Skip to main content
. Author manuscript; available in PMC: 2016 Apr 6.
Published in final edited form as: Adv Bot Res. 2015;76:271–303. doi: 10.1016/bs.abr.2015.08.006

Table 2.

Examples of cyclotides produced using ribosomal expression methods.

Cyclotide Method In vitro/in vivo Pros and Cons Application Reference
Kalata B1 Thiol- induced N->S acyl shift In vitro
  • Requires GC at ligation site

  • Harsh cyclization conditions

  • Natural product

(Cowper et al., 2013)
Kalata B1 EPL Both
  • Requires N-terminal Cys residues only

  • Yields depend on intein used

  • Natural product

(R. H. Kimura et al., 2006)
MCoTI-I EPL Both
  • Requires N-terminal Cys residues only

  • Yields depend on intein used

  • Library scaffold

  • Non-natural amino acid

(Austin et al., 2009; Jagadish et al., 2013)
MCoTI-II EPL Both
  • Requires N-terminal Cys residues only

  • Yields depend on intein used

  • Library Scaffold

(J. A. Camarero et al., 2007)
MCo-PMI EPL in vitro
  • Requires N-terminal Cys residues only

  • Yields depend on intein used

  • Anti-cancer

(Ji et al., 2013)
MCoTI-I PTS in vivo
  • Highly efficient (10 times better than EPL)

  • Cyclization can be carried out in Ser/Cys residues

  • Spontaneous self- processing cyclization, no need for enzymes

  • Library Scaffold

  • Non-natural amino acid

(Jagadish et al., 2013)
rMCoTI-II SrtA In vitro
  • Requires multiple proteolytic steps

  • SrtA recognition sequence of 7 residues remains in the cyclotide after cyclization

  • Large scale production

(Stanger et al., 2014)