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Abstract

We constructed dynamic Ebola virus disease (EVD) transmission models to predict epi-
demic trends and evaluate intervention measure efficacy following the 2014 EVD epidemic
in West Africa. We estimated the effective vaccination rate for the population, with basic
reproduction number (Ry) as the intermediate variable. Periodic EVD fluctuation was ana-
lyzed by solving a Jacobian matrix of differential equations based on a SIR (susceptible,
infective, and removed) model. A comprehensive compartment model was constructed to fit
and predict EVD transmission patterns, and to evaluate the effects of control and prevention
measures. Effective EVD vaccination rates were estimated to be 42% (31-50%), 45% (42—
48%), and 51% (44-56%) among susceptible individuals in Guinea, Liberia and Sierra
Leone, respectively. In the absence of control measures, there would be rapid mortality in
these three countries, and an EVD epidemic would be likely recur in 2035, and then again
8~9 years later. Oscillation intervals would shorten and outbreak severity would decrease
until the periodicity reached ~5.3 years. Measures that reduced the spread of EVD included:
early diagnosis, treatment in isolation, isolating/monitoring close contacts, timely corpse
removal, post-recovery condom use, and preventing or quarantining imported cases. EVD
may re-emerge within two decades without control and prevention measures. Mass vacci-
nation campaigns and control and prevention measures should be instituted to prevent
future EVD epidemics.
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Introduction

The first case of Ebola Virus Disease (EVD) was detected in Guinea in December 2013. Within
months, the disease had spread to Liberia, Sierra Leone, Nigeria, and other countries [1, 2]. The
World Health Organization (WHO) was notified officially of the rapid evolution of the EVD
outbreak on March 23,2014 [3]. A total of 26,277 EVD cases and 10,884 EVD-related deaths
were reported from December 2013 to April 29, 2015 [4]. EVD was transmitted by direct and
indirect contact between people. The mean incubation period was 11.4 days, and typical symp-
toms included fever, nausea, vomiting, diarrhea, and generalized pain [5-7]. The case fatality
rate in the 2014 EVD outbreak was approximately 64% among patients who received treat-
ment, and approximately 71% among all known infected patients [3]. The spread of the EVD
outbreak was overwhelming and posed a serious threat to public health in Africa due to the
high infection rate of EVD, ineffective control measures during the early-onset stage, local
funeral customs, and weak epidemic prevention measures [8—12].

Understanding the epidemiological distribution and transmission pattern of EVD during
the African outbreak will contribute to improve scientific understanding and to allow the
development of more effective control and prevention measures. Other scholars have already
analyzed the epidemiological distribution and performance of clinical centers [3, 5, 13], provid-
ing valuable information for better understanding the EVD outbreak. However, there is no rec-
ognized mathematical model that describes the process of EVD transmission, and that can be
used to evaluate the effect of prevention measures. This lack of a model might hinder the pro-
cess of controlling the disease.

A dynamic transmission model of an infectious disease can be constructed by using the pat-
terns of disease occurrence and transmission, and the relationships between the disease and
social factors. Such a model is used to analyze the dynamic characteristics of disease transmis-
sion quantitatively, to indicate transmission patterns, and to predict the epidemiological trends
of the disease. Dynamic transmission models have been constructed successfully for SARS
(severe acute respiratory syndrome), AIDS (acquired immune deficiency syndrome), and
malaria to analyze transmission patterns, predict epidemiological trends, and evaluate the
effect of intervention measures [14-18]. These models have provided important evidence for
the scientific control and prevention of these diseases. In a previous study, researchers con-
structed an SEIR (susceptible, exposed, infective, removed) model to analyze the 1995 EVD
outbreak in the Congo. The constructed model was well fitted and demonstrated to be effective
for prediction [19], indicating that a dynamic transmission model can be applied to the analysis
of EVD outbreaks. However, the transmission patterns of infectious diseases are affected by
many factors and can be variable across different time periods and regions. Therefore, the 1995
outbreak model may not be applicable to the 2014 outbreak, and it is necessary to construct an
updated model based on the 2014-2015 transmission patterns and the factors that might influ-
ence spread.

Here, we constructed dynamic transmission models for EVD based on the relationships
among people in each stage of the disease. The results may aid in predicting epidemiological
trends, evaluating the effectiveness of intervention measures, and providing scientific evidence
for improving the control and prevention of EVD.

Results
Estimation of the effective vaccination rate

The R, values and corresponding 95% confidence intervals for EVD in Guinea, Liberia, and
Sierra Leone were 1.71 (1.44-2.01), 1.83 (1.72-1.94), and 2.02 (1.79-2.26), respectively [3].
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Fig 1. Effects of EVD on total population and EVD case number in the absence of control and
prevention measures. Changes in the total number of individuals in the population and in the number of
EVD cases in Guinea (A, B), Liberia (C, D), and Sierra Leone (E, F) are shown. The x-axes indicate time in
months, and the y-axes indicate population number or the number of EVD cases. The shaded area indicates
the 95% confidence interval.

doi:10.1371/journal.pone.0152438.g001

Therefore, at least 42% (31-50%), 45% (42-48%), and 51% (44-56%) of individuals in these
respective countries should be immune to EVD.

Epidemic trends of EVD in the absence of control and prevention
measures

Based on the SIR model, without any outbreak control or prevention measures, the total popu-
lation number would decrease rapidly in a short period of time (Fig 1). The net growth thresh-
old values for the epidemic in Guinea (0.95), Liberia (1.01), and Sierra Leone (0.90) were all
close to 1.0. Therefore, when the parameters of the model are held constant over a sufficiently
long time period, the populations of the three countries decrease to constant levels, and the
numbers of individuals in the s, i, and r blocks would oscillate with a periodic weakly
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Fig 2. Periodical low dampened oscillation of s and i around the dynamic equilibrium point. The proportions of EVD cases (left y-axis) and susceptible
people (right y-axis), compared to the total population, are shown as functions of time in years. In the absence of control and prevention measures, the s and i
values would oscillate periodically around their dynamic equilibrium points. Meanwhile, periods between oscillations would shorten, and amplitudes would

decrease gradually.

dampened oscillation, and reach a positive dynamic equilibrium. The equilibrium points for s,
i, and r were found to be 58.5%, 0.1%, and 41.1%, respectively, in Guinea, 54.6%, 0.1%, and
45.3%, respectively, in Liberia, and 49.5%, 0.1%, and 50.4%, respectively, in Sierra Leone.

Combining the three countries into a single region, the model indicates that if there were no
EVD outbreak control or prevention measures in place, EVD would first re-emerge in 2035,
and then re-emerge again about 8-9 years later. The oscillation periods would shorten and the
amplitudes (severity of EVD epidemic) would decrease gradually until the oscillation occurred
with a sustained periodicity of approximately 5.3 years around the positive dynamic equilib-
rium point (Fig 2).

Predicting the numbers of EVD cases and deaths

The WHO has reported numbers of EVD cases (confirmed and suspected) and deaths due to
EVD [20]. These data were used to compare the predicted values from the model to the actual
data. The infection rate for patients in an uncontrolled environment (f;), indicates the number
of susceptible individuals to be infected by an EVD patient per unit time following a gamma
distribution pattern; meanwhile, the Sp, Sp, and Sy rates reflect an exponential distribution pat-
tern. The numbers of EVD cases and EVD-related deaths predicted by the model were similar
to the actual data (Fig 3), indicating that the model simulated the epidemic pattern of EVD
accurately.
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Fig 3. Comparison of the numbers of EVD cases and deaths predicted by the model to those
published by the WHO. The cumulative number of EVD cases and deaths are plotted as a function of time ¢
in months. The cumulative number of cases predicted curve (blue) includes confirmed and suspected cases.
Each red point indicates the number of cumulative cases (blue curve) or deaths due to EVD (green curve)
published by the WHO.

doi:10.1371/journal.pone.0152438.g003

Modeling the effects of isolating close contacts on the epidemic trend of
EVD

Individuals in close contact with EVD patients are a high-risk population and are prone to infect-
ing other susceptible individuals if they are not isolated and closely monitored. Therefore,
quarantining the close contacts of EVD patients early is critical to control and prevent transmis-
sion of EVD. As shown in Fig 4A, quarantining close contacts of patients decreased the predicted
incidence of EVD dramatically. By May 31, 2015, the cumulative number of EVD cases predicted
without isolation of close contacts was 37% greater than the predicted number with isolation.

Effects of decontaminating the corpses of dead EVD patients on the
epidemic trend of EVD

Ebola virus is stored in human body fluids. Thus, to prevent the spread of disease, it is critical
to take timely measures to decontaminate the corpses of dead EVD patients. Examples of these
measures would include burning or deep burial. In contrast, the West African funeral custom
of touching the corpses is prone to spreading the disease. The number of cumulative EVD
cases could be decreased by shortening the interval between death and corpse decontamination
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Fig 4. Effects of control and prevention measures on EVD epidemic trends. (A) Summary of the effect of
isolating EVD patients’ close contacts on the cumulative number of EVD cases. Note the markedly lower
curve with close contact quarantine (red) relative to that without close contact quarantine (blue). (B) Predicted
numbers of cumulative EVD cases when corpses of dead EVD patients were allowed to stay in the
surrounding environment for 3 (blue), 2 (green), 1 (red), or 0.5 days (yellow). (C) Predicted new EVD cases
when the average symptom onset-to-isolation and treatment is 5 days (blue), 4 days (green), and 3 days
(red). (D) Predicted reduction in the number of new EVD cases from August 1%, 2014 to May 31%', 2015 when
recovered patients have condom-protected (red) versus unprotected (green) sex. (E) Summary of the effect
of cases being imported from other countries on the epidemic trend of EVD. Note that introduction of a new
case every other day (0.5 cases/day, green) has a strong effect on amplitude relative to zero case importation
(red). In all panels, the number of predicted EVD cases is plotted as a function of time.

doi:10.1371/journal.pone.0152438.g004

(Fig 4B). Our dynamic model indicates that, reduction of the interval between a person’s death
and clearing of the corpse to less than 3 days could have reduced the cumulative number of
cases by 19% (2 day interval), 34% (1 day interval), or as much as 41% (0.5 day interval)
through May 31%, 2015.
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Effects of altering the time from symptom onset to treatment in isolation
on the epidemic trend of EVD

The average time from symptom onset to medical treatment in isolation for EVD patients is 5
days [3]. During this time, EVD patients have a high probability of infecting susceptible indi-
viduals. Early detection, diagnosis, and isolation can decrease the total number of EVD cases in
an open environment, and early treatment can increase the EVD survival rate. A shorter inter-
val between symptom onset and medical treatment in isolation led to fewer EVD cases and an
earlier peak in the epidemic curve (Fig 4C). The dynamic model indicates that: if the average
interval between symptom onset and treatment were shortened from 5 to 4 days (60% reduc-
tion) or 3 days (87% reduction), the number of EVD cases at the peak of the epidemic curve
would be markedly decreased in amplitude, and shifted leftward to 16 or 40 days earlier,
respectively.

Effects of recovered EVD patients practicing protected sex on the
epidemic trend of EVD

Ebola virus is detectable in the semen of recovered individuals and can be transmitted through
sexual contact [21]. Although sexual transmission is not the major route of transmission for
EVD, it can still impact the epidemic trend. If recovered patients practiced protected sex using
a condom, then the number of EVD cases is reduced and the peak of the epidemic curve is
advanced (Fig 4D). The dynamic model indicates that if all recovered individuals had practiced
protected sex from August 1** of 2014 onward, then the number of EVD cases at the peak of
the epidemic curve would have been reduced by 26% and occurred 19 days earlier.

Effects of cases imported from other countries on the epidemic trend of
EVD

Finally, we analyzed the influence of cases being imported from other countries on the epidemic
trend of EVD with the dynamic model. If 0.5 cases were being imported from the uncontrolled
outside environment daily, then the number of new EVD cases at the peak of the epidemic
curve would be 1.6 times higher than that in the absence of any imported cases (Fig 4E). This
finding indicates that imported cases can contribute substantially to EVD epidemic trends.

Sensitivity analysis

The sensitivity analysis was conducted with 15 parameters and a continuous time-series for
confirmed and suspected cases. We took 1000 samples from a uniform distribution of each
parameter range of the comprehensive compartment model. Partial rank correlation coeffi-
cients (PRCCs) of the parameters near -1 or +1 indicate a strong impact on the output. Param-
eters @; and f3; had particularly high PRCCs (Fig 5), which means that the output of this model
is highly sensitive to changes in f;.

Discussion

An accurate analysis of the transmission pattern of the 2014 EVD epidemic provides a basis for
implementing control and prevention measures. In this study, we constructed a dynamic trans-
mission model to predict the epidemic trend of EVD and evaluated the effects of control and
prevention measures. The key parameter in the model was the infection rate for patients in the
free environment (f;). This parameter was influenced by a patient’s sphere of activity, the viru-
lence of the virus, and the proportion of susceptible people in the total population. Fluctuations
in By may cause the results of the model to vary. Thus, it is important to fit an infection rate
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Fig 5. Sensitivity analysis for confirmed and suspected cases. (A) PRCCs that stay positive (>0) most of
the time. (B) PRCCs that stay negative (<0) most of the time. (C) PRCCs that tend to stay near 0.

doi:10.1371/journal.pone.0152438.9005

that approximates real values closely. Here, we found that the distribution of 3; was approxi-
mated by a gamma distribution, rather than by an exponential distribution as an earlier study
reported [22]. This discrepancy may be due to differences in the nature of the EVD epidemics
modeled. In the 2014 epidemic, most of the early EVD cases were located in the sparsely
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populated rural areas, and the patients had a limited sphere of activity. When the disease
spread to urban areas, patients came into contact with more susceptible individuals, causing
the S value to increase. Subsequently, isolation measures for EVD cases and improvements in
public efforts at self-protection reduced the number of close contacts between EVD patients
and the susceptible population, ultimately reducing the f3; value.

Vaccination is an important means of preventing infectious disease [23]. Although there are
no licensed EVD vaccines, we can estimate the demand for a vaccine, which may contribute to
the formation of a vaccine and immunization program development. We estimated minimum
effective vaccination rates for each country, and found that EVD would be controlled if greater
than 42%, 45%, and 51% of the total population had immunity against the Ebola virus in
Guinea, Liberia, and Sierra Leone, respectively. These results provide scientific evidence for
vaccine production and application.

Assuming that no control and prevention measures were taken, understanding the effects of
an unchecked EVD outbreak on the total population number would help us better appreciate
how harmful EVD has the potential to be. Using an SIR model, we found that the population
would be dramatically decreased in a short time in the absence of control and prevention mea-
sures. These results support an overwhelming risk from an EVD outbreak. The SIR model also
indicated that the s, i, and r populations fluctuate periodically around their dynamic equilib-
rium points. These results support the idea EVD epidemics may break out periodically, though
the disease will reach a dynamic equilibrium point with a shorter period between epidemics of
progressively weaker intensity. Periodic fluctuations of EVD epidemics are similar to those of
other diseases, such as the measles and chickenpox [24, 25]. Therefore, we should be vigilant
for the reemergence of EVD.

The dynamic model constructed for the 2014-2015 EVD outbreak indicated that early
detection, diagnosis, and isolation are critical for controlling EVD outbreaks. From March
2014 through January 2015, the mean time interval between symptom onset and sample collec-
tion from suspected patients was 7.2 days. The interval from sample collection to laboratory
receipt was 1.5 days, 1.8 days, and 2.1 days in Guinea, Liberia, and Sierra Leone, respectively
[26]. These relatively long intervals from symptom onset to diagnosis indicate that early detec-
tion of EVD is hindered by technical and social factors [26]. These delays likely contributed to
the early expansion of the epidemic. Reducing them should improve transmission interruption,
contact tracing, epidemiological surveillance accuracy, and prognoses.

Taking timely measures to control and prevent infection during small outbreaks is impor-
tant for maintaining local control and preventing larger outbreaks. Previous studies have
shown that strict isolation and quarantine, scientific management of corpses, public health
education knowledge, and good personal hygiene habits are effective means of controlling and
preventing the perpetuation of infectious diseases [27, 28]. Similarly, we found that the out-
break and spread of EVD could be controlled effectively through isolating patients early,
quickly removing corpses, practicing “safe” sex after recovery, and strictly monitoring for
imported cases. EVD patients were first reported in Guinea and then rapidly spread to neigh-
boring countries that failed to prevent and manage imported cases effectively [1]. Preventing
imported cases is a major way that countries can protect themselves from infectious disease.
However, if imported cases do reach a country, an epidemic can still be prevented by rapidly
implementing control and prevention measures. For example, several countries, including the
USA and Spain, had imported EVD cases [29], but outbreaks were controlled successfully due
to the timely isolation of cases and careful monitoring of close patient contacts.

One of the limitations of this study is that the epidemic data used were published by the
WHO and were likely underreported due to the outdated public health system in West African
countries. However, the WHO data are the most accurate data available at present. The
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constructed model fit and forecast epidemic trends accurately, evaluated the effects of control
and prevention measures, and provided a scientific conclusion. In the SEIR model constructed
during the 1995 EVD outbreak, the values of the model’s parameters were estimated based on
stochastic process theory. However, in this study, the values of the model’s parameters were
determined based on references or were simulated using real data from the 2014-2015 EVD
outbreak. Therefore, the results of this study would be expected to more reliable because the
model conformed more closely to the real-world circumstances.

In summary, this study indicated that EVD would be expected to re-emerge within two
decades if control and prevention measures are not taken. To avoid similar EVD-related public
health emergencies in the future, it is crucial that EVD vaccines are developed and approved
for distribution in mass vaccination campaigns in Ebola virus-endemic areas. When future
EVD cases are detected, it will be important for healthcare personnel to (1) isolate affected
patients early, (2) trace and isolate infected patients’ close contacts quickly, (3) remove corpses
with minimal delay, (4) conduct strict monitoring for imported cases, and (5) impose on recov-
ered patients the importance of having condom-protected sex.

Methods
Estimation of the effective vaccination rate

The basic reproduction number (R,) was used to estimate the effective vaccination rate in the
whole population. R, represents the average number of secondary cases caused by an infected
individual throughout the course of infection in a completely susceptible population and in the
absence of control interventions. When Ry<1, the disease epidemic will decline; when Ry>1,
disease spread will increase [30]. When random and continuous vaccination strategies for sus-
ceptible people were undertaken, the number of infected persons in the next generation will be
less than 1 if at least Ry—1 infected persons of the next generation were vaccinated, resulting in
a termination of a pandemic. Therefore, the minimum vaccination rate of the population can
be expressed as follow:

A detailed derivation of the above formula is published elsewhere [31].

Epidemic trend without control measures

The epidemiology of EVD in the absence of control and prevention measures was analyzed by
a SIR model. The differential equations were as follows:

S =bN — dS — BIS/N
I'=BIS/N — (x+d+ )1
R =9I —dR

N' = (b—d)N —al

(1)

Because the birth rate (b) is greater than mortality rate (d) in West Africa, the population in
this region is expected to increase and the number of individuals in the S, I, and R blocks
should increase as well. Therefore, there was no dynamic equilibrium point in the system. The
following normalization transformation was applied:

s=S/N,i=I/N,r=R/N
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where
st+i+r=1
The first three equations of equation group Eq (1) can be transformed as follows:
s =b— bs — Pis+ ais
i'=Pis— (a+ b+ )i+ ai® (2)
v =yi— br + air

The expression of the modified reproductive number (designated by 60) was:

p

o— P
(a+b+7y)

If 0<1, then it can be proved that s, i, and r have a single dynamic equilibrium point of
Py(1,0,0), and the system is asymptotically stable. If 8> 1, then P is not stable, there is a single
positive dynamic equilibrium point of P*(s*,i*,r*), and the system is asymptotically stable [32].
The calculation result (6 = 1.85), when the three countries are pooled into a single region, indi-
cates the presence of a positive dynamic equilibrium point.

Next, the net growth threshold of the population was considered to analyze the trend of the
total population N when b>d and 6>1. The net growth threshold of the population (designated

by ¢) can be expressed as:
(b—d . 7
= 1 —
4 a(e —1) (1+ d)
where
-k
(a+d+7y)

If >1 and t — oo, then N(t) — oo; if ¢ = 1, then N(t) —N* (finite number); and if ¢p<1,
then N(f) — 0 [32]. We estimated the epidemic trend of s, i, and r at the positive dynamic equi-
librium point by applying the Jacobian matrix of equation group Eq (2) and then calculating
the eigenvalue and feature vector. If the eigenvalue is a complex number, then the epidemic is
in periodical oscillation.

Evaluation of the control and prevention measures in the EVD outbreak

A compartment transfer block diagram was constructed based on the transmission patterns
and control measures of EVD (Fig 6B). When a susceptible person in a free environment (S)
comes in contact with a patient in a free environment (I), an un-decontaminated corpse of an
EVD patient (D), or a recovering but still infectious patient (R), some people in S status become
infected and enter the incubation period (E). People in E status can transfer to I or U status
(suspected cases) to accept treatment and be isolated. Some people in the S block who are not
infected, but present with EVD-like symptoms are transferred to the U block. Once a diagnosis
is confirmed in suspected cases in the U block, these confirmed cases and some patients in the I
block are both transferred to the P block (confirmed cases in isolation). Medical staff (H) are at
high risk of infection due to close contact with people in the U and P blocks. Once an individual
is confirmed to be in the I block, their close contacts are immediately monitored and isolated
for observation (Q block). Some infected cases in the Q block are transferred to the P block
after diagnosis. Uninfected cases return to the S status after the maximum incubation period.
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Fig 6. Compartment transfer block diagram of the transmission dynamic model. (A) Compartment
transfer block diagram of the SIR model. Blocks S, /, and R represent susceptible individuals, symptomatic
patients, and people with immunity owing to recovery, respectively. § is the standard contact rate, indicating
the number of people infected by the same patient per unit time in a population of entirely susceptible
persons. a and y denote the probability of one patient dying or recovering per unit time, respectively. b and d
are the population’s birth and mortality rates per unit time, respectively. (B) Comprehensive compartment
transfer block diagram of EVD epidemiology. Blocks S, E, I, and D represent susceptible persons in a free
environment, infected individuals in the incubation period, patients in a free environment, and not-yet-
decontaminated corpses of EVD patients, respectively. Blocks U, P, and Q denote suspected cases in
isolation, confirmed cases in isolation, and close contacts in isolation, respectively. Blocks H, R, K, and A
indicate the medical staff in charge of U and P, recovered patients that are still infectious, recovered
individuals that are not infectious and with immunity, and imported cases per day, respectively.

doi:10.1371/journal.pone.0152438.g006

After treatment, some patients in the P block die and their corpses are rendered harmless by
decontamination; however, other patients in the P block are transferred to the R block (recov-
ered patients that are still infectious).

Differential equations were built according to the block diagram, as follows:

S =A, +6,Q+6,U—f(I,D,R) —o(I,U) — ¢(I)
E =A,+f(I,D,R) — w,E —§,E

I'=A,+oE—pul—0,1
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D =ul—uoD
U =3,E+¢(I,U)—6,U—6,U
P'=0,I+6,U+w,Q+g(P,U)— P — p,P
H = A, —g(P,U)
Q =o(I) = 0,Q - 0,Q
R =o,P—9yR

K' =9yR
where

f(L D,R) = ﬁl(l - 5;‘1;)[ + BpD + BrR
(P(L U) = K(éipl + 5upU)
¢(I) = 1/kﬁ15ip1

§(P,U) = fp(P+ 2U)

After a confirmed case is identified in a free environment, his/her close contacts are
checked within 24 hours and placed under observation in isolation. Therefore, the term 6,8,
is subtracted from f(I,D,R). x denotes the number of new suspected cases (non-EVD infec-
tion) when a new confirmed case is reported (excluding confirmed cases derived from the
medical staff and close contacts). A denotes the proportion of confirmed cases in the U block
population. k represents the probability of a susceptible person being infected through close
contact with a patient with EVD. All of these analyses were conducted in Matlab R2012a
(MathWorks, USA, 2012).

The values of the parameters in the models shown in Fig 6A and 6B were obtained in three
ways. The first way involved consultation of references, and the official websites of the WHO
and the United Nations (noted as Reference in Table 1). For parameters that could not be
obtained directly from published data, the second way, namely establishing the best fit model
was used. The nonlinear least-squares method was used to achieve optimized curve-fitting in
Matlab software. The values of parameters could be determined when the residual sum of
squares of the simulation value and the WHO reported value was minimized (noted as non-
linear least- squares in Table 1). The third way was simple arithmetic calculations based on
the values of parameters obtained from the former two approaches (noted as calculation in
Table 1).

Sensitivity analysis of the comprehensive compartment

PRCC determination combined with Latin hypercube sampling (LHS) was used for the sensi-
tivity analysis. The PRCC is an efficient and reliable sampling-based sensitivity analysis
method that provides a measure of monotonicity between a set of parameters and the model
output after removing the linear effects of all parameters except the parameter of interest [36].

PLOS ONE | DOI:10.1371/journal.pone.0152438 April 6, 2016 13/17



@'PLOS ‘ ONE

Dynamic Models of Ebola Virus Disease

Table 1. Values, ranges and data sources of all parameters in models in Fig 6A and 6B.

Parameters Values and ranges Data sources
Ro(Guinea) 1.710(1.440-2.010) [3]
Ro(Liberia) 1.830(1.720-1.940) [3]
Ro(Sierra Leone) 2.020(1.790-2.260) [3]
a(Guinea) 0.110(0.104-0.116) [3]
a(Liberia) 0.092(0.087—-0.095) [3]
a (Sierra Leone) 0.080(0.075—-0.085) [3]
a(All of them) 0.094(0.091-0.097) [3]
y(Guinea) 0.018(0.158-0.204) [3]
y(Liberia) 0.018(0.160—0.202) [3]
y(Sierra Leone) 0.018(0.156-0.021) [3]
y(All of them) 0.018(0.017-0.019) [3]
w(Guinea) 0.092(0.074-0.110) [3]
w(Liberia) 0.086(0.069-0.103) [3]
w(Sierra Leone) 0.093(0.074-0.112) [3]
w(All of them) 0.088(0.070-0.106) [3]
b(Guinea) 1.093x10™* [33, 34]
b (Liberia) 1.110x107* [33, 34]
b (Sierra Leone) 1.112x107* [33, 34]
b(All of them) 1.096x10™* Calculation
d(Guinea) 3.808x107° [33, 34]
d(Liberia) 3.288x107° [33, 34]
d(Sierra Leone) 4.630x107° [33, 34]
d(All of them) 3.940x107° Calculation
B(Guinea) 0.220(0.185-0.259) Calculation
B (Liberia) 0.201(0.189-0.213) Calculation
B(Sierra Leone) 0.199(0.176-0.222) Calculation
B(All of them) 0.210(0.187-0.234) Calculation
¢(Guinea) 0.952 Calculation
¢ (Liberia) 1.005 Calculation
@(Sierra Leone) 0.901 Calculation
Population in Guinea 10 628 972 [35]
Population in Liberia 4 396 873 [35]
Population in Sierra Leone 6 190 280 [35]
B citie bt Nonlinear least-squares
¢;:0.008(0.006—0.009)
a;:1.240(0.992-1.488)
B:0.014(0.011-0.017)
Bo Cy + ogefat Nonlinear least-squares
€4:0.058(0.046-0.070)
04:0.413(0.330-0.496)
B4:0.057(0.046-0.068)
Br c, +aeht Nonlinear least-squares
¢,:0.030(0.024—-0.036)
@;:0.190(0.152-0.228)
B,:0.108(0.086—0.130)
K 1.200(0.960-1.440) Nonlinear least-squares
Ogs 0.023(0.018-0.0276) Calculation
(Continued)
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Table 1. (Continued)

Parameters Values and ranges Data sources
Ous 0.047(0.038-0.056) Calculation
w4 0.035(0.026—0.044) Nonlinear least-squares
Oeu 0.053(0.042-0.064) Calculation
I 0.088(0.070-0.106) Calculation
0; 0.054(0.043-0.065) Calculation
ay 0.500(0.333-1.000) Nonlinear least-squares
Oup 0.075(0.060—0.090) Calculation
wo 0.065(0.052—-0.078) Calculation
Br c, +a,efet Nonlinear least-squares
€5:0.004(0.003-0.005)
a,:0.101(0.081-0.121)
B5:0.190(0.152-0.228)
as 0.031(0.025-0.037) Calculation
o 0.155(0.124—-0.186) Calculation
Y 0.033(0.025-0.050) Calculation
k 0.740(0.592-0.888) Nonlinear least-squares
A 0.460(0.368-0.552) Nonlinear least-squares

doi:10.1371/journal.pone.0152438.t001

LHS is a stratified Monte Carlo sampling method in which each parameter’s range is divided
into N equal intervals and one sample is selected randomly from each interval [36, 37]. A stan-
dard correlation coefficient-p for the parameter and model output was calculated.
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