Table 2. Optimized support vector regression (SVR) models for effluent prediction in terms of BOD, SS, NH4+-N, TN and TP (all with microbial community compositions as inputs).
Water constituents | CVmsea | cb | gc | Training sets | Validation sets | ||
---|---|---|---|---|---|---|---|
mse | r2 | mse | r2 | ||||
BOD | 0.0424 | 2.143 | 48.50 | 0.00652 | 0.935 | 0.00787 | 0.907 |
SS | 0.0373 | 59.714 | 8.00 | 0.00771 | 0.931 | 0.01401 | 0.930 |
NH4+-N | 0.0642 | 2.828 | 45.25 | 0.03196 | 0.717 | 0.03851 | 0.412 |
TN | 0.0424 | 2.462 | 90.51 | 0.00700 | 0.942 | 0.00478 | 0.966 |
TP | 0.0536 | 4.925 | 128.00 | 0.01201 | 0.848 | 0.02475 | 0.824 |
aCVmse: cross validation mse.
bc: the optimized regularization cost parameter
cg: the optimized kernel-specific parameter.