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Abstract

An explicit dosimetry model has been developed to calculate the apparent reacted 1O2 

concentration ([1O2]rx) in an in-vivo model. In the model, a macroscopic quantity, g, is introduced 

to account for oxygen perfusion to the medium during PDT. In this study, the SOED model is 

extended for PDT treatment in phantom conditions where vasculature is not present; the oxygen 

perfusion is achieved through the air-phantom interface instead. The solution of the SOED model 

is obtained by solving the coupled photochemical rate equations incorporating oxygen perfusion 

through the air-liquid interface. Experiments were performed for two photosensitizers (PS), Rose 

Bengal (RB) and Photofrin (PH), in solution, using SOED and SOLD measurements to determine 

both the instantaneous [1O2] as well as cumulative [1O2]rx concentrations, where [1O2]rx = (1/τΔ) · 

∫[1O2]dt. The PS concentrations varied between 10 and 100 mM for RB and ~200 mM for 

Photofrin. The resulting magnitudes of [1O2] were compared between SOED and SOLD.
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1. INTRODUCTION

Improving dosimetry for photodynamic therapy (PDT) is an ongoing goal for use in the 

treatment of cancer and other localized diseases. PDT is a multi-faceted, dynamic process 

that involves the interactions of light, photosensitizer, and ground state oxygen (3O2), that 

create reactive singlet oxygen (1O2) in a type II process or other reactive oxygen species 

(such as O2
−•) in a type I process [1]. A macroscopic singlet oxygen explicit dosimetry 

(SOED) model has been previously developed and studied for various sensitizers [2–12]. 
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The use of SOED can be advantageous due to the difficulty of measuring the singlet oxygen 

luminescence signal in vivo due to its short lifetime of 30–180 ns [13, 14]. Furthermore, 

PDT dose alone is not sufficient as a dosimetric quantity, particularly in hypoxic 

environments that are created with high fluence rate treatments. SOED was compared to a 

direct dosimetry method, singlet oxygen luminescence dosimetry (SOLD) in photosensitizer 

solution.

2. MATERIALS AND METHODS

2.1 SOED Model in Phantoms

Singlet oxygen produced during illumination was calculated using an explicit dosimetry 

model. Based on both type I and type II processes modeled in figure 1, a set of coupled 

differential equations have been established for the photochemical reactions [11, 12, 15–17]:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

With a focus on only the dynamic process of PDT in the time scale of a few seconds to 

hours, the time derivatives on the right hand sides of the equations for the excited singlet 

state photosensitizer, the triplet state photosensitizer, singlet oxygen, and superoxide anion 

(Eqs. (2), (3), (5), (6)) can be set to zero because these processes are known to be very fast 

(~μs or less). These can then be simplified to [11, 17]
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(8)

(9)

(10)

(11)

(12)

(13)

(14)

where σII = k12τΔ, σI = k11 τS, τΔ = 1/(k6+k72[A]), τS = 1/k71[A], τf = 1/(k3+k5), 

, Φt=k5/(k3+k5), and β = k4+k8[A]/k2. It was 

assumed that σII([S0]+δ) ≪ 1 and σI ([S0]+δ) ≪ 1, which is true for this case. Here, ΦΔ = 

SΔΦt is the singlet oxygen quantum yield in the solvent used (methanol for Photofrin 

phantoms and water for Rose Bengal phantoms), ε is the extinction coefficient at 523 nm, 

and h is Planck’s constant. The parameters used for the calculation in each phantom are 

summarized in Table 1. This model has been used in in vivo systems previously where k7[A] 
≫ k6 [2–12]. In phantoms, the substitute for biological substrate ([A]) to interact with the 

reactive singlet oxygen generated in the photodynamic process is sodium azide (NaN3), a 

well known singlet oxygen quencher. In the experiments performed without NaN3, [A] = 0.

For the type II photosensitizers (PH and RB) used in this study, η = 0 since there is no direct 

triplet interaction. [3O2](t) and [S0](t) can be solved by the coupled differential Eqs. (12) and 

(13). Assuming that [3O2]0 ≫ β and there is minimal photobleaching of the photosensitizer, 

i.e., σI ≈ σII ≈ 0, thus [S0] = [S0]0 from Eq. (12), then Eq. (13) can be solved as

(15)

where γ = ξII (σII ([S0]0 + δ) + k7[A]τΔ) + ξI = ξIIσII ([S0] + δ) + ξI (when [A] = 0), is the 

PDT oxygen consumption rate per PDT dose rate and is 2.1×10−6 μM/s/(μMmW/cm2) for 
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Photofrin and 4.1×10−6 μM/s/(μMmW/cm2) for RB for [S0] = 50 μM. The expression of the 

photosensitizer([S0]) can be solved by combining Eqs. (10), (11) and (12), regarless of the 

value of σ, to be

(16)

Thus the solution:

(17)

where

(18)

and

(19)

Oxygen measurements were compared with the modeled values of oxygen using both the 

full coupled differential equations (Eqs. (12)–(13)) as well as the simplified verion stated 

above (Eqs. (15) and (17)). In all our model, we have made the assumption that type I 

interaction is negligible, i.e., σI = 0 and ξI = 0.

Fluorescence spectra as well as absoroption spectra were used to determine the 

experimentally measured values of [S0] and absorption properties to compare with expected 

calculated values.

2.2 SOLD Instrumentation

Singlet oxygen luminescence dosimetry was performed using a compact, fiber optic probe-

based singlet oxygen luminescence detection system [18]. The near-infrared luminescence 

probe was coupled to a compact InGaAs/InP single photon avalanche diode (SPAD) 

detector. Samples were irradiated with a 523 nm wavelength pulsed-laser source coupled 

into the delivery fiber via a collimation package. Patterned time gating was used to limit the 

unwanted dark counts and eliminate the strong photosensitizer luminescence background. 

The luminescence signal of singlet oxygen at 1270 nm was confirmed through spectral 

filtering and lifetime fitting for Rose Bengal and Photofrin.

Figure 2 shows a photo and schematic of the experimental setup. A pulsed 523 nm 

wavelength laser with 10 ns pulses at a repetition rate of 18.2 kHz was coupled into the 

delivery fiber with a collimation package. The laser outputs an electrical signal that is sent to 

a programmable Pulse Pattern Generator (PPG). Each pulse generates outputs on two 

separate channels, each with pulse shape designed to match the intended input The first 
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output is a single pulse sent to the ‘start’ channel of the time-correlated single-photon 

counter (TCSPC), while the second is a pattern of pulses sent to the SPAD control module. 

The SPAD is turned on for a pre-assigned time, only when the control module receives a 

pulse from the PPG.

2.3 Comparison Study

Liquid phantoms were created using the appropriate solvent (methanol (MeOH) for 

Photofrin and water (H2O) for Rose Bengal) in cuvettes. Rose Bengal is a commonly used, 

well-characterized model compound of a single molecular species that was used for 

verification of the singlet oxygen signal. Photofrin is a clinically-active photosensitizer that 

is FDA approved and currently in use for many clinical trials. Phantoms were made with 

various concentrations of each sensitizer in cuvettes.

Ground state oxygen measurements were performed with an Oxford Optronix OxyLite 

system (Oxford Optronix Ltd., Oxford, United Kingdom). Illumination light was briefly 

turned off during these measurements, and multiple values were recorded for a single 

phantom. Oxygen partial pressure was measured in mmHg and converted to μM by using a 

factor of α = 1.3 [9, 19].

3. RESULTS

Singlet oxygen explicit dosimetry modeling was validated in two methods: ground state 

oxygen (3O2) modeling and singlet oxygen (1O2) modeling. 3O2 was modeled for a phantom 

system with no external oxygen perfusion. This is due to the illumination of the phantom 

happneing at a depth of at least 1 cm below the water-air surface. Diffusion of oxygen in 

standard conditions could not supply oxygen to the illumination area with the set-up.

Singlet oxygen luminescence counts were compared to singlet oxygen concentrations 

calculated with equation (10). The parameters used for each sensitizer are summarized in 

table 1. The values are for in vitro conditions using their respective solvents.

Figures 3(a) and 4(a) show a comparison between the measured oxygenation versus the 

explicit model-calculated values of oxygen for Photofrin and Rose Bengal, respectively. 

Data was plotted relative to the measured initial oxygen concentration, which is around 170 

μM (2% uncertainties). The measured values had large standard deviations; however, the 

model was able to look at the reduction of oxygen in the phatom with the treatment 

conditions outlined. Further studies can be done with more measurements at the initial drop 

off as well as with different light dose and sensitizer concentrations to validate the model in 

more detail.

Using a NaN3, a singlet oxygen quencher, singlet oxygen lifetimes could be used to 

determine parameters k6 and k7, the spontaneous phosphorescence rate of 1O2 to 3O2 and the 

bimolecular rate of reaction for 1O2 with a substrate ([A]), respectively. By plotting the 

inverse of singlet oxygen lifetime against the concentration of singlet oxygen quencher, the 

following equation can be fit with a line
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(14)

The values obtained are summarized in table 1 and are consistent with values obtained for k6 

without any quencher. Figure 5 shows the plot of τΔ
−1 versus [A].

Figure 6 shows the comparison of SOLD singlet oxygen counts versus SOED model 

calculated singlet oxygen. With two different sensitizers in two different solvents, there were 

differences in photochemical parameters. Using the values summarized, the comparison 

shows that the SOLD system and SOED system are consistent even with two very different 

type II photosensitizers. The calculation of instantaneous singlet oxygen was done using Eq. 

8. The slope between SOLD and SOED calculated singlet oxygen is the same regardless 

photosensitizers used, (2.5 ± 0.1) × 108 for Photofrin and (2.3 ± 0.2) × 108 for RB.

4. CONCLUSION

Singlet oxygen luminescence detection (SOLD) technology was compared with singlet 

oxygen explicit dosimetry (SOED) calculations for phantoms using Photofrin and Rose 

Bengal. Oxygen measurements were used to validate one aspect of SOED, while SOLD 

photon counts of singelt oxygen signal at 1270 nm were compared to SOED-calculated 

singlet oxygen to validate their correspondence using two different sensitizers and their 

solvents. SOED system validation is performed in vitro.
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Figure 1. 
Jablonski diagram for PDT. In type I reactions, the triplet photosensitizer will transfer an 

electron to 3O2 react with molecular targets to produce radical species, or alternatively 

interact directly with the acceptor, [A], without oxygen mediation. In type II reaction, the 

energy is transferred from the triplet photosensitizer to ground state molecular oxygen (3O2), 

creating reactive singlet oxygen (1O2).
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Figure 2. 
SOLD instrumentation setup (a) on an optical bench and (b) schematic diagram of the 

experimental arrangement. The 523 nm laser source is coupled into the delivery fiber with a 

collimation package. The laser outputs a synchronous signal that is sent to a programmable 

Pulse Pattern Generator (PPG). Light from the collection fiber is coupled out through 

another collimation package, directed through a filter wheel (FW) for the bandpass filter 

selection, and then a long pass filter. The fiber core is imaged onto the face of the SPAD 

detector.
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Figure 3. 
Explicit model calculation of (a) relative ground state oxygen ([3O2]) and gound state 

sensitizer ([S0]) plotted for Photofrin using the parameters summarized in Table 1. Open 

circles represent oxygen measurements performed in phantoms after illumination with 

523nm light for 15 minutes and then another 5 minutes. Ground state oxygen is plotted 

relative to the initial oxygen concentration ([3O2]0) that was measured at ~ 170 μM.
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Figure 4. 
Explicit model calculation of (a) relative ground state oxygen ([3O2]) and gound state 

sensitizer ([S0]) plotted for Rose Bengal using the parameters summarized in Table 1. Open 

circles represent oxygen measurements performed in phantoms after illumination with 

523nm light for 15 minutes and then another 5 minutes. Ground state oxygen is plotted 

relative to the initial oxygen concentration ([3O2]0) that was measured at ~ 170 μM.
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Figure 5. 
Inverse of singlet oxygen lifetime versus singlet oxygen quencher concentration for (a) 

Photofrin and (b) Rose Bengal. Values for parameters k6 and k7 are given by the fits to data 

according to equation (9).
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Figure 6. 
SOLD system singlet oxygen counts plotted against SOED calculated singlet oxygen for (a) 

Photofrin and (b) Rose Bengal. The plots show that the two systems are comparible with two 

different sensitizers.
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Table 1

Summary of photophysical and photochemical parameters for Photofrin (PH) and Rose Bengal (RB) in vitro

Parameter Definition Photofrin Rose Bengal

ε (cm−1 μM−1) Photosensitizer extinction coefficient 0.0089 @523nm 0.059 @523nm

k0, ka @100mW/cm2 

(s−1)

Photon absorption rate of photosensitizer as a function of 
photosensitizer concentration (in mM), k0 = εϕ/hν, for ϕ = 
100 mW/cm2.

3.89 [1] 25.69 [1]

k12, kos (μM−1s−1) Bimolecular rate for 1O2 reactions with ground-state 
photosensitizer 2.1×10−1 [2] 6.6×10−2 [2]

k2, kot (μM−1s−1)
Bimolecular rate of triplet photosensitizer quenching 
by 3O2

1.278×103 [3] 1.2×103 (1.2 – 1.6)×103 

[20, 21]

k3, kf (s−1) Fluorescence rate of first excited singlet state 
photosensitizer to ground state photosensitizer 2.9×107 [22] 2.12×108 [4]

k4, kp (s−1) Phosphorescence rate of monomolecular decay of the 
photosensitizer triplet state 1.52×105 [5] 1.43×104 [5]

k5, kisc (s−1) Intersystem crossing (ISC) rate from first excited 
photosensitizer to triplet state photosensitizer 4.94×107 [6] 6.36×108 [6]

k6, kd (s−1) Spontaneous phosphorescence rate of 1O2 to 3O2 1.1×105 [7] 2.6×105 [7]

k72, koa (μM−1s−1) Bimolecular rate of reaction of type II 1O2 with biological 
substrate [A] 2.35×102 [7] 2.58×101 [7]

β (μM)

Oxygen quenching threshold concentration 

11.9 [23] 11.9 [9]

δ (μM) Low concentration correction 33 (33 – 150) [24] 33 [8]

ξII (cm2mW−1s−1)
Specific oxygen consumption rate 

24.9×10−3 @ 523 nm 195.2×10−3 @ 523 nm

σII (μM−1) Specific photobleaching ratio where σII = k12τΔ 1.0×10−6 [9] 2.5×10−7 [9]

g (mM/s) Macroscopic maximum oxygen supply rate 0 [10] 0 [10]

Φt

Triplet quantum yield 

0.91 [25] (0.63 – 0.93) [17, 
25–27] 0.75 in water [20, 28]

ΦΔ

Singlet oxygen quantum yield 

0.25 in MeOH [29, 30] 
(0.12–0.56) [26, 31] [32] 

[29,30]
0.76 in vitro [33]

Φf
Fluorescence quantum yield , where A10 is 
spontaneous transition rate between S1 and S0.

0.16 [20] 0.08 [33]

τΔ (s)

Singlet oxygen lifetime , [A] = 0.
(9.4±0.2)×10−6 [11] (3.8±0.3)×10−6 [11]

τf (s)

Fluorescence decay time 
(5.5±1.2)×10−9 [34] 1.18×10−10 [35]
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Parameter Definition Photofrin Rose Bengal

τt (s)

Triplet state lifetime 
(0.43±0.03)×10−6 [11] (2.1±0.2)×10−6 [11]

[1]
Calculated based on value of ε and ϕ = 100 mW/cm2: k0 = εϕ/(hν))

Photofrin: k0 = (0.0089 μM−1cm−1) / (6.022×1014 cm2μM−1) × (100 mW/cm2) / (3.80 ×10−16 mW s) = 3.89 s−1

Rose Bengal: k0 = (0.059 μM−1cm−1) / (6.022×1014 cm2μM−1) × (100 mW/cm2) / (3.80 ×10−16 mW s) = 25.69 s−1

[2]
Calculated based on value of σ that was fit to data (see Fig. 3 and 4) and measured τΔ: k1 =σ/τΔ

Photofrin: k1 = (2×10−6 μM−1) / (9.4×10−6 s) = (2.1 ×10−1 μM−1s−1)

Rose Bengal: k1 = (2.5×10−7 μM−1) / (3.8×10−6 s) = (6.6 ×10−2 μM−1s−1)

[3]
Calculated based on measured value of τt: 

Photofrin: k2 = ((0.43×10−6 s−1) − (1.52×105 s−1))/(170 μM) = 1.278×103 μM−1s−1

[4]
Calculated based on the value of Φt and τf: k3 = (1 − Φt)/τf

Rose Bengal: k3 = (1 − 0.75) / (1.18×10−10 s) = 2.12×109 s−1

[5]
Calcualted based on assumed value of β: k4 = β×k2

Photofrin: k4 = (11.9 μM) × (1.278×103 μM−1s−1) = 1.52×105 s−1

Rose Bengal: k4 = (11.9 μM) × (1.278×103 μM−1s−1) = 1.43×104 s−1

[6]
Calculated based on value of k3 and Φt: k5 = Φt k3/(1 − Φt)

Photofrin: k5 = (0.63) × 2.9×107 s−1 / (1 − 0.63) = 4.94×107 s−1

Rose Bengal: k5 = (0.75) × (2.12×109 s−1) / (1 − 0.75) = 6.36×109 s−1

[7]
Calculated based on fit to data in figure 5.

[8]
Assumed to be the same as that of Photofrin

[9]
Based on fit to the [3O2] data when [A] = 0 (Figs. 3 and 4)

[10]
Due to absence of blood flow and reoxygenation in phantoms

[11]
Measured values from SOLD experiment when [A] = 0, i.e., without NaN3.
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