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Abstract

Infections with influenza viruses and respiratory bacteria each contribute substantially to the
global burden of morbidity and mortality. Simultaneous or sequential infection with these
pathogens manifests in complex and difficult-to-treat disease processes that need extensive
antimicrobial therapy and cause substantial excess mortality, particularly during annual influenza
seasons and pandemics. At the host level, influenza viruses prime respiratory mucosal surfaces for
excess bacterial acquisition and this supports increased carriage density and dissemination to the
lower respiratory tract, while greatly constraining innate and adaptive antibacterial defences.
Driven by virus-mediated structural modifications, aberrant immunological responses to sequential
infection, and excessive immunopathological responses, co-infections are noted by short-term and
long-term departures from immune homoeostasis, inhibition of appropriate pathogen recognition,
loss of tolerance to tissue damage, and general increases in susceptibility to severe bacterial
disease. At the population level, these effects translate into increased horizontal bacterial
transmission and excess use of antimicrobial therapies. With increasing concerns about future
possible influenza pandemics, the past decade has seen rapid advances in our understanding of
these interactions. In this Review, we discuss the epidemiological and clinical importance of
influenza and respiratory bacterial co-infections, including the foundational efforts that laid the
groundwork for today’s investigations, and detail the most important and current advances in our
understanding of the structural and immunological mechanisms underlying the pathogenesis of co-
infection. We describe and interpret what is known in sequence, from transmission and phenotypic
shifts in bacterial dynamics to the immunological, cellular, and molecular modifications that
underlie these processes, and propose avenues of further research that might be most valuable for
prevention and treatment strategies to best mitigate excess disease during future influenza
pandemics.
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Introduction

Respiratory infections are common, distributed across all social and economic strata, and
encompass both pneumonia, the single most important disease state resulting in mortality of
children younger than 5 years globally, and otitis media, the primary cause of childhood
physician visits and prescription of antibiotic therapy in middle-income and high-income
countries.12 In 2011, 120-4 million pneumonia cases in children included 14-11 million
severe episodes (11-7%) and 1:26 million childhood deaths (18% of all-cause mortality),
with a case-fatality rate of 0-01.1 In adults, incidence of community-acquired pneumonia
(CAP) across Europe is estimated at 1-07-1-2 per 1000 person-years and 14 per 1000
person-years in elderly people.3 Pneumonia is the fourth leading cause of death globally and
the leading infectious cause.* In the upper respiratory tract, otitis media affects 80% of all
children within the first 3 years of life and 40% of children have more than six recurrences
by age 7 years, which has consequences for antibiotic resistance in pathogens.2

A major contributor to both pneumonia and otitis media, influenza viruses rank among the
most important pathogens to affect human health and cause disease and mortality.! With
relatively low case-fatality rates, influenza takes its toll through annual epidemic waves that
infect hundreds of millions of people, causing severe infections in 3 million to 5 million
people and 25 0000-500 000 deaths annually, 99% of which occur in low-income
countries.®> Although pneumonia deaths are primarily of bacterial causes, particularly
Streptococcus pneumoniae (32-7%) and Haemophilus influenzae (15-7%), influenza viruses
add substantially, accounting for 7% of all severe pneumonia episodes and 10-9% of
pneumonia deaths.

Because of rapid mutation and gene segment reassortment, between the late 19th and mid
20th centuries, at least four major influenza pandemics transpired.®’ Three of these
pandemics—the H3N8 Russian pandemic of 1889, the H2N2 Asian flu of 1957, and the
H3N2 Hong Kong pandemic of 1968—were of a considerably milder nature relative to the
much more devastating HLIN1 Spanish influenza pandemic of 1918-19.7 Infecting a third of
the global population in 1918, and with estimates of 20 million to 50 million deaths, the
1918 influenza pandemic is the most deadly known pandemic in the history of humankind.”

Although the 1918 influenza virus was extraordinary in transmissibility and virulence, only
seldom did acute respiratory distress and death follow viral infection alone. Current evidence
suggests that mortality during the 1918 pandemic was primarily a result of an extraordinary
capacity of the virus to enhance susceptibility to bacterial infections, particularly in adults
aged 20-40 years.5:8 An analysis of more than 8000 autopsy reports showed evidence of
bacterial invasion in 92% of fatal 1918 influenza cases.® Streptococcus pneumoniae (the
pneumococcus) predominated, while B-aemolytic Streptococcus, Staphylococcus aureus, and
Haemophilus influenzae were also detected.8 More recently, a double-blind, randomised,
placebo-controlled trial of the nine-valent pneumococcal conjugate vaccine (PCV9) showed
41% efficacy against influenza associated non-bacteraemic pneumonias.® Coupled with
recent results from a PCV13 trial suggesting around 45% efficacy of PCV13 against non-
bacteraemic pneumonia,’9 a similar role for bacterial infections in 90% of influenza
pneumonia cases during the aforementioned PCV9 trial can be inferred. Specimens from the
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Asian influenza pandemic of 1956-57 and more recently the 2009 H1IN1 pandemic (pH1N1)
also show conclusive evidence of bacterial lung infections in 30-50% of fatal cases.811:12
Positive blood cultures in 40% of fatal 1918 epidemic cases also showed a shift in cause of
pneumococcal bacteraemia towards inclusion of less invasive strains that are more often
associated with asymptomatic carriage than disease.13

Although death from severe influenza alone usually occurs between 2 and 4 days after the
onset of flu-like symptoms, only 5% of deaths in 1918 took place within this timeframe,
with the majority following timecourses that were more akin to those of fatal pneumococcal
pneumonias in the pre-antibiotic era (6-10 days).13

Influenza—bacterial co-infections have been known about for much of the 20th century. In
1931, Richard Shope, referring to the filterable influenza virus, concluded that “the disease
induced by [the] filtrable infectious agent...was definitely not typical swine influenza and
will be referred to hereafter as “filtrate disease’”.14 Medical reports by physicians and
bacteriologists (most notably Richard Friedrich Johannes Pfeiffer) from as early as 1892
suggested that Bacillus influenzae (now H influenzae) was responsible for the mortality
associated with pandemic influenza. Unable to culture the same bacteria as Pfeiffer, others
believed that severe influenza resulted from a pathogen with low virulence working
synergistically with a pneumonia-causing bacterial agent.1®

The first conclusive reports of influenza-bacterial co-infections date back to 1931 (2 years
before Smith and Laidlaw’s discovery of influenza A virus in human beings) when Shope, at
the Rockefeller Institute, and his mentor, Paul Lewis, showed that sequential infection of
pigs with swine influenza virus and H influenzae together induced far greater disease than
either pathogen alone.14 These experiments reconciled, at least in part, Pfeiffer’s #
influenzae theory and the postulation by Olitsky and Gates in 1921 that the pathogen
causing influenza was of viral origin.1®

Several subsequent animal studies throughout the early to mid-20th century also support the
idea of influenza—bacterial synergy.816-18

Laboratory and epidemiological evidence from pandemics and interpandemics of the 20th
century have left little room to debate the importance of bacterial secondary infections.
Thus, modern research has emphasised efforts to elucidate the structural and immunological
mechanisms and resulting dynamics of co-infections. In the remainder of this Review we
discuss the most important recent advances in our understanding of the effect of infection
with influenza viruses on bacterial infections. In view of their known clinical importance, we
focus on the unidirectional effects that influenza viruses have on bacterial disease. However,
evidence suggests that the relationship is bidirectional, whereby bacterial infection
modulates virus dynamics and disease, an important issue that has been recently reviewed.19
Further, we limit our discussion to influenza viruses while acknowledging an increasing
body of work showing that influenza is but one of a number of viral respiratory pathogens
that include (in order of importance) respiratory syncytial virus, parainfluenza virus, human
metapneumovirus, and rhinovirus, which are important in development of severe viral-
bacterial co-infections.20
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The complex nature of the interactions between influenza and bacterial infections yield
mechanisms of disease that can be described at distinct phenotypic, cellular, molecular, and
immunological levels, which might be tissue specific. Thus, as best as possible, we aim to
review what is known in sequential order, from transmission and upper respiratory tract
carriage, to diseases of the upper and lower respiratory tract, and from the macroscopic to
the microscopic: from influenza-induced changes in bacterial transmission, colonising
dynamics, and windows of susceptibility to disease (table 1; figure 1); structural
mechanisms of enhanced carriage and invasion; and finally to disruptions in antibacterial
inflammatory processes and cellular immune defences (figure 2; tables 2 and 3).

Influenza and bacterial dynamics

Colonisation and carriage

Bacterial carriage, although largely asymptomatic, is often considered a prerequisite for
invasive disease, priming for tissue invasion or dissemination into the lower airways.**
Importantly, new acquisition events and increased carriage density are risk factors for
invasion, thus influenza-mediated increases in these processes might be detrimental at both
individual and population (ie, via transmission) levels.

Infection with influenza virus has potent effects on both the density and duration of bacterial
carriage.?1-2% In children, influenza is associated with an average 15-times increase in
pneumococcal nasopharyngeal titre,2> an effect that has been corroborated in numerous
animal studies.?1:24.26-28 Bacterial density in the nasopharynx after influenza infection can
be increased as much as 100 000 times compared with influenza-naive hosts, usually after
attainment of peak viral titres, noted by a 3—4 day lag when influenza inoculation occurs in
hosts that are already colonised.?8 The duration of carriage is also significantly extended two
times to five times. Although effects can last for weeks after influenza infection, the
magnitude of the effect diminishes with time after the first 7-10 days after viral
inoculation.28

Transmission and acquisition

Bacterial transmission is increased by influenza infections, and driven by increased carriage
density in the transmitters and viral-priming for enhanced susceptibility to acquisition in
recipients.26:27:29 Although increased density could alone be sufficient to enhance
transmission, 2 influenza-priming for acquisition is a particularly potent conductor of
increased transmission, driving both the frequency and radius over which bacteria are
transmitted.28 In a recent study in Peruvian children,30 influenza infection was associated
with 2-2-times increased odds of pneumococcal acquisition relative to influenza-uninfected
children.

Windows of susceptibility to disease

Infections with respiratory bacterial pathogens often begin as asymptomatic infections
designated as carriage.** Within a healthy host, bacterial replication and migration are
maintained at subclinical levels through combinations of host epithelial and mucosal
defences and innate and adaptive immune processes. Although almost all cases resolve with
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few if any clinical symptoms,** occasionally bacteria replicate and disseminate to or invade
surrounding tissue, causing a range of diseases such as sinusitis, otitis media, pneumonia,
bacteraemia, sepsis, and meningitis. Although progression from carriage to disease remains
a topic of investigation, it is clear that infection with an influenza virus could undermine
normal immunological processes and provoke disease.

Bacterial otitis media

Influenza—bacterial co-infection in the upper respiratory tract is clinically realised as excess
bacterial otitis media. The window of increased otitis media is coincident with peak viral
titres or follows for up to 3-6 days thereafter—a pattern akin to that of excess colonising
density.2331 Although it is tempting to assume that excess otitis media is a product of
bacterial spillover from increased carriage, it follows local influenza-mediated inflammation
in the epithelial tissue of the middle ear, particularly by type 3 haemagglutinin-encoding
influenza viruses with particular tropism for this tissue.23:32

Bacterial pneumonia and invasive disease

The window of heightened susceptibility to bacterial invasive disease and pneumonia is most
pronounced within the first 7 days after influenza infection, particularly between days 3 and
7, during which peak bacterial lung and blood titres are at their highest and time-to-death
might be less than 1 day (figure 1).343572 Although the magnitude of the response (ie,
morbidity and mortality) is dependent on experimental conditions, the trends displayed in
figure 1 are generalisable across nearly every laboratory and epidemiological investigation
describing lethal influenza—bacterial co-infections.13:34:36.66 Sybtle effects of viral infection
on bacterial invasion and replication might be retained for weeks, with one study suggesting
that effects can last as long as 6 months.24:57:59 Of note, the window of susceptibility to
lethal infection is distinct from that in the upper respiratory tract, because bacterial infection
before influenza infection might reduce morbidity and improve survival from lethal
influenza infections.3®

Mechanisms

Desquamation and non-specific bacterial adherence

Excess bacterial acquisition and carriage could follow influenza-mediated bacterial
adherence. As early as 1949, pathologists noted virus-mediated patches of desquamated
epithelium where bacteria adhered and invaded with increased vigour.#! As noted by Hers in
196139 and Parker in 1963,38 influenza desquamation exposes basement membrane
components ideal for bacterial attachment. Furthermore, epithelial regeneration yields
excess hyalinisation and production of fibrinogen, fibronectin, and other matrix elements to
which bacteria could bind.35:37:40.77 Similar effects have been described for non-influenza
viruses that induce similar patterns of desquamation, which include respiratory syncytial
virus, human parainfluenza virus type 3, and paramyxovirus.22

Specific bacterial adherence

Platelet-activating factor receptor and phosphorylcholine—Specific adhesion
molecules expressed in excess during influenza-mediated inflammation, or exposed via

Lancet Respir Med. Author manuscript; available in PMC 2016 April 06.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Mina and Klugman

Page 6

alterations of epithelial surface proteins, also help bacterial adherence and invasion. After
viral infection, epithelial and endothelial cells increase expression of the G-protein-coupled
platelet-activating factor receptor (PAFr), which is able to bind phosphorylcholine (ChoP)
embedded in the cell wall of many respiratory bacterial pathogens. PAFr-ChoP ligation helps
pathogen docking to epithelial tissue and increases bacterial lung titres, bacteraemia, and
mortality.3° Blockade of PAFr blunts the pro-inflammatory cytokine and cellular responses
that are often associated with severe secondary infections.324142 Although PAFr is not alone
sufficient to account for the excess disease that occurs during secondary infections, it might
be particularly important for bacterial bloodstream invasion, facilitating transmigration
across the respiratory epithelial and endothelial layers.41-43

Pneumococcal surface protein A and polymeric immunoglobulin receptors—
The pneumococcal surface protein A (PspA) is a choline-binding adhesion molecule that
targets epithelial cell polymeric immunoglobulin receptors (pIgR), which are important for
epithelial transcytosis of mucosal antibodies and excretion of antigen across mucosal
surfaces. During primary pneumococcal infections, plgR-PspA binding (and binding by
other choline binding proteins such as choline-binding protein A [cbpA]) enables efficient
pneumococcal adherence to host epithelial tissue. During influenza infection, upregulation
of plgR (potentially mediated by interferon y) enhances bacterial adherence and, because of
plgR’s role in facilitation of epithelial transcytosis, provides a distinct pathway for bacterial
migration across the epithelial barriers.4445:46

Influenza neuraminidase and sialic acids—Influenza neuraminidase might also
increase bacterial adherence to epithelial tissues. Influenza neuraminidase cleaves sialic acid
glycoconjugates on the epithelial cell surface and exposes greater numbers of cryptic
receptors than bacterial neuraminidase can itself reveal, enabling bacterial adherence over a
larger and more diffuse area of the epithelium than during single infection.”2:78 Higher
influenza neuraminidase activity has been associated with increased severity of secondary
bacterial infections, and field data from the H3N2 pandemic of 1957, which was caused by a
virus with uniquely potent influenza NA activity, showed substantially elevated rates of
bacterial carriage and disease.’3’? Experimental treatment with the viral influenza
neuraminidase inhibitor oseltamivir before influenza-bacterial co-infection improves
survival—interestingly, however, not by reducing viral titres, but rather by reducing the
number of lung bacteria.”?

Influenza and mucociliary clearance

Increased bacterial carriage and dissemination might result, in part, from reduced
mucociliary clearance mechanisms. Infection with influenza virus reduces ciliary beat
frequency on respiratory epithelial cells for up to 28 days after infection, particularly at day
7—the time of greatest susceptibility to secondary infection. Reduced or uncoordinated
ciliary beating decreases clearance velocity and allows increased bacterial density within
hours of inoculation.4”-’7 One hypothesis posits that regenerated intact epithelium might
follow influenza HA-mediated inhibition of calcium and sodium channels, which suggests
that treatment with {3 agonists could improve outcomes. However, influenza has also been
shown to downregulate B-receptor function, potentially limiting such benefits.48
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Influenza and antibacterial innate immunity

Fisher and Ginsberg in 195680 and Walsh and colleagues in 195781 noted prominent
reductions in leucocyte recruitment after influenza infection in guineapigs and in human
beings, respectively, and Sellers and colleagues8? showed viral attenuation of lymphocytes
as a cause of increased bacterial infections after influenza. These early investigations
introduced the idea that secondary bacterial infections do not result from physical alterations
in epithelial tissues alone, but arise from a complex system of aberrant and unstable
immunological signalling cascades. Indeed, the past two decades have shown,
overwhelmingly, a primary role for dysregulated innate and adaptive antibacterial immunity
after viral infection. Although numerous individual cytokines, chemokines, and cell-
mediated responses have been investigated, a number of key immunological processes might
explain the myriad studies now represented in the literature (figure 2).

Type | interferons—Type | interferons include many interferon a proteins and one
interferon P protein that signals through the common type | interferon receptor to elicit
expression of several cytokines that are essential for interference with viral replication.2!
Although type I interferons are traditionally associated with innate antiviral responses and
polarisation of adaptive immunity, they are complicit as key mediators of post-influenza
bacterial infections. In the absence of influenza, pneumococcal clearance from the
nasopharynx is mediated by nucleotide-binding, oligomerisation domain-containing protein
2 (Nod2) recognition of pneumococcal peptidoglycans, which activates nuclear factor (NF)-
kB to promote monocyte chemotactic protein 1/chemokine ligand 2 (CCL2)-chemokine (C-
C motif) receptor 2 (CCR2 )ligation. Ligation aids antibacterial monocyte or macrophage
recruitment and secretion of type | interferon, which requires the expression of the
pneumococcal pore-forming toxin pneumolysin, presumably to allow Nod2 access to
microbial ligands.2! Sequential influenza— bacterial infection induces excess type |
interferon that reduces recruitment of monocytes and macrophages (but not neutrophils) to
the upper respiratory tract (required for control of pneumococcal carriage) via blockade of
Nod2-mediated expression of CCI2.2! Interestingly, although mediated by blockade of Nod2
signalling, deletion of Nod2 or pneumococcal pneumolysin (required for Nod2 detection of
pneumococci) abrogates excess interferon production and returns carriage to normal levels.
This suggests that accumulation of type | interferon above a specific threshold could shut
down several antibacterial immune pathways, prioritising prevention of immunopathological
responses and bystander tissue damage over immediate control of bacterial proliferation.

Contrasting with the processes in the upper respiratory tract, excess production of interferon
a during co-infection might enhance bacterial pneumonia by inhibiting production of
pulmonary keratinocyte cell-derived chemokine (KC) and macrophage inflammatory
protein-2 (MIP-2—potent neutrophil chemotactic signals) in the lower respiratory tract that
are necessary for efficient bacterial clearance from the lungs.4®%0 The distinct effects of
excess type 1 interferon production in the nasopharyngeal versus lung tissue highlight the
complexity and tissue-specific heterogeneity of immune processes within a single host.83

Excess secretion of type | interferon could also reduce bacterial clearance by inhibiting y3-T-
cell secretion of interleukin 17, which is crucial for efficient bacterial clearance.>0:51
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Furthermore, during S aureus co-infection, type | interferon reduces NF-xB-mediated
production of interleukin 1B and interleukin 23, which are essential for proper T-helper type
17 (Th17) cell polarisation. Subsequent reductions in interleukin 17, interleukin 22, and
monocyte chemoattractant protein-1 (MCP-1) reduce recruitment of monocytes and
macrophages and clearance of S aureus.>1:52 Supporting this mechanism, patients with hyper
IgE syndrome who present with S aureus pneumonia often have mutations in signal
transducer and activator of transcription 3 (STAT3), important for Th17 cell polarisation.>2

Type Il interferons—The type Il interferon, interferon v, is mainly produced by natural
killer, CD4+ T helper, and CD8+ cytotoxic T lymphocytes. In co-infection, excess interferon
concentrations peak when bacterial inoculation follows 7 days after influenza
infection,34:54.57.58.84 Monocytes grown in vitro or in vivo in the presence of interferon v, or
during influenza-bacterial co-infection, display reduced phagocytosis associated with
depressed pro-inflammatory cytokine secretion, increased concentrations of oxidative
radicals, and, in alveolar macrophages, reduced expression of the scavenger receptor
MARCO, which is important for efficient clearance of invaders from the lower airways.3*
Although interleukin-12 production is beneficial in the regulation of inflammation, Thl
polarisation, and development of sterilising immunity against influenza virus, excess
interleukin-12 production increases interferon y concentrations, which might enhance
susceptibility to pulmonary bacterial outgrowth and invasion. During primary bacterial
infection, however, interleukin-12 induction of interferon vy helps pneumococcal clearance,
which highlights the delicate balance of many immunological processes.>®

Excess production of interferon y during secondary infection might indirectly result from
increased expression of interleukin 10, possibly a consequence of influenza induction of
indoleamine 2,3-dioxygenase (IDO).28 Inhibition of interleukin-10 signalling substantially
reduces secretion of interferon vy and improves bacterial lung clearance and survival.>”:58
However, during primary bacterial infection, increased interleukin-10 secretion assumes its
classic anti-inflammatory role and dampens the interferon vy response, antagonising bacterial
clearance from the lungs.® It is interesting to note that an exaggerated type Il interferon
response during secondary bacterial infection might also be downstream of an overzealous
type | interferon response. Indeed, secretion of type | interferon during influenza virus
infection increases interleukin 12p70, a major inducer of both interferon y and Thl
polarisation.>®

Toll-like receptor signalling—Toll-like receptors (TLRs) are pattern-recognition
receptors that exist on and within several mucosal sentinel cells, and constitute an important
family of sensors for detection of pathogens via their pathogen-associated molecular patterns
(PAMPs). TLR-PAMP ligation initiates TLR signalling that is crucial for induction of innate
immune cascades that cause cytokine or chemokine secretion and cellular recruitment for
pathogen clearance.86

Common dogma posits that after infection, immune memory is relegated to the adaptive
immune arm, while innate immunity returns to baseline within an appropriately short
duration—often following a period of tightly regulated and dampened innate immunity, a
period exploited during co-infection.8¢ Recent evidence, however, suggests that influenza
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infections yield sustained desensitisation of TLR to bacterial ligands that might increase
susceptibility to bacterial infections for at least 6 weeks, but possibly as long as 6
months.53:59 Although not fully understood, TLR desensitisation, and the neutropenic states
induced, might result from increased numbers of recruited alternatively activated
macrophage cells that aid tissue regeneration and immune homoeostasis, but also have
potent immunosuppressive effects.52

TLR signalling in excess might also enable bacterial proliferation secondary to overly
abundant cytokine and neutrophil responses.®? Generally, a powerful and swift response to
co-infection could reduce bacterial load and improve survival by preventing the need for a
more aggressive, and often immunopathological response to control co-infection.8” If,
however, inflammation is insufficient for swift bacterial clearance, then the host might fare
better to prioritise immune regulation over pathogen control while handing over the task of
bacterial clearance to the adaptive immune response.

Influenza-induced glucocorticoids—Contrary to co-infection with more common
respiratory bacterial pathogens, reduced bacterial clearance of post-influenza L/steria
monocytogenes infection results from generalised systemic suppression of innate and
adaptive immune processes after induction of systemic glucocorticoid secretion—known for
their pleiotropic immunosuppressive effects.%1 Interestingly, although glucocorticoids
suppress antibacterial innate immunity, sustained secretion could ultimately benefit the host
through reduced immunopathological responses.5!

Neutrophils—The role of neutrophils might be either beneficial or detrimental during
post-influenza pneumococcal infection. Many studies have shown either reduced?1:49.53.54.59
or increased3%:57:63.64 neytrophil recruitment during such infections. When pneumococcal
infection occurs within 3 days of influenza inoculation, neutrophils help bacterial lung
clearance and survival, whereas co-infection 6-10 days after influenza yields overly
abundant but inefficient responses that are unable to control bacterial infection.>* At these
later timepoints, bactericidal function is compromised, possibly because of increased
interleukin-10 secretion®’ or excess chemotaxis that recruits a mixed pool of both mature
and immature neutrophils—the immature ones unable to elicit appropriate antibacterial
defences.®3 In support of this theory, excess intact pneumococci can be detected localised to
neutrophil infiltrate in the middle ear during post-influenza pneumococcal otitis media.3!
Conversely, reduced neutrophil recruitment during secondary infection could be coincident
with reduced KC and MIP-2 expression, perhaps following, as mentioned previously, an

excessive type | interferon response or blunted TLR signalling in the post-influenza
State.49’53’54’59’

Neutrophil extracellular traps—Neutrophil extracellular traps (NETS) were initially
identified for their unique extracellular bactericidal activity whereby neutrophils undergo a
form of cell death, described as NETosis, releasing chromatin bound to neutrophil granules
and cytoplasmic proteins into the immediate extracellular space, forming net-like structures
able to trap and kill bacteria.5> Pneumococcal co-infection increases both NET formation
and degradation. NET formation might be an antibody-dependent process, as shown during
secondary bacterial otitis media;33 NET degradation is mediated by bacterial endonucleases
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that enable bacterial release from NET entanglement.5® Although NETosis is beneficial to
control bacterial infection during uncomplicated infections, during co-infection it drives
epithelial and endothelial damage that increases lung and middle ear inflammation, sepsis,
and small vessel vasculitis, ultimately harming alveolar capillary surfaces in the lungs.

Immune-cell apoptosis—Although leucopenia during secondary infection might result
from reduced chemokine-mediated recruitment, it also results from increased apoptosis,
through which more than 90% of alveolar macrophages could be lost for up to 14 days after
influenza infection, noted by alveolar macrophage expression of fas-associated protein with
death domain (FADD), an activator of caspase-8 and caspase-3 after secondary, as opposed
to primary, bacterial infection.86:67 Findings from a non-influenza model of lymphocytic
choriomeningitis virus (LCMV)- bacterial co-infection showed reduced neutrophil
recruitment and increased secondary bacterial infections, by many bacterial species, after
bone marrow granulocyte apoptosis.>3

Resistance versus tolerance to tissue damage

Understanding of the consequences of pathogen infection traditionally places emphasis on
pathogen virulence and host resistance to the pathogen. However, even when resistance to a
secondary non-virulent invader is fully maintained, inadequate tolerance to host tissue
damage could still result in disease progression.58 When bacterial infection with Legionella
pneumophilais properly controlled and bacterial virulence attenuated, and the host made
entirely incapable of mounting a cytokine storm, excess death from secondary infection
versus single infection remains. Interestingly, the effect is shortlived, occurring only when
bacterial infection is between 3 and 6 days after influenza. Afterwards no excess mortality is
noted—presumably resulting from sufficient tissue repair before bacterial infection.%8
Similarly, secondary pneumococcal infections after pandemic H1N1 infection are mediated,
at least in part, by loss of epithelial cell reproliferation and tissue repair mechanisms.59

Influenza-induced hyperthermia, stress, and bacterial dissemination

Bacterial colonisation and biofilm formation are helped by stringent downregulation of
virulence factors that enable immune evasion by reduced induction of epithelial pro-
inflammatory cytokine responses.’% During an influenza infection, however, hyperthermia
from pyrogenic cytokines induces expression of bacterial virulence genes and increases
release of bacteria from the biofilms that colonise the nasopharynx, permitting
microaspiration and invasion. Furthermore, influenza increases concentrations of glucose,
ATP, and noradrenaline, which, although important for lymphocyte activation and viral
clearance, induce excess bacterial carriage, pneumonia, and otitis media in otherwise stably
colonised mice.’0:71

Influenza genotype influences bacterial co-infection

Haemagglutinin and neuraminidase—The influenza genotype might have profound
effects on the mechanisms and phenotypes of bacterial co-infection. Results from
epidemiological’* and animal studies3273 suggest that H3N2 viruses are more potent
inducers of pneumococcal disease than HIN1 viruses, a finding that could be mediated by
increased H3 tropism for human epithelial cells. Indeed, inflammation after H3 versus H1
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viruses is associated with elevated bacterial titres in the middle ear during otitis media.32
Similarly, viruses with increased neuraminidase activity show an increased capacity to
support secondary bacterial pneumonia.’2"3 Furthermore, whether an influenza virus is
particularly pathogenic in a given host, or increases susceptibility to bacterial infection,
could be affected by whether the initial influenza viruses that an individual was exposed to
early in life contained homosubtypic versus hetero-subtypic internal (eg, nucleoprotein) or
external (ie, haemagglutinin and neuraminidase) proteins to the virus of interest—
heterosubtypic proteins would result in enhanced susceptibility to disease.6

PB1-F2—PB1-F2 is a pro-apoptotic influenza A protein that contributes substantially to the
virulence and pathogenicity of influenza viruses, and affects the extent of the inflammation
driven by the viral infection.”® Viruses with increased PB1-F2 virulence, which was elevated
in the 1918 influenza virus, result in particularly severe secondary infections.’® Interestingly,
viruses carrying truncated PB1-F2 proteins with very low virulence predispose to only mild
bacterial disease despite similarly elevated bacterial titres, reinforcing the important role of
host tissue damage and tolerance during co-infection.’®

Prevention and treatment strategies

Detection

Vaccines

Central to the prevention of influenza—bacterial co-infections is an understanding of the
bacterial species that are important in these processes. Although most work in this field has,
quite rightly, focused on culturable pathogens, recent advances in 16S ribosomal RNA
(rRNA) sequencing has enhanced our ability to detect changes in most of the microbial flora
of the respiratory tract that is non-culturable. The use of 16S sequencing in clinical settings
will provide a more complete picture of the effects of influenza, and other respiratory
viruses, on commensal and pathogenic bacteria. However, as detection of such broad arrays
of microbial species increases through these newer technologies, care should be taken to not
bias clinical acumen or assume the causes, because the sensitivity of these technologies will
detect alterations in bacterial species existing in sufficiently low densities so as to be
unlikely to cause disease.88

Furthermore, it should be noted here that detection should include both agonistic as well as
antagonistic relationships between bacterial species and influenza viruses. Indeed,
elucidation of antagonistic interactions that exist between influenza viruses and bacteria, as
have been recently shown for the atypical bacteria Mycoplasma pneumoniae and
Chlamydophila pneumoniae,8° could prove useful in the discovery of mechanisms or
development of improved therapeutics to combat co-infections.

Influenza and pneumococcal infections are both largely preventable through vaccination.
Vaccination is the best strategy for prevention of secondary bacterial infections. As
discussed previously, the PCV9 vaccine prevented 41% of influenza virus-associated
pneumonias,® and PCV has also been shown to reduce influenza hospitalisations by 48% in
young children.?9 Influenza vaccination might also prevent secondary bacterial infection by
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abrogating the primary viral infection.24 In the immediate post-influenza state, early
vaccination with a live, attenuated influenza virus (LAIV) has been shown to be superior to
PCV to prevent excess pneumococcal carriage,2* although both vaccines reduce mortality.

Although influenza vaccination is undoubtedly beneficial to reduce influenza and secondary
bacterial infections, we recently reported?8 an unexpected effect of LAIV (but not
inactivated influenza vaccine) on increased bacterial carriage for up to 28 days after
vaccination. Importantly, however, LAIV had no detrimental effect on bacterial infections of
the lower respiratory tract.28 Thus, although LAIV is beneficial to reduce influenza and
influenza-mediated secondary disease, it might be important to consider the level of risk of
bacterial acquisition during the weeks after vaccination when deciding between LAIV and
inactivated vaccines.

Antibiotics and antivirals

Although the Spanish influenza virus resulted in an extraordinary pandemic unlike any
other, the 1918 pandemic occurred long before the discovery of antibiotics in the 1930s. Had
antibiotics been available during the Spanish influenza pandemic, mortality rates might have
been reduced by as much as 50%.91 Antibiotics such as linezolid or some macrolides that
have immunomodulatory properties could be par ticularly beneficial in the setting of co-
infection.92:93 Quinolones might also be of use, because they not only have
immunoregulatory properties, but also could increase the synthesis of colony-stimulating
factor (ie, GM-CSF), which has been shown to improve lung tissue repair through induction
of amphiregulin during co-infection.%495

In the context of secondary bacterial infections, however, not all antibiotics are necessarily
beneficial, and some might inadvertently increase disease. B-lactams are first-line antibiotics
for the treatment of bacterial lung infections and vancomycin is recommended for influenza—
staphylococcal co-infections. However, in the highly unstable inflammatory environment of
the co-infected lung, bacterial lysis by bactericidal antibiotics might have the adverse effect
of enhancing the inflammatory processes through release of high concentrations of bacterial
PAMPs and excessive TLR stimulation.% In view of this potential consequence,
bacteriostatic protein-synthesis inhibitors such as clindamycin and azithromycin might be
better suited to improve survival, particularly azithromycin for its known immuno
modulatory effects.%8 B-lactams in combination with macrolide treatment have been shown
to be effective for treatment of complicated community-acquired pneumonia.®’

Antibiotics in combination with synthetic corticosteroids could also improve survival,
particularly during severe infections.?8 Other less conventional antibiotic approaches have
been investigated. For example, purified bacteriophage cell wall hydrolases or lysins are
useful for eradication of nasal carriage, and possibly treatment of otitis media that has
resulted from Gram-positive bacteria.%®

Antiviral agents too have been considered for prevention of secondary infections. In
particular, treatment with neuraminidase inhibitors abrogates excess bacterial carriage and
reduces mortality from co-infections, even when treatment is initiated as late as 5 days after
influenza infection.100
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Conclusions

In a time of unprecedented opportunity for influenza reassortment and global transmission,
increasing resistance to antibiotics, and exponential growth in data to understand the
interactions between host and pathogens, the importance of and capacity to gain a firm grasp
on the mechanisms underlying influenza and bacterial co-infections has never been greater.
Nearly a century ago, the 1918 influenza pandemic showed the devastation that can be
wreaked by a perfect storm of influenza virus genotypes, previous influenza exposures, and
bacterial pathogens. Improvement and development of new vaccines will be integral towards
the first lines of defence. However, with ever-changing viral and bacterial genomes and
shifting distributions of bacterial subtypes, vaccines could be far from a foolproof plan. In-
depth under standing of the mechanisms underlying post-influenza bacterial infection is
crucial for development of improved therapeutics to care for the combined infections that
remain difficult, and in some cases impossible, to treat. It is clear that a primary cause of
severe disease and death during post-influenza bacterial infection is an overzealous and
uncoordinated immune response, coincident with an inability to balance pathogen clearance
with prevention of host-tissue damage. Thus, development of immunomodulatory therapies
might prove to be more beneficial than conventional antimicrobial agents to treat
complicated co-infections. Increased understanding of the use of combination therapies of
antimicrobials and immunomodulatory agents will be important for improvement of
treatment outcomes and prevention of excess mortality during future influenza seasons and
global pandemics.
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Key messages

Influenza virus infection predisposes patients to complicated and difficult-to-
treat bacterial secondary infections or co-infections

Bacterial co-infections are a major cause of mortality during influenza
epidemics and pandemics, implicated in 30-90% of fatal influenza cases

Excess disease begins with viral-mediated increases in bacterial carriage density
and duration of colonisation, which might also increase bacterial transmission

Aberrant immunological processes during co-infection cause reduced
antibacterial immune defences, but death often follows the cytokine storm and
the immunemediated pathology

Future treatment regimens should focus on antibiotic therapy in combination
with potent anti-inflammatory and immunomodulatory agents
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Search strategy and selection criteria

We identified references for this Review through searches of PubMed and Google
Scholar for English-language articles including in their titles or abstracts the terms

“influenza” with any of the following terms: “bacteria”, “coinfection”, “secondary

infection”, “1918”, “synergy”, “ Streptococcus pneumoniae’, “pneumococcus”,
“Staphylococcus aureus’, * Haemophilus”, “mycoplasma”, “tuberculosis”, or “atypical
bacteria.” More citations were identified from references in these initial reports.
References for the epidemiology of pneumonia and respiratory infection were identified
by searching Google scholar for the terms “global”,”epidemiology”, and “burden”, plus

one of the following terms: “pneumonia”, “bacteria”, “respiratory tract infections”, “otitis
media”, or “antibiotic therapy.”
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Survival (%)
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Figure 1. Timing of synergism between influenza and pneumococcal infection
Groups of mice were challenged with Pneumococcus at different times relative to influenza

infection at day zero of infection. Bars=percentage survival after pneumococcal inoculation.
Line with black squares=mean duration of survival (only for mice that died). Adapted with
permission from McCullers and Rehg.3°
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i Immunological mechanisms of influenza-bacterial co-infection
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Figure 2. Mechanisms of influenza—bacterial co-infection
Influenza viruses and respiratory bacteria enter into, infect, or colonise the cells of the upper

respiratory tract. Increased bacterial adherence after influenza infection results from an
increased number of PAFr and plgR receptors, viral neuraminidase cleavage of sialic acids,
and epithelial denudation that exposes basement membrane components; each enables
enhanced binding by bacterial adherence factors (eg, ChoP, cbpA, and PspA) with increased
bacterial replication and carriage. Viral-induced inflammation enhances expression of
bacterial virulence factors (eg, pneumolysin) and increases release of bacteria from biofilms
in the upper respiratory tract to a planktonic state, which in turn increases bacterial
dissemination to the lower respiratory tract. Primary influenza infection followed by
secondary bacterial inoculation yields excess cytokine and chemokine production with
numerous downstream consequences, as depicted within a single alveolus and described
within the main text of this Review. Excess type | interferon secretion yields overabundant,
mixed, immature and mature neutrophil recruitment, which leads to severe
immunopathology, particularly because of neutrophil ROS secretion and development of
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neutrophil extracellular traps, which further increases the inflammatory response. Excess
type I and Il interferons reduce recruitment of monocytes or macrophages by blunting Nod2
signalling and enhancing anti-inflammatory IL-10 secretion, which could also increase
production of type Il interferons, with reduced macrophage function and increased
apoptosis. Excess inflammation is exacerbated by viral-mediated reduced secretion of
amphiregulin and other factors important for tissue regeneration, which adds to the reduced
alveolar and endothelial integrity and leads to capillary leakage, pulmonary oedema, and
bacterial bloodstream invasion. Cytokine storm or bacterial overgrowth often result in
irreparable damage to the lower respiratory tract and alveolar sacs, which results in severe
pneumonia, sepsis, and often death. PAFr=platelet-activating-factor receptors.
plgR=polymeric immunoglobulin receptors. ChoP=phosphorylcholine. cbpA= choline-
binding protein A. PspA=pneumococcal surface protein A. ROS= reactive oxygen species.
Nod2=nucleotide-binding, oligomerisation domain-containing protein 2. IL=interleukin.
NA=neuraminidase. HA=haemagglutinin. APC=antigen-presenting cell. IFN=interferon.
CCR-2=chemokine (C-C motif) receptor 2. CCL-2= monocyte chemotactic protein 1/
chemokine ligand 2. NET=neutrophil extracellular traps. MARCO=macrophage receptor
with collagenous structure. Th=T helper. KC= keratinocyte chemoattractant CXCL1.
MIP-2=macrophage inflammatory protein CXCL2. NK=natural killer cell.
IDO=indoleamine 2,3-dioxygenase. TLR=toll-like receptor. Ply=pneumolysin. y§T=y5 T
cell.
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Respiratory bacterial and influenza virus components that support secondary bacterial infections

Effect

Mechanism

Bacterial phosphorylcholine (ChoP*)

Increases bacterial adherence and
replication
Enhances bacterial invasion

Binds host epithelial PAFr, which is upregulated during
influenza infection (see table 2)

Bacterial surface proteins and choline
binding proteins (PspA, cpr’)

Increases bacterial adherence and
replication
Enhances bacterial invasion

Binds host plgR, which is upregulated during influenza
infection (see table 2)

Helps bacterial transcytosis of epithelial and endothelial
barriers to support bloodstream invasion

Influenza neuraminidase’273

Increases bacterial adherence and
replication

Increased bacterial pneumonia and
mortality

Cleaves sialic acids on epithelial cells:

Exposes cryptic receptors for bacterial adherence
Allows increased range and diffusion of bacterial
adherence

Influenza haemagglutinin3273.74

Directs viral replication, and controls
tissue-tropism

and inflammation

Increases bacterial replication and acute
otitis media

Influenza tropism for epithelial tissue is greater for H3
than

H1 viruses

Induces excess inflammation and primes cells for
increased

bacterial growth

Pro-apoptotic influenza A protein
(PB1-F2)7576

Substantial host-tissue damage and
immunopathological reactions
Increased activity increases bacterial
replication, lung

infections, pneumonia, and mortality

Increased PB1-F2 activity in turn increases influenza
virulence and induces inflammation

Enhances aberrant innate immune responses (see table 2)
allowing for bacterial replication and disease

Pulmonary immunopathological reactions

PAFr=Platelet- activating factor receptor. PspA=pneumococcal surface protein A. cbpA=choline-binding protein A. plgR=polymeric

immunoglobulin receptor.

*
See reference in table 2.
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