yeast cells, under the
control of the strong PTDH3 promoter, to generate strain AM119
(Mat a/α, PGAL1-HMG2(K6R)::HOx2, ura3, trp1, his3, PTDH3-
HMG2(K6R)X2-::leu2 ERG9/erg9, UBC7/ubc7, SSM4/ssm4,
PTDH3-HEM3::FLO5) (SI Appendix, Table S2). Using this strain,
an additional 2.5-fold increase in the titer of 16 was obtained,
reaching 21.2 mg/L (Fig. 2A, d, Fig. 2B, and SI Appendix, Fig. S2
A and B). The substrate of ferruginol synthase is 15, a sponta-
neous oxidation product of 14 (32). Quantification of 15 and 16
revealed that, whereas in AM102 cells, 32% of 15 was con-
verted to 16, in AM119 cells, the efficiency of this conversion
increased to 62%, suggesting an improvement in the activity of
CYP76AH24 in the modified strain (SI Appendix, Fig. S2B). This
improvement allowed the identification of additional com-
pounds synthesized by CYP76AH24 (Fig. 2B), which were not
detectable using the initial platform configuration (SI Appendix,
Fig. S2A). Isolation and structure elucidation revealed two
compounds: 11-hydroxy ferruginol (8,11,13-podocarpatriene-
11,12-diol) (17) (SI Appendix, Figs. S7–S9) and 11-keto miltir-
adiene (18) (SI Appendix, Figs. S10–S16 and Table S3). To the
best of our knowledge, 18 is reported for the first time in this
work. The ability of CYP76AH24 to catalyze additional oxida-
tion events on 16 was confirmed by in vitro studies in which
microsomal membranes isolated from yeast cells expressing
CYP76AH24 and CPR2 were incubated with 16 in the presence
of NADPH (Fig. 2B). Production of 17 was confirmed by GC-
MS analysis, using comparison with the isolated structurally
characterized compound. In vitro experiments with 14 as sub-
strate also confirmed the formation of 18 by CYP76AH24, albeit
with lower efficiency than synthesis of 17 (kcat = 1.97 min−1 and
KM = 72.63 μM for the reaction with 14 compared with kcat =
6.11 min−1 and KM = 45.84 μM for the reaction with 16; kinetic
data provided in SI Appendix, Table S4 and Fig. S25). The signif-
icant levels of 18 produced by yeast cells expressing CYP76AH24
are thus possibly due to the high amounts of 14 produced by the
platform. In agreement with previous observations (41), 17 was
found to be unstable under chromatographic conditions, giving rise
to several oxidation products during GC-MS analysis (indicated by
asterisks in Fig. 2B and SI Appendix, Fig. S2A). These findings
strongly suggest that CYP76AH24 is a bifunctional enzyme that
catalyzes successive oxidation events on C-12 and C-11 of the
labdane skeleton. All other ferruginol synthase enzymes isolated to
date (from S. miltiorrhiza, S. fruticosa, or R. officinalis) have been
reported to have single functionality. To investigate whether
CYP76AH24 is the only enzyme able to catalyze additional oxi-
dation events on 16 or this activity has previously been unnoticed
with the other enzymes, the ferruginol synthase from rosemary,
CYP76AH4, was analyzed in vitro. Microsomal preparations of
CYP76AH4 were assayed in parallel with CYP76AH24 and both
enzymes catalyzed production of 17 (Fig. 2B). Kinetic analysis

Fig. 2. Characterization of S. pomifera CYP76AH24 ortholog as a bifunctional
monooxygenase. (A) Diagrammatic representation of the modular design and
the platform configuration used. (a) General design of the modular terpene
production platform. (b–e) Diagrammatic illustratrations of the steps taken to
engineer the platform to facilitate the rapid functional characterization of CYP
enzymes. (B) Expression of the CYP76AH24 ortholog in optimized miltiradiene-
producing yeast cells (A, b–d) resulted in the production of 16, as main com-
pound, and the formation of 17 and 18minor products. The two peaks indicated
by asterisks correspond to degradation products of 17. In vitro enzymatic
assay using a microsomal preparation of yeast cells expressing CPR2 and the
S. pomifera CYP76AH24 ortholog (pink) or R. officinalis ferruginol synthase,
CYP76AH4 (teal) confirmed the hydroxylation of 16 at C-11. Microsomal
preparations of cells expressing only CPR2 are used as negative control (black).
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revealed that the two enzymes exhibit similar affinity for 16 (KM =
45.8 ± 9.4 μM in the case of CYP76AH24 and 49.5 ± 11.1 μM
in the case of CYP76AH4), but also for 14 and 15 as substrates
(SI Appendix, Table S4 and Fig. S25).
These results suggest that synthesis of 17 is likely the event that

follows formation of 16 en route to 1 in S. pomifera and
R. officinalis. To elucidate the subsequent steps in this pathway, the
ability of additional CYPs to act on the products of CYP76AH24
was investigated. To this end, the remaining 14 CYPs were cloned
in the yeast vector pWTDH3myc and introduced under tryptophan
selection as a second M3 module, M3b, alongside CYP76AH24
(M3a) (Fig. 2A, e). Using this reconfigured platform, two addi-
tional CYPs acting on CYP76AH24 products were identified. The
first one, CYP71BE52, was found to catalyze oxidation of 16 at
position 2α, giving rise to 6, one of the major diterpenes of
S. pomifera. In yeast culture extracts, 6 was identified by comparison
of retention time and mass spectrum with authentic standard
(Fig. 3, Top and Bottom and SI Appendix, Figs. S17 and S18),
whereas microsomal preparations of CYP71BE52 and CPR2-
producing cells were used in enzymatic assays to confirm con-
version of 16 to 6 in vitro (Fig. 3, Middle; kinetic parameters for
the in vitro reaction of CYP71BE56 with 16 are provided in SI
Appendix, Table S4 and Fig. S25). CYP71BE52 was the third most
abundant transcript among the identified CYP family genes, sug-
gesting that it likely encodes for the main enzyme responsible for
the production of 6 in S. pomifera glandular trichomes.
In addition to CYP71BE52, the screen also revealed CYP76AK6,

the second most abundant transcript after CYP76AH24, as an en-
zyme able to oxidize several compounds produced by CYP76AH24
in S. cerevisiae. Three compound groups were detected by GC-MS
analysis of trimethylsilyl (TMS) derivatized ethyl acetate extracts of
culture media (SI Appendix, Supplementary Methods 1.4). The first
group of products displayed characteristic fragment ions with 335
and 431 m/z (Fig. 4, Top). Comparison of retention time and mass
spectrum with authentic standard confirmed one of these products
as 1 (Fig. 4, Bottom), likely synthesized by successive oxidation
events at C-20 of 17. Structure elucidation of the additional com-
pounds in this group was not possible due to the low amounts
produced in yeast. However, based on the similarity of their mass
spectra with that of 1, and the fact that oxidized C-20 of the labdane

skeleton is labile and frequently undergoes elimination during
GC-MS analysis (42), it is likely that these are the corresponding
C-20 aldehyde and alcohol intermediates. The second group of
compounds included two peaks exhibiting strong 348 and 430 m/z
fragment ions, which are characteristic of 8 (SI Appendix, Fig. S3A, a),
a potent antioxidant resulting from the oxidation of 1. One of
these compounds was confirmed to be 8 by comparison with
authentic standard (SI Appendix, Figs. S3A, b, S19, and S20). The
remaining compound in this group could result from oxidative
degradation and rearrangement of carnosic acid to a molecule
bearing a catechol, quinone, or semiquinone feature at C-12–C-11
(13, 43, 44), but insufficient amounts precluded characterization at
this stage. The last group of compounds displayed 343 m/z as the
most abundant fragment ion (SI Appendix, Fig. S3B, a). One of
these compounds matched the retention time and mass spectrum
of TMS-derivatized 7 standard (SI Appendix, Figs. S3B, a and d,
S21, and S22). Purification of the yeast products followed by
structure elucidation also revealed production of pisiferol (19) (SI
Appendix, Figs. S3B, a and c, S23, and S24), the product of the first
oxidation event on C-20 of ferruginol en route to 7. Identification
of the remaining compound in this group (indicated by an asterisk,
SI Appendix, Fig. S3B, a) was not possible at this stage, but this
peak likely corresponds to pisiferal, the intermediate between 19
and 7. Taken together, these results suggest that CYP76AK6 is a
multifunctional enzyme that catalyzes successive oxidation events
at C-20 of the labdane skeleton. An enzymatic assay using a
combination of microsomal preparations of CYP76AH24 and
CYP76AK6 in the presence of 16 as substrate confirmed the
ability of CYP76AK6 to produce in vitro a similar blend of mol-
ecules to those obtained from yeast cells (Fig. 4 and SI Appendix,
Fig. S3B, b). However, production of 8 was not detected in the
in vitro reaction, suggesting that enzymatic or nonenzymatic

Fig. 3. CYP71BE52 is a salviol synthase. Expression of S. pomifera CYP71BE52
(pink) as an M3b-specific part in the ferruginol-producing yeast platform
resulted in the production of 6, as identified by GC-MS analysis of the TMS-
derivatized solvent extract (Top). A microsomal preparation of CYP71BE52
converted 16 to 6 in the presence of NADPH as cofactor (Middle). Formation of
6 was confirmed by comparison with authentic standard (Bottom).

Fig. 4. CYP76AK6 and its homolog, CYP76AK8, catalyze successive oxidation
events at C-20. Formation of 1 by CYP76AK6 (pink) and CYP76AK8 (teal) in yeast
cells coexpressing CYP76AH24 and SpMilS. TMS-derivatized extracts of yeast
cultures analyzed by GC-MS revealed the formation of 1 (Top), identified by
comparison with authentic standard (blue) (Bottom). Enzymatic assays contain-
ing microsomal preparations of CYP76AH24 ortholog and CYP76AK6 (pink) or
CYP76AK8 (teal), 16 and NADPH revealed the formation of 1 in vitro (Middle).
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oxidation events occurring in the process of yeast cultivation are
likely responsible for the conversion of 1 to 8 and other oxidative
degradation products.
To explore whether the same steps are also responsible for

carnosic acid biosynthesis in R. officinalis, a transcriptome da-
tabase available online (medicinalplantgenomics.msu.edu) was
used to identify the closest rosemary homolog of CYP76AK6
through blastx analysis. CYP76AK8, which is encoded by the
ORF of R. officinalis locus 4766 isotig 5 and exhibits 75% simi-
larity at the amino acid sequence level with CYP76AK6, was
amplified from R. officinalis cDNA and tested for the production
of 1 in the 11-hydroxy-ferruginol-producing yeast cells. The
product profile of S. cerevisiae cells expressing CYP76AK8 was
similar to that of CYP76AK6, including 1, 8, 7, and 19 (Fig. 4
and SI Appendix, Fig. S3 A and B, a). Moreover, in vitro reaction
combining individual microsomal preparations of CYP76AH24
and CYP76AK8 with 16 as substrate and NADPH cofactor
resulted in the production of the same compounds, except for 8
(Fig. 4 and SI Appendix, Fig. S3 A and B, b), whereas kinetic pa-
rameters for the in vitro reactions of CYP76AK6 and CYP76AK8
with 16 and 17 were found to be comparable (SI Appendix, Table
S4 and Fig. S25), suggesting that CYP76AK8 is the rosemary
ortholog of CYP76AK6. Investigation of the order of biosynthetic
events using in vitro assays revealed that although CYP76AK6
and CYP76AK8 can oxidize C-20 of both 16 and 17,
CYP76AH24 or CYP76AH4 are unable to modify 7. The titer of
1 obtained in shake-flask cultivation using the described configu-
ration was in the range of 1 mg/L of culture. Considering the
number of biosynthetic steps introduced downstream of the
mevalonate pathway in this platform, further optimization through
state-of-the-art metabolic engineering approaches is expected
to achieve significant improvement in product yields.

Discussion
The combined activities of the CYPs identified here, targeting
four positions of the abietane skeleton, C-2, C-11, C-12, and C-20,

are sufficient to explain all of the oxidation events involved in the
biosynthesis of the major diterpenes identified in S. pomifera (Fig.
5), and to clarify the pathway leading to 1 and 8 in both S. pomifera
and R. officinalis. In the first step of this mechanism, 15 is con-
verted to 16 by CYP76AH24 or CYP76AH4, which is then taken
up by CYP76AK6 or CYP76AK8 to produce 7. Further oxidation
of 16 by CYP76AH24 or CYP76AH4 produces 17, which is con-
verted to 1 by CYP76AK6 or CYP76AK8. In yeast cultures, 1 is
converted to 8, either by nonenzymatic oxidation or through a yet
unidentified yeast enzymatic system. In S. pomifera, CYP71BE52
oxidizes 16 at position 2α to produce salviol. O-methylation at po-
sition 12 of 1, 7, or 2α-hydroxy-pisiferic acid produces the corre-
sponding methoxy derivatives. Further studies will extend this
approach to the identification of the methyltransferase(s) responsible
for this step, using the already available transcriptomic information.
Although the example presented in this report only goes as far

as the characterization of CYP activities responsible for the
oxidation of miltiradiene-derived structures, the developed ap-
proach has broader application. The modular structure of the
platform allows its facile reconfiguration for the production of
other terpene skeletons, so that, for example, when a library of
M3 parts is available, this can be tested in parallel on different
mono-, sesqui-, di-, or triterpenoid substrates. This is particularly
useful in the analysis of libraries derived from transcriptomic
studies, which encode biosynthetic activities responsible for the
production of a diverse group of terpene compounds. The design
is expandable, allowing the incorporation of additional module-
specific parts to study events beyond oxidation (e.g., acetylation,
methylation, etc).
Transcription of genes involved in secondary metabolite bio-

synthesis is frequently influenced by environmental factors or
developmental phase. Such variations could influence the effi-
ciency of pathway elucidation approaches based on transcrip-
tional analysis. The effectiveness of the overall effort can be greatly
improved if transcriptomic analysis is carried out in parallel to
metabolomic studies, and, if possible, on the same sample or under
very similar conditions. In the case study presented here, metab-
olomic and transcriptomic analysis was combined in the same
plants (37). Following next-generation sequencing, genes were
prioritized for analysis on the basis of their transcription levels and
by increasing the representation of the CYP71 and CYP76 sub-
families, members of which have previously been found to be in-
volved in terpene oxidation (29). Rational short listing of candidate
genes can help minimize time and reduce cost. In the current ef-
fort, the three CYPs involved in carnosic-acid–related diterpenes in
S. pomifera corresponded to the top three expressed CYP tran-
scripts in the glandular trichome library. Because these CYPs also
belong to the targeted CYP subfamilies, it is unclear at this stage
whether a selection of candidates based on transcript abundance
would, in general, be advantageous over selection, based on se-
quence relatedness. For major metabolites, prioritization based on
gene expression levels is likely to be more successful, whereas se-
quence-based selection may work better for minor compounds or
for transcriptional datasets obtained under different conditions than
those of the metabolic profile.
Taken together, these results highlight the effectiveness of

using engineered yeast as a tool for the elucidation of biosynthetic
pathways. The yeast system can expedite structure elucidation of
products or pathway intermediates by readily providing sufficient
amounts of compounds through the high titers achieved using the
engineered yeast strains. This also makes adequate quantities of
substrates and standards available for subsequent confirmation
and characterization of the pathway steps through in vitro studies
or for the evaluation of the biological activity of isolated com-
pounds. Yeast is a commonly used microorganism that does
not require dedicated culture systems or specialized equipment,
whereas scaling up can be achieved using established infrastructure.
Due to its relatively short growth cycle, yeast allows for fast

Fig. 5. Proposed mechanism for the biosynthesis of carnosic-acid–related
diterpenes in S. pomifera and R. officinalis. The biosynthesis of labdane-type
diterpenes in S. pomifera (black) and R. officinalis (red) is initiated by the
action of bifunctional enzymes, CYP76AH24 or CYP76AH4, respectively, which
are responsible for the hydroxylation of 15 initially at position C-12 to produce
16 and subsequently at position C-11 to yield 17. The same bifunctional en-
zymes can also catalyze two successive oxidation events on 14 to yield 18. A
S. pomifera enzyme, CYP71BE52, catalyzes oxidation of 16 at position 2α to
synthesize 6. CYP76AK6 or CYP76AK8 catalyze successive oxygenations at
position C-20 of 16 and 17 to yield 7 via 19, and 1, respectively. In the yeast
platform, 1 is further oxidized to 8 by a yet undefined mechanism. The com-
bined activities of CYP76AH24, CYP71BE52, and CYP76AK6 on the abietatriene
skeleton (Inset) are sufficient to explain the biosynthesis of the main diter-
penes (1, 6-11) isolated from S. pomifera and R. officinalis.
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turnaround times, enabling analysis of a large number of samples in
a short time. Thus, in combination with DNA synthesis and rapid
cloning techniques, this system can serve as a tool to exploit the
wealth of next-generation sequencing data that is constantly being
produced through transcriptomic, genomic, or metagenomic stud-
ies. Additionally, because many of these compounds have industrial
importance, coupling pathway identification with production in the
same organism minimizes transfer to an industrial setting. As yeast
is a favorable host for industrial fermentation, once a specific
pathway is analyzed, the system is already set up for further
optimization of heterologous production of specific compounds
using metabolic engineering approaches, such as flux analysis,
pathway balancing, or metabolic channeling.

Materials and Methods
Yeast Strains Construction. Yeast strain AM119 was generated using AM102 (38)
as follows. The HEM3 gene was cloned into EcoRI-XhoI restriction sites of the
plasmid construct COD7 (PTDH3-HEM3-CYC1t, LoxP-HIS5-LoxP) (38) using primers
5-HEM3-EcoRI and 3-HEM3-XhoI (SI Appendix, Table S5). The COD7/HEM3 con-
struct was PCR amplified with primers 5-FLO5-COD7 and 3-FLO5-COD7 (SI Ap-
pendix, Table S5), which incorporate flanking sequences with complementarity
to the 3′UTR of FLO5 gene. Selection marker excision gave rise to strain AM119.

In Vitro Enzymatic Assay and Kinetic Analysis. The kinetic parameters of the
different CYPs were determined as previously described (36) using varying
concentrations (1–75 μM) of each substrate (SI Appendix, Table S4). The
enzymatic reactions were incubated with mild shaking at 30 °C for 3 h and
terminated by extraction with 100 μL of decane or ethyl acetate containing
10 μg/mL sclareol as internal standard. A total of 2 μL of extracts was ana-
lyzed by GC-MS using the conditions described in SI Appendix. To evaluate
the combined enzymatic activity of CYPs in vitro, a 0.5-mL reaction con-
taining 90 mM Tris·HCl (pH 7.5), 1 mM NADPH, 80 pmol of CYP76AH24 or
CYP76AH4 microsomal protein, and 100 μM ferruginol was incubated with
shaking at 30 °C for 18 h. Subsequently, 80 pmol of CYP76AK6 or CYP76AK8
was added and the reaction was incubated for an additional 18 h and ter-
minated by extraction with 200 μL pentane or ethyl acetate. The extract was
gently evaporated and derivatized with Sylon HTP. A total of 2 μL of
derivatized extract was analyzed by GC-MS. All assays were carried out in
duplicates.
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