
Neuroinform (2016) 14:147–167
DOI 10.1007/s12021-015-9282-5

ORIGINAL ARTICLE

NSDF: Neuroscience Simulation Data Format

Subhasis Ray1,3 ·Chaitanya Chintaluri2 ·
Upinder S. Bhalla1 ·Daniel K. Wójcik2

Published online: 19 November 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Data interchange is emerging as an essential
aspect of modern neuroscience. In the areas of computa-
tional neuroscience and systems biology there are multiple
model definition formats, which have contributed strongly
to the development of an ecosystem of simulation and
analysis tools. Here we report the development of the Neu-
roscience Simulation Data Format (NSDF) which extends
this ecosystem to the data generated in simulations. NSDF is
designed to store simulator output across scales: from mul-
tiscale chemical and electrical signaling models, to detailed
single-neuron and network models, to abstract neural nets.
It is self-documenting, efficient, modular, and scalable, both
in terms of novel data types and in terms of data volume.
NSDF is simulator-independent, and can be used by a range
of standalone analysis and visualization tools. It may also
be used to store variety of experimental data. NSDF is
based on the widely used HDF5 (Hierarchical Data For-
mat 5) specification and is open, platform-independent, and
portable.

Subhasis Ray and Chaitanya Chintaluri equally contributed to this
article.

� Upinder S. Bhalla
bhalla@ncbs.res.in

� Daniel K. Wójcik
d.wojcik@nencki.gov.pl

1 National Center of Biological Sciences, Tata institute
of Fundamental Research, Bangalore, India

2 Nencki Institute of Experimental Biology, Warsaw, Poland

3 Present address: National Institutes of Health,
Bethesda, MD, USA

Keywords Data sharing · Analysis tools · Visualization ·
Simulations · Data format

Introduction

Like in most other fields of science, computational mod-
eling and simulation have become indispensable part of
research in neuroscience. The capabilities of computing
machinery have steadily increased and the size and com-
plexity of computational models (Kandel et al. 2013) and
neuromorphic simulations (Mead 1990; Poon and Zhou
2011; Furber et al. 2014) closely follow the limits of hard-
ware. This growth in scale and complexity also applies
to the data generated from such models, and so the stor-
age and management of data from in silico experiments
have become common challenges and are recognized as
a current challenge in the field (Sejnowski et al. 2014).
An ideal format for simulation data would be simple, effi-
cient, flexible, and embody complete information about
the originating simulation and simulator. The develop-
ment of NSDF reflects trade-offs between each of these
design goals, closely informed by a broad range of use
cases.

Due to their simplicity, plain text formats like csv
(comma separated values) are ubiquitous for data stor-
age. Unfortunately they are inefficient in terms of storage
space and do not allow any structuring beyond rows and
columns as in a spreadsheet. There are many proprietary
binary formats associated with specific software, like MAT-
LAB, or hardware, in both basic and clinical neuroscience,
which allow more efficient storage (for examples see list
of hardware vendors at http://neuroshare.sourceforge.net/
links.shtml, each vendor typically using its own proprietary
format).

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s12021-015-9282-5-x&domain=pdf
mailto:bhalla@ncbs.res.in
mailto:d.wojcik@nencki.gov.pl
http://neuroshare.sourceforge.net/links.shtml
http://neuroshare.sourceforge.net/links.shtml


148 Neuroinform (2016) 14:147–167

Proprietary formats being closed source in general result
in software lock-in and hinder data sharing. One approach
to address this issue involves software tools to convert data
from one format to another. The Neuroshare API (G-Node
2004) and NEO (Garcia et al. 2014) are attempts in this
direction. Several solutions for universal format for storage
of experimental data, with different goals and design prin-
ciples, have been proposed before (EDF (Kemp and Olivan
2003), SignalML (Durka and Ircha 2004), XCEDE (Gadde
et al. 2012), BioSignalML (Brooks et al. 2011), NDF (Liang
et al. 2010)). Additionally, a recent initiative by the Inter-
national Neuroinformatics Coordinating Facility (INCF)
attempts to develop a standard format for sharing data from
electrophysiology experiments (INCF 2014b). Thus stor-
age efficiency issues and data sharing can in principle be
addressed using existing neuroscience data formats. How-
ever, none of these formats can explicitly store simulation
specifics, and their flexibility is limited.

Despite many points of overlap, simulation data has
rather different requirements compared to data from wet
experiments. In computational research cycle testing a
hypothesis is accomplished using simulations. In each cycle,
simulations are performed and the data generated are ana-
lyzed. Then, simulation parameters are changed, and the
simulation is re-run. This is repeated until satisfactory
results are obtained. With rare exceptions, such as databases
of neuron models (Prinz et al. 2003), data in simulations
are generated many times and only the final results with
optimal parameters are considered results of the simulation.
The data generation in these cases is relatively cheap. How-
ever, valid and insightful data generation is an expensive
aspect requiring researcher expertise. This is different in
experiments where ideally all data over multiple sessions,
across many animals, are stored. In addition to researcher
expertise in designing the experiment, data collection in
experiments is expensive. All experimental data are unique,
and cannot be re-generated. In simulations data are gener-
ated, whereas in experiments data are collected. Therefore,
data are inferred differently post storage. Considering com-
mon use cases of simulations and experiments we may
observe the following differences:

– Simulated data in our experience have many sources
recorded over short biological time scales. In contrast,
in experiments, the recordings are at high sampling
rates over long periods of time and for fewer (compared
to simulations) recording channels. This is a distinct
requirement for the simulations as often many thou-
sands of sources take precedence over the recorded
time.

– In simulations, many details can be accessed simultane-
ously, for instance, in detailed compartmental models,
membrane potentials, individual ionic currents, ionic
concentrations etc., can all be relevant. This is an advan-
tage of simulation studies. The equivalent of this in
experiments would be simultaneous recordings from
multiple measurement modalities which are usually not
accessible to such an extent.

– The data stored are often accessed differently in simu-
lations and in experiments. Based on our insights from
developing visualization tools and extracellular poten-
tial calculations from simulated data it is often desirable
to extract a particular property from all the sources
at a time step, perform the necessary operations, and
proceed to the next time step. However, this is not a
common requirement for the experiments, where sig-
nals are averaged over many trials to compensate for the
low signal to noise ratios.

– Simulation using many thousands of point neurons is a
common use case. Typical simulations are run for tens
of seconds. These datasets are inhomogeneous and are
most efficiently stored as ragged arrays. Researchers
may also store the connectivity matrix of neurons or
measure the synaptic weight changes in these synapses
over time. Modeling diffusion of molecules in 3D
volumes have unique requirements where each vertex
index is stored and the vertex coordinate information is
also necessary. Such requirements are unique and such
data cannot be attached as annotated attributes.

– Experiments often have complex temporal structure. A
typical neurobiology experiment can have multiple ses-
sions, each with a different animal. Within a session a
sequence of different stimuli can be applied to the ani-
mal with multiple trials per stimulus. On the contrary,
a simulation experiment is usually a single execution of
the program where multiple state variables are recorded
in parallel in time.

While similar information may need to be stored in
experiments as in simulations, usually requirements are
different. For example, experiments with high-density elec-
trode arrays will reach high recording scales, also spike
detection algorithms use data from multiple sources simul-
taneously — for such cases, a more refined strategies may
be required (See the “Future of NSDF” section). The design
decisions made to accommodate simulation related data
may seem unnecessary from an experimental data storage
point of view, while the lack of necessary provisions in an
experimental data format makes it cumbersome for storing
simulation data.



Neuroinform (2016) 14:147–167 149

Materials and Methods

NSDF File Format

Design Considerations

In designing NSDF we recognized that data saved from
simulations have three main purposes:

1. Analysis — the data must be processed through various
algorithms and plotted for inspection by researchers.
Since input/output is often the most inefficient step in a
computer program, it is important that big data should
be stored in a format which can be read efficiently.
Moreover, for making inferences based on the relation-
ships of various model components, one should be able
to map the data to the model.

2. Visualization — large simulations are usually run in
batch mode and often the simulation run time is
orders of magnitude slower than real time, making it
impractical to visualize the simulation online. A com-
mon approach is to visualize the simulation using the
recorded data after the simulation is over. This can
also be useful in teaching. Tools like NeuronVisio
(Mattioni et al. 2012), Geppetto (Open Worm 2014),
and Moogli (Goel et al. 2014) can read simulation data
in specific formats in combination with the model and
“replay” the simulation with graphical visualization in
2D or 3D. Here again the efficiency of reading from
storage media is of importance. In addition, since data
for a large simulation may not fit the available mem-
ory, reading data sequentially, and possibly in chunks,
is important. Model metadata are critical in order for
visualization tools to understand appropriate ways of
representing data, and to specify spatial and functional
attributes of the model that form part of the display.

3. Storage and sharing — once data has been analyzed
to obtain scientific insight, it needs to be archived for
future reference. The same data can be studied by other
researchers at a later time with same or different tools.
This requires that the data format should be portable,
self explanatory to the extent possible, and have suffi-
cient metadata for experienced researchers to interpret
it.

Rather than developing an entirely new format, we
looked for an existing generic file format which could be
used as a basis of more refined structure. A hierarchical
file structure with efficient storage of large tables of num-
bers is suitable for our purpose. XML, which is popular for
model specification, is text based and therefore inefficient

Most notably, model specification and simulator envi-
ronment details are essential for understanding and ana-
lyzing the data context. Therefore, individuals and groups
often create custom formats for storing simulation data
and then a significant amount of work goes into devel-
oping analysis and visualization programs for processing
data in these formats. This causes duplication of effort
in terms of programming. Furthermore, simulation-specific
information is often implicitly built into the data and anal-
ysis programs. This makes it hard to share the data or
reuse the analysis code. However, data sharing is becoming
increasingly important for reproducible research. In recog-
nition of this, many funding agencies mandate data sharing.
Similarly, many journals require data sharing as part of
the publication process (e.g., Nature (Nature Neuroscience
2007; Moore et al. 2011), PLoS (Piwowar et al. 2007;
Bloom et al. 2014), Science (Science Magazine 2014))
and a common format will help in review and verifica-
tion process. Thus a common open format for simulation
data will facilitate data-sharing, clarity of analysis and
review, and will support an ecosystem of open and portable
tools.

Here we propose a format for storing and sharing data
from computer simulations in neuroscience. It is based
on Hierarchical Data Format 5 (HDF5, The HDF Group
(1997a)), which is widely used for scientific data. HDF5
allows flexible yet efficient storage of numerical data in
hierarchical structures with ample provision for metadata.
The proposed format is general enough to accommodate
the variety of data generated from the wide range of mod-
eling approaches and algorithms used in computational
neuroscience. It is designed to be self-documenting so that
analysis and visualization tools can operate upon it without
additional implicit or explicit knowledge of the data source
or content. We also provide an nsdf Python module https://
github.com/nsdf which facilitates reading and writing of
NSDF files. This module is documented at https://nsdf.
readthedocs.org/, and can be readily used by tool developers
and modelers for their Python based software.

In the next section we discuss considerations which
led to the format and present its specification. We dis-
cuss the rationale for keeping different structure vari-
ants as parts of the format, as well as connect with
the present context of neuroscience data storage. Then,
we introduce the nsdf Python module. Next we show
examples of data files obtained in real use-case scenar-
ios of neural simulations in different storage variants that
NSDF allows. Finally, we show benchmark information
for reading and writing these variants and their storage
requirements.

https://github.com/nsdf
https://github.com/nsdf
https://nsdf.readthedocs.org/
https://nsdf.readthedocs.org/


150 Neuroinform (2016) 14:147–167

both in storage space and parsing time when it comes to
large and complex data structures. HDF5, on the other
hand, was developed particularly for storing scientific data
of the kind mentioned above. It is flexible, hierarchical,
self-documenting and allows efficient reading, writing and
storage via chunking and compression of data in a semi-
transparent manner. Moreover, all nodes in HDF5 file can
have attributes, which allows storage of metadata along with
the data.

In this article we propose a scalable and hierarchical
structure for storing the types of data commonly recorded
in neuroscience simulations. This structure specifically
includes a provision for associating the data with the
model components from which it was recorded. The data
resulting from neuronal simulations can be categorized into
static data, time series, and events. Static data include mor-
phologies, connectivity information, biophysical parameters
characterizing the membrane, and any other fields which do
not vary over the course of a simulation. Time series data
can be sampled at regular intervals or at irregular intervals.
Events are data that are discrete in time such as spike times.
Below we first describe the top-down structure of the file
using an example to motivate the design considerations. We
then discuss the details of the key components of an NSDF
file: the model specification, the data structures, and finally
the mapping between simulation entities and recorded data.

File Structure

The design goals of the NSDF file structure were to achieve
a modular, extensible, and self-documenting format that
took advantage of the capabilities of HDF5, and provide
efficiency of reading and writing simulation data. In NSDF
we separate the model, data and the mapping between model
and data into different groups. Groups are HDF5 containers
analogous to directories.

The levels of this hierarchy are as follows:

– Level 0 (Root level): Every HDF5 file has a top level
group, called the root group, represented by /. The root
group stores a number of recommended attributes about
the simulation and system environment used to generate
the data.

– Level 1: NSDF has three predefined groups at level 1.
These are:

1. /data, under which all data are located;
2. /map, storing the mappings between data sources

and datasets, as well as sampling times;
3. /model, a group for storing information about the

model from which the data were generated.

Below we describe the levels under /data. The other
groups, /map and /model, are described in later sec-
tions.

– Level 2: Data types. There are 4 groups under /data

in an NSDF file: static, uniform, nonuniform,
and event. These categories were selected based on
our experience of different kinds of data from simula-
tions. For example, model parameters and connectivity
information are static. Time series values, such as mem-
brane potential in the Hodgkin-Huxley model, may be
sampled at uniform (Fig. 1a) or non-uniform inter-
vals. Finally, spiking data are most efficiently stored as
events.

– Level 3: Model entities and populations. It is common
in simulations to organize the same kind of model com-
ponents, such as a population of neurons of a given type,
into groups. The same fields are often recorded from all
members of a population. Such groups of data sources
are represented by named groups in level 3 of the NSDF
group hierarchy. The importance of this grouping will
be explained in the section on mappings.

– Levels 4 and 5: Variables. A simulation may store
values for a number of variables from the model compo-
nents in a group. Each such variable can be represented
by a separate node at level 4. The data arrays from
individual sources can be clubbed as rows of a 2-
dimensional HDF Dataset at level 4 or can be stored as
individual 1-dimensional datasets at level 5, in which
case the level 4 node is an HDF Group.

As a motivating example, consider storing the output of
the Hodgkin-Huxley model (Fig. 1a). In its simplest form,
we store the time-series of the membrane potential as the
data. Here the model specification only needs to identify
the one compartment in the model, and the mapping that
joins this compartment to the time-series. At the next level
of model detail, we might wish to also monitor channel
attributes such as currents. In this case we might either
choose to specify the model as an external file, or to provide
metadata that specifies the presence of an Na and a K chan-
nel entity within the compartment. In the former case, the
mapping to the data would take the form of strings that iden-
tify the compartment and channels in the external file. In
the latter case, the model is represented as a tree (directory-
like) structure, with entities for the respective channels, and
channel current, conductance, and any other field of interest
can be stored as data (Fig. 1b).

We might, at this point, choose to store a richer record-
ing of the simulation output. We could choose to store
time-series for Vm as well as currents for each of the



Neuroinform (2016) 14:147–167 151

Fig. 1 Hierarchy in NSDF file. a Shows the hierarchy when saving
the data coming from a single compartment Hodgkin-Huxley model.
The membrane potential is recorded at uniform time step and is stored
under /data/uniform, the corresponding compartment id in map,
and the model description under model. b The Na and K channels

can be considered as two instances of a generic Hodgkin-Huxley chan-
nel. We can choose to save the Na and K channel currents as two rows
of the dataset IChannel and total membrane current exiting through
the compartment as Im and this is shown here

channels. These variables could be stored at different time-
resolutions. If the simulation were to be solved using a
variable-timestep method we should also store the times
for each simulation step. Additionally, we can store static

data such as the membrane capacitance and resistance, and
the channel kinetic parameters. Finally, we could simul-
taneously choose to store the spike times as yet another
time-series. An example elaborating the possible simulation



152 Neuroinform (2016) 14:147–167

data scenarios is shown in Fig. 2. Each of these kinds of data
are supported in NSDF in the data group, as detailed below.

A key feature of this file structure is that it is self-
documenting. A human, or a program, reading the contents
of an NSDF file, could determine all the entities being
recorded, and their relationships to each of the data subsets.
Furthermore, through the addition of ontology metadata,
specific semantics can be attached to each recorded entity
and its associated data.

Model Specification

The design goals for the model specification section of
NSDF were that it be complete and unambiguous in defin-
ing which entities were being stored, and that it be flexible
in either utilizing external file formats or a default fall-
back specification. In either case, the model specification is
required only to the extent that it identifies the data. NSDF
is not a model definition format, and though it is good
practice to include a full model specification, this is not
mandatory. NSDF does not support loading and running the
model.

NSDF specifies models in two ways. First, NSDF pro-
vides a tree-like hierarchical specification of model entities
and, at the lowest level, model variables and parameters.
Second, models can be specified in a number of distinct
non-NSDF formats. In each of these cases NSDF can either

store the contents of the model definition files internally as
text strings, or refer to external files by URL or filename.
The details of these specifications follow.

Model Entity Definition Using an Internal Tree Structure

NSDF has a provision for storing model structure inter-
nally as a default fall-back option, which is independent
of external file formats. The goal of this is to provide
assistance to data analysis and visualization applications in
a manner independent of model file formats. This is not
intended as a full model definition, but rather as a way to
uniquely identify each entity whose data are to be stored.
In this approach, the group /model/modeltree is used
for storing model structure in a hierarchical manner. A
tree structure is common in many model description for-
mats including NeuroML, and formats used natively by
simulators like MOOSE (Ray and Bhalla 2008) and GEN-
ESIS (Bhalla and Bower 1993). This maps well within the
hierarchical format of HDF5 files. The hierarchical model
structure is stored as a subtree of /model/modeltree

with groups representing model components (Fig. 3a). Each
group should be named after the model component it rep-
resents. Additional attributes are provided for unique iden-
tifiers (uid) and ontological terms (ontology). uid can
be a URI, XML path or any string that can uniquely iden-
tify the data source within the file context. The ontological

Fig. 2 An example of neuroscience simulation data. Consider
two neurons, neuronA and neuronB, each comprising three
compartments—dend, soma and axon. The neurons are connected by
two synapses that do not change over the course of the simulation,
and we wish to store this connectivity information (top left). Also, the
integration time step of neuronA is constant, and we are interested in
storing the membrane potential from soma and axon of this neuron

(bottom left). Further, let us suppose that neuronB is simulated under
variable time step, and we are interested in storing the transmembrane
currents from dend and soma of this neuron (top right). During the
course of the simulation, let us suppose that neuronA spikes 11 times
and neuronB spikes 13, and we wish to store these spike times (bottom
right)



Neuroinform (2016) 14:147–167 153

terms (short form or full URI) can be used for identifying the
type of the component based on some predefined ontology
like the Computational Neuroscience Ontology (Le Franc
et al. 2012) or Gene Ontology Database (Ashburner et al.
2000). Each group in the model tree can be linked to the data
recorded from its members through the map attribute, which
can be used by software applications to efficiently identify
the data collected from this model component or its subcom-
ponents. Apart from these, users are free to store additional
metadata in arbitrary attributes of the group.

Model Definition Using External Formats

The simplest approach to retain meta-information about
a simulation is to store the original model definition
file(s). Different simulators use different formats for model
description, which may be simulator specific. There are
also several simulator independent standard formats like
NeuroML (Gleeson et al. 2010), NineML (Gorchetchnikov
et al. 2011), NEURON (Carnevale and Hines 2006) and
the Systems Biology Markup Language (SBML) (Hucka

et al. 2010) for describing cellular, network and biochem-
ical signaling models. NSDF handles external formats in
three ways: by storing the original file contents, by pro-
viding external file paths, and by linking to model trees in
other HDF5 files. The /model/filecontents group is
reserved for storing the contents of model description files
(Fig. 3b, c). Since complex models are often organized into
files distributed in multiple directories, one may replicate
the directory structure under this subgroup. HDF5 maps
nicely to the UNIX directory structure with groups corre-
sponding to directories and datasets corresponding to files.
The text in a file can be stored in the dataset as a string. This
approach makes it easy to programmatically replicate the
original directory structure used in the simulation along with
the file contents. Another way to retain a complete specifi-
cation of the original model is by storing paths of external
files. The /model/filerefs group is reserved for this pur-
pose. This can have one or more string datasets containing
paths to model files. HDF5 provides a way to refer to nodes
across files via “external links”. The group /model/links

can be used for storing external links to include arbitrary

Fig. 3 Model descriptions and
corresponding map entries in
NSDF. Showing some of the
possible ways to include model
descriptions and the
corresponding necessary /map
entry in NSDF. The example
used here is the same as that in
Fig. 2. On the left side are entries
in /model and on the right side
are entries in /map. a Case
when modeltree is provided
for the model like in MOOSE
and GENESIS. Here, the tree
elements with ’*’ have an uid
HDF5 attribute which is used in
/map. b In this case the model
description is not provided
within the NSDF file, and the
entries in map are given by their
unique names. Here there is no
link between /model and
/map. c The XML file that
generated the data is provided.
In this case, the entries in map
correspond to the source path



154 Neuroinform (2016) 14:147–167

subtrees of another HDF5 file storing the model description.
This can be a powerful mechanism for linking to large net-
work models with full instantiation stored separately. Thus,
these three approaches preserve the entire original model
specification along with the recorded data.

Model description is an open problem and all the above
approaches have their trade-offs. Storing the contents of the
model files is the most complete approach, and is recom-
mended. It is also recommended to store the model tree as
this facilitates simulator-independent display and analysis.
NSDF supports multiple definitions to introduce flexibility
and completeness, but this may also lead to inconsisten-
cies. NSDF specifies a precedence order for interpreting
model definitions to avert this. This order is: 1) model
tree, 2) file contents, 3) filerefs, 4) filelinks. If necessary,
it is also possible to mix different model definitions. Thus
a program reading an NSDF file would preferentially uti-
lize the most immediate data specification stored within
the file, and then fall back to externally stored model
definitions.

In summary, NSDF provides several options for specify-
ing model structure, entities, and metadata, to provide a rich
context for the recorded data. This specification allows data
analysis and visualization tools to automatically associate
data and model.

Data Structures

The core design goal of the data structure section of the
NSDF format is efficiency in file size and speed of read-
ing and writing. We draw upon the hierarchical structure of
HDF5 to organize the data into a tree structure, for clear data
separation and modularity

General Storage Guidelines

All data structures for saving recorded variables in HDF5
files should be stored as double precision numbers. There is
no restriction on naming of datasets except those imposed
by HDF5. Note that external links to datasets in other HDF5
files can be used in place of datasets. Moreover, HDF5
allows datasets to be stored externally in flat binary files
and the NSDF file can act as a wrapper for such data (See
Examples). This feature can be useful in parallel environ-
ments where a simulation is executed via multiple processes
and each process saves its local data in a separate file (Ray
and Bhalla 2008).

Common Attributes

In HDF5 every node (i.e. group or dataset) can have a set of
attributes storing meta-information. In NSDF, a dataset that
represents a physical quantity must have a unit attribute

associated with it. The unit is stored as a string following
SI unit convention with the usual prefixes (ISO 2009) and
some additions from SBML (Hucka et al. 2010). Currently
SI units are almost universally used in science. However in
the area of model specification in neuroscience, there are
several proposals for specifying units, each with their mer-
its and problems. For example, NeuroML2/LEMS (Glee-
son et al. 2010) specifies a set of units using labels like
mA_per_cm2 for mA/cm2 which are associated with dimen-
sional formulas defined in a core set of XML elements
using attributes specifying the exponents of the fundamen-
tal dimensions. On the other hand, the SBML specification
has a set of predefined quantity types with default units, and
compound units can be derived from these by specifying
the multiplier, scale and exponent attributes. This format,
however, is nontrivial for processing by humans or com-
puter programs. NSDF uses an existing unit specification
system for saving scientific data. The grammar for this is
defined in UDUNITS, the de facto standard units library
of netCDF (Unidata Program Center of the University Cor-
poration for Atmospheric Research (UCAR) 2014). This is
human-readable as well as compatible with units libraries in
several programming languages. For SI symbols with non-
ASCII characters, the common convention of writing “ohm”
in full. As an example, conductance density can be specified
as mS/cmˆ2.

In case of compound datasets, an array of strings cor-
responding to the units of individual columns must be
specified and if some of the columns do not represent
any physical quantity, such as vertex index number, the
corresponding entry in the unit attribute is an empty string.

Another important but optional attribute is ontology.
This string attribute stores ontological term for a model
component or the variable recorded in a dataset and should
be based on some predefined ontology like the Compu-
tational Neuroscience Ontology (Le Franc et al. 2012) or
Gene Ontology Database (Ashburner et al. 2000).

Data Type: Static

This is data related to the specification of the model. It can,
for example, include information about the morphology of
multicompartmental models, biophysical parameters of the
membrane (resistance, capacitance, peak channel conduc-
tance, etc.) or in a large network with randomized synaptic
strengths one may wish to store the synaptic weights as
instantiated at simulation time.

The /data/static group has subgroups representing
population level groups (level 3). The organization of a pop-
ulation level group is flexible to the user. Each variable
recorded from multiple elements in a population can be
wrapped into a 2D dataset where each row corresponds to
one element.



Neuroinform (2016) 14:147–167 155

For example, to represent morphology information we
could store the coordinates of the two ends of every com-
partment. For an entire cell this would be a 2-dimensional
array, with each compartment as a row and the six coor-
dinates as columns. In this case, the row dimension will
have the list of source ids attached as the source dimension
scale and the column dimension will have the list of labels
attached as the field dimension scale stored under /map

group as discussed later.
Alternatively, it is possible to have compound arrays with

named fields as datasets. For example, when storing infor-
mation regarding synapses one can store the ids of the
pre- and post-synaptic compartments, the synaptic strength,
time constants, and the synaptic delay in a compound array,
with each of the columns named by the corresponding field
names. In this case the list of synapse ids correspond to the

rows and will be attached as a source dimension scale (see
/data/static and /map/static in Fig. 4).

Data Type: Uniformly Sampled Continuous Data

This kind of data arises when the variable is sampled (or
computed and recorded in a simulation) at constant time
intervals. Often the same variable is recorded from many
cells in a network (or from many compartments in a cell),
at the same time points. The /data/uniform group has
subgroups representing population level groups (level 3).
Each variable recorded from multiple elements in a popu-
lation can be wrapped into a 2D dataset where each row
corresponds to one element.

For example, if we record membrane potential from
neurons n1, n2, . . . , nP , at equally spaced time points

Fig. 4 An example NSDF file. This figure illustrates the organiza-
tion of data in an NSDF file for the example in Fig. 2. Here we
assume that the model specification is through an external file, so
the local identification of data sources is handled by the map group.
The connectivity information, i.e., pre and post synapses and their
synaptic weights are stored under /data/static. The correspond-
ing source specification, or uid of the source of this data, is stored
under /map/static. The entries in data and map are connected via
a dimension-scale which establishes a row-wise mapping between data
and map. A similar pairing of data and map is present for time-series
data. In this example, the integration time step of neuronA is constant,
hence the membrane potential, Vm, and transmembrane current, Im,
are stored under /data/uniform. Their corresponding sources are
stored under /map/uniform. However, since neuronB is simulated

under variable time step and the variables are recorded at M nonuni-
form time points, the transmembrane current Im recorded for this
neuron is stored in /data/nonuniform. In this case the sources
are stored in /map/nonuniform. Additionally, the time points of
measurement are also essential and these are stored in /map/time.
The spiking of the neurons constitute discrete time events and must
be stored under /data/event. Again, the corresponding sources
are stored in the map group, under /map/event. The data shown
here can also be stored using alternate NSDF variants. Illustrated here
are options corresponding to Table 1, Option 1 (Compound array) for
static, Option 1 for uniform, Option 1 (NUREGULAR) for nonuniform
and Option 2 (VLEN) for events. Alternate variants for this example
corresponding to events are elaborated in the text and illustrated in
Fig. 5. The possible model descriptions are illustrated in Fig. 3



156 Neuroinform (2016) 14:147–167

t1, t2, . . .tQ, then it is stored in a 2D array, Vm, where
Vm[i,j] is the value recorded from neuron ni at time tj . In
this case we can store the start time of simulation and the
sampling interval in the dataset as attributes tstart (t1) and
dt (ti+1 − ti), respectively. Among several possibilities stor-
ing tstart and dt seem to be the simplest: (1) there is no
ambiguity about the endpoint, (2) one need not touch these
attributes when appending data. The n-th data column then
corresponds to the sampling time tn:

tn = tstart + (n − 1) ∗ dt.

Alternatively, we can store the list of time points
(t1, t2, . . . , tQ) explicitly in a dataset in the /map/time

group and attach it to the column dimension of Vm as a
dimension scale named time. In both cases, the source uids
are saved as source dimension scale attached to the row
dimension in /map/uniform. To avoid ambiguity we rec-
ommend to use only one approach in a given dataset, with
the more general explicit mapping of times overriding the
values of attributes in case both descriptions are present (see
/data/uniform and /map/uniform in Fig. 4 for a simi-
lar membrane potential recording at the compartment level
resolution).

Data Type: Nonuniformly Sampled Continuous Data

This case comes up in simulations where the underly-
ing numerical method uses an adaptive timestep algorithm
such as cvode (Cohen and Hindmarsh 1996). The NEU-
RON (Carnevale and Hines 2006) simulator uses this tech-
nique to compute the membrane potential with large time
steps when the rate of change is small but with smaller time
steps at higher slopes. In such cases it is necessary to explic-
itly save the time point for each data point. Thus we need
two explicit arrays for each time series, one for the data and
another for the time points for each data point. However, it
is possible that multiple such variables share the same sam-
pling points and thus only one time array will be required
for the entire set. In this case, all the compartments of the
neuron will be updated at each of the (nonuniform) time
steps.

The /data/nonuniform group has subgroups repre-
senting populations (level 3). In cases when the same sam-
pling times are shared by all members of the population,
the variables recorded from these sources in each popula-
tion can be collected in regular 2D datasets where each row
stores the data from one source and each column corre-
sponds to a sampling time point. We shall refer to this case
as the NUREGULAR variant (see /data/nonuniform,
/map/nonuniform/ and /map/time in Fig. 4).

In the general case, when the sampling times are different
for different sources, the above strategy cannot be applied.
NSDF allows three different storage strategies or variants in
such cases, as they have different advantages and disadvan-
tages. These variants are referred to as ONED, VLEN, and
NANPADDED.

In the ONED variant, a single one dimensional dataset
is used for each source, and these datasets (level 5) are
grouped by variable name (level 4) under the population
name (level 3). The mapping between the datasets and the
sources is stored under /map in a compound dataset with
two fields, source and data, storing the source-uid and
the reference to the dataset respectively. Reference to this
source-data map is stored as an attribute of the variable
group. Each dataset has a dimension scale representing the
sampling times associated with it. Moreover, the unique
identifier of the data source must be stored in the dataset
attribute source. This variant is similar to event data
type (see Data type: Event times), with ONED variant
(Fig. 5a).

In the VLEN variant, the arrays are left as ragged arrays,
i.e., arrays whose rows may not have the same number of
columns. HDF5 considers this as a one dimensional dataset
each of whose entries is another one dimensional dataset. In
this case the list of sources is attached as source dimension
scale and the ragged array of the sampling times is attached
as the time dimension stored under map. This variant is
similar to event data type, with VLEN variant (Fig. 5b).

In the NANPADDED variant, the row lengths are padded
with NaN’s to fit into a regular 2D dataset. The row dimen-
sion corresponds to the list of sources, which is attached
as source dimension scale, and the column dimension has
the 2D NaN padded sampling times attached as the time

dimension stored under /map. This variant is similar to
event data type, with NANPADDED variant (Fig. 5c).

Data Type: Event Times

The most common example of event data are spike times. It
is possible to maintain an array of size N containing 0’s and
1’s where N is the number of time steps simulated, where
a 1-entry indicates a spike event during the corresponding
time step. This format is memory-inefficient. The common
practice in both electrophysiology experiments and in neu-
ronal simulations is to store only the time of occurrence of
each spike as an event time. Since the number of events
can be different for different sources over the recording
period, we cannot fit data from a population into a reg-
ular 2D array. This issue is similar to that addressed by
variants ONED, VLEN, NANPADDED for non-uniformly



Neuroinform (2016) 14:147–167 157

sampled time series. We use the same variants for specify-
ing events (Fig. 5). Note that the NUREGULAR variant is
not applicable for events.

Keeping the consistency across different data types, the
/data/event group also has subgroups representing pop-
ulation level groups (level 3).

Trade-offs

We tested all the variants introduced here to store event and
nonuniformly sampled data, for efficiency in time (writ-
ing speeds — incremental, and one-time write), for effi-
ciency in storage space (uncompressed and compressed),
and for efficiency in reading, and present our findings in the

Results:Benchmarks section (See also Fig. 6). The results
of these benchmarks are uniform over all variants indicating
comparable performance. Each of the variants has different
limitations and advantages. We believe that there are merits
in keeping all these variants.

The advantage of using the ONED variant is that it is the
most generic and accommodates future use cases we do not
foresee. It is also the most efficient form when writing data
incrementally at present. However, it may not make optimal
use of HDF5 capabilities.

The advantage of VLEN variant is that it is space effi-
cient even without compression, and reading can be imple-
mented efficiently. However, the issues with this are (1) not
every common software package implementing HDF5 sup-

Fig. 5 Variants possible in NSDF. Showing all possible variants avail-
able for events in addition to the variant shown in Fig. 4 (VLEN).
The example used here is the same as that in Fig. 2. On the left side
are entries in /data and on the right side are entries in /map. a
ONED variant, b VLEN array (same as in Fig. 4) and c NANPADDED
array. Additional attributes for the arrays are listed in Table 1. Within

a file, all arrays must be in the same consistent variant. These variants
are applicable for nonuniform arrays also (not shown). Note that for
nonuniform in VLEN and NANPADDED variants, the corresponding
source entry in /map/time will also have VLEN and NANPADDED
arrays, respectively



158 Neuroinform (2016) 14:147–167

Fig. 6 Benchmarks. Shows the benchmarking results for different
variants possible within NSDF for events data. a Efficiency of writing
time, above: one-time writing, below: incremental writing. b Effi-
ciency of space, and c Efficiency of reading. The benchmarks shown
here are for event variants, however, event and nonuniform data have
identical storage (ONED, VLEN or NANPADDED) and the plots here
capture the general trend. The actual sizes of each entry affect the tim-
ings and in our tests nonuniform vlen and nanpadded take almost the
same time for incremental writing, which is much more than 1D. These
trends do not matter for Uniform case as it is variant free. For details
regarding how the data were generated refer to Benchmarks section in
the text

ports them, and (2) those that do may not allow appending
data in an efficient way at present. As ragged arrays are part
of HDF5 specification, it seems likely that this format may
be better supported in the future.

The advantage of the NANPADDED variant is that it can
be read as a regular 2D array, and it is well supported by
other software, (e.g. pandas and pytables). However, heav-
ily NaN padded arrays are large and do not compress well.
Further, this format may need extra checks when reading the
data to avoid passing NaNs to downstream analysis code.
Also, when storing data in an incremental fashion, the algo-
rithm has to search for the end of valid data and start of NaN
for each row. This adds to the time-complexity of appending
data.

Summary

Of the three NSDF components — model structure, data,
and mappings — it is not surprising that the data component
is the most demanding for speed and space. It is relatively
easy to define efficient formats for static data and uniformly
sampled time-series. Non-uniform and event data present
a multitude of trade-offs, and further the underlying soft-
ware support is itself evolving. NSDF has therefore opted
for flexibility in non-uniform and event data description,
and we anticipate that it will take extensive real-world use
to narrow this down. A quick reference to this section is
presented in Table 1.

Mappings

Data do not have much meaning without information about
their origins. However, we recognize that some users may
prefer not to store the entire code that generated the data
in NSDF /model. Some would rather host their model
description in an online repository and merely provide a
link to appropriate version of the model, while others may
only include specific parameters for the version that gen-
erated the data. For these reasons NSDF only recommends
and does not enforce that the model description be provided.
To base data references on the numerous possible model
description formats would be naive.

In our approach, we make a distinction based on what the
data are (entries in /data), to what the labels of the data are
(entries in /map) and components that generated the data
(entries in /model). This would facilitate traversal either
from model to data, via the labels, or just between data and
their labels. It also serves as a layer to decouple the data
from the model description.

It is a common practice in engineering to introduce
an additional mapping layer between two components so
that they are decoupled and one can be modified without
affecting the other. This is in line with switch boards in a



Neuroinform (2016) 14:147–167 159

telephone exchange or the TCP/IP protocol. The rationale
for using a separate tree for mapping is twofold:

1. When the data are stored in a 2D dataset, each row cor-
responding to one source, the list of sources is attached
as a dimension scale which is just another dataset stor-
ing the list of source ids. We use the /map tree for
storing the dimension scale dataset. A possible alterna-
tive is to store the sources as another column in the same
dataset. However, this will create a compound dataset,
reduce performance, and complicate processing. More-
over, the former choice allows sharing the same source
for multiple data (e.g., current and voltage recorded
from the same cells).

2. If one starts with a model component and wants to
locate the associated data, the “Mappings” layers can
help reduce the search space. In particular, for model
described in an internal HDF tree (modeltree), we col-
lect the references to the mapping tables [m1, m2, m3,
. . . ] containing source-data mapping for the data col-
lected from components [c1, c2, . . . ] and attach it as an
attribute of the common parent. Thus a software tool
can search the mapping tables in this list to identify the
subset of data to look into and avoid exhaustive search
of the /data tree (i.e. go through all datasets under
/data and check the associated “source” attribute) to
identify the data recorded from a particular component.

NSDF is designed to provide the mapping between
recorded data and data sources in an unambiguous way.

To achieve this mapping, we utilize the HDF5 facilities
directly wherever suitable and define higher level data
structures where it goes beyond the scope of HDF5 specifi-
cation. The /map group in an NSDF file stores the mapping
between data and sources as well as sampling times where
necessary. It is organized to mirror the structure under
/data to simplify look-up of data sources (Fig. 4). This
scheme also facilitates manual inspection of the data file.
The data contents under map are dimension scales (The
HDF Group 2005) which are attached to datasets via
attributes and object references. The entries in /map allow
shared axis for different entries in data/datatype. ie., the
entries /data/uniform/population/parameter1 and
/data/uniform/population/parameter2 can have
the same unique identifier axis. And in this case, the cor-
responding unique identifier array for these data will be in
/map/uniform/population_ids.

NSDF stores unique identifiers of the data sources in
source dimension scales. The exact algorithm of defining
the unique identifiers is not within the scope of NSDF but
we provide a basic facility for generating such identifiers for
hierarchical (tree like) models in the nsdf python module.
More importantly, whatever the original model description,
the unique identifier must be created in such a fashion that
it can be mapped back to the original model component it
represents.

In case of tree-structured model description, as in
MOOSE and GENESIS, the path of an element can be used
as the unique identifier (Fig. 3a). This is to ensure that

Table 1 Variants in NSDF

/data Option Variant Shared Time Level DS 0 DS 1 Attributes

static 1 NA NA 4 source a unit field

2 NA NA 4 source label unit field

uniform 1 NA True 4 source – unit field tstartb

2 NA True 4 source time unit field

nonuniform 1 NUREGULAR True 4 source time unit field

2 ONED Agnostic 4 – – source

5 – time unit field source

3 VLEN False 4 source time unit field

4 NANPADDED False 4 source time unit field

event 1 ONED NA 4 – – source

5 – – unit field source

2 VLEN NA 4 source – unit field

3 NANPADDED NA 4 source – unit field

acompound arrays
badditionally “dt” and “tunit”

For reasons related to efficiency in storage, manipulation, and 3rd party support, NSDF supports more than one way to save simulation data.
All the possible options for storing a dataset are listed here. The attributes listed here are mandatory. Additionally, optional attributes such as
ontology may also be included. Legend: NA – Not Applicable; DS – Dimension scale; NUREGULAR – a regular 2D array. ONED – One
dimensional array variant; NANPADDED – arrays are NaN padded; VLEN – ragged array.



160 Neuroinform (2016) 14:147–167

software for analysis and visualization can unambiguously
associate the data with the original model specification. In a
generic case, a simulation need not have URI-like references
to model components. However, it is valid to assume that the
data being stored come from a unique source. We identify
these sources by their unique names (Fig. 3b).

In other cases when a network model defined in the
NeuroML file network.xml is stored as a string under
/model/filecontents in the dataset network.xml,
then a specific compartment in the cell would be specified as

where population, cell_number and segment_id are
NeuroML identifiers that uniquely resolve the compartment
within the NeuroML file (Fig. 3c).

Dimension Scales

DimensionScales (DS) in HDF5 provide a standard way
of associating additional information to any dimension of
an HDF5 dataset. A DS can label each position along a
particular dimension of a dataset. The DS themselves can
be datasets containing data of any valid type (e.g., string,
float or integer). The connection between a dataset and each
of its DS is given by the HDF5 specification (The HDF
Group 2005). NSDF utilizes DS to specify the sources and
sampling times of recorded data.

In uniformly sampled data in NSDF each row cor-
responds to a data source. A dimension scale labeled
source storing the unique identifiers of the data sources
is attached to the first (row) dimension of uniformly
sampled datasets. Thus for a dataset entry V[m, n],
the identifier of the source will be D[m] where D is
the dimension scale attached to the first dimension of
V with the label source. For the variables recorded
under the group /data/uniform/{population} the
DS attached is /map/uniform/{population}. All the
datasets under /data/uniform/{population} share
the same source dimension scale.

For nonuniformly sampled datasets we provide two dif-
ferent approaches to map data to sources. In the most
general case such data are stored in a 1D dataset for each
source and the unique identifier of the source object is stored
in the source attribute of the dataset. For the reverse map-
ping an explicit table with the columns source and data

is required for each variable recorded from a population of
sources where the first stores the unique identifier of the
source object and the second contains the path or reference
to the corresponding data table. This scheme is illustrated
in Fig. 5. On the other hand, if the data are saved in 2D
dataset (NUREGULAR, NANPADDED or VLEN variants),
then the list of sources can be attached as a dimension
scale to the row dimension similar to the case of uniformly

sampled data. The same policy applies to event data based
on whether they are stored as 1D datasets or 2D datasets.

Mapping Sampling Time to Data Points

In addition to mapping the data sources to the datasets
and vice versa, one also needs to store sampling times
for nonuniformly sampled data. We keep a special group
/map/time for storing this information. All sampling times
are stored as dimension scales under this group. As per
HDF5 Dimension Scale specification, the same dimension
scale can be shared by multiple datasets. Thus, even in case
of nonuniformly sampled datasets, if they are sampled at the
same time points, one can attach a single time dimension
scale to all of them. We leave the naming and organization
of the time dimension scales up to the users as they can
be unambiguously accessed from the original datasets via
references.

In case of uniformly sampled data the initial time and the
increment stored as data attributes are sufficient to describe
the timing of any sample, so one can do without a mapping
of sampling times. However, for consistency with nonuni-
form data, we allow explicit storage of sampling times as a
dimension scale as an alternative.

HDF5 dimension scales simplify mapping between uni-
formly sampled data and their sources, as well as the
2D-dataset formats for nonuniformly sampled and event
data. But the 1D storage of the latter two requires an explicit
mapping. In this case one has to choose between HDF5
object reference and string path for referring to the dataset.
The HDF5 object reference is poorly supported by some of
the popular third party libraries whereas the string paths suf-
fer from the risk that renaming the dataset will break the
mapping.

The /map group is not only a container for dimension
scales, but also a decoupling layer between model and data.
Moreover, it can be utilized for efficient traversal from
model component to data when the nodes of the modeltree

store references to entries in this group. In summary, NSDF
specifies a map group that mirrors the structure of the data
contents, and utilizes the HDF5 dimension scales construct
to define a unique map between model components (data
sources) and the stored data.

Environment Specification

Metadata describing data, like the method of data cre-
ation, date and time, and the name of the creator(s), are
important for interpretation and identification of the data
when sharing it. There are several existing standards for
metadata and one can use HDF5 attributes to associate
any metadata with any node in an NSDF file. Here we
specify some attributes drawing from Dublin Core terms



Neuroinform (2016) 14:147–167 161

specified in ANSI/NISO Standard Z39.85-2012, augmented
with terms applicable to data recorded in an experimental
scenario.

Every HDF5 file, and thus NSDF file, has a root group at
the top level. This group should have the following attributes
relevant to the entire file:

– title : title of the file.
– description : description of the file.
– creator : creator of the file.
– contributor : entities that contributed to the data

creation.
– created : time-stamp of creation of file as UTC

timestamp in ISO 8601 format.
– license : licensing of the file (optional).
– rights : information about rights over the resource.
– tstart : system time when the simulation/recording

was started. This is optional metadata intended to be
both human- and machine-readable, this should be date-
time string in the ISO 8601 format.

– tend : system time when the simulation/recording was
finished. This should be date-time string in the ISO
8601 format.

– software : list of simulation software used for gener-
ating the file.

– method : list of numerical methods used (Exponential
Euler, Runge-Kutta, etc.).

– nsdf_version : NSDF version number.

The users are free to add further metadata as suitable for
specific needs. For example, in simulations using random
numbers, it may be useful to store the random number gen-
erator algorithm and the seed; in parallelized simulations
one may want to store information about the parallel envi-
ronment. The above is a core set of metadata which should
help data sharing and interpretation in the most general case.

NSDF Library

To facilitate reading and writing data in NSDF file format
we developed a Python library which is freely available at
https://github.com/nsdf. The documentation of this library
is available at https://nsdf.readthedocs.org/. This library is
designed to be imported into the Python environment by any
Python-compatible simulator. We tested the compatibility
of this library on Linux and Microsoft Windows operating
systems. Once loaded, all the NSDF file and data handling
operations can be transparently accessed by the simulator
using the library functions and classes. The NSDF library
is structured as a Python module which provides classes
for reading and writing data, utility classes for defining the
model tree, and several data container classes for organizing
data for reading and writing. For large datasets containing
numeric values the numpy library (Oliphant 2007) provides

efficient data structures and it is the basis of most numeric
libraries in Python. Hence we chose this for storing numeric
data in memory before they are written to file. There are two
popular HDF5 modules in Python: PyTables and h5py,
both of which integrate well with numpy. PyTables pro-
vides a high level database-like interface to the HDF5 C
library and incorporates many optimizations and customiza-
tions that are limited to PyTables only. Thus, files written
using PyTables may not be portable to other HDF5 read-
ers. On the other hand, h5py is a relatively low level
interface to the HDF5 C library. h5py is more complete
compared to PyTables as it provides support for variable
length datasets, references and dimension scales, which are
extensively used in NSDF. For these reasons we used h5py

for HDF5 operations. One shortcoming of h5py is that vari-
able length datasets cannot contain 64 bit floating point
numbers but hopefully this will soon be addressed by the
active developer community.

At the top level NSDF module provides two main classes,
NSDFWriter for writing data to and NSDFReader for read-
ing data from an NSDF file. There is a utility class Model-
Component for defining a fallback model tree and several
data container classes for organizing data for reading and
writing.

The nsdf Python library provides classes for each NSDF
data type. Any recorded variable can be temporarily stored
in an instance of the appropriate class. Additional attributes
appropriate for the type of the variable can also be set:

This defines data_container to be a variable for stor-
ing ’Vm’ recorded in unit of millivolt sampled at intervals
of 0.1 millisecond. NSDF library also provides a basic tree
node for defining model structure and it can generate default
unique identifier for each model component in the tree:

The Vm recorded from this model component can be
inserted in the data container:

Here vm_array is a numpy array containing data val-
ues. Python and numpy have facilities to read data from csv
files and data stored in arbitrary HDF5 files can be read
using h5py or PyTables modules. The above process can
be repeated for all model components that share the same
recording parameters. Once all the data sources and their
data have been added in this manner, an NSDFWriter object
can be created for saving them to an NSDF file.

This will create an HDF5 file named ’hh vm.h5’ in cur-
rent working directory, overwriting any existing file of the

https://github.com/nsdf
https://nsdf.readthedocs.org/


162 Neuroinform (2016) 14:147–167

same name. The file level attributes can be specified as a
dictionary:

The tree structure of the model can be stored in this file
by passing the root node of the model tree:

Before adding the data, one must add the sources as a
dimension scale:

and finally the data container passed to the writer along
with the generated dimension scale so that the mappings are
made correctly:

Data writing is by default streaming, which means if
add_uniform_data is called again with the same source
dimension scale but new data, then the new data are
appended to the existing datasets. Similarly, an NSDF-
Reader object can be used for opening an existing file and
reading data from it.

At present only reading entire datasets for a variable
recorded from a specified population of model components
is implemented:

This is the reverse of writer.add_uniform_data and
creates a UniformData object containing all the data that
was written to the file.

Results

Examples

In this section we present several datasets obtained in real
case scenarios of neural simulations. When relevant, the
files have been prepared in different variants specified
above, to compare efficiency of data writing, reading, and
storage. The scripts generating some of the files are avail-
able as part of the nsdf module in the examples subdirectory
and the resulting NSDF files are available at (http://bit.ly/
nsdf).

Example 1 Spike times from a large network

A simulation using Brian simulator (Stimberg et al. 2014)
was obtained. This consisted of randomly connected net-
work of integrate and fire neurons (6400 excitatory and
1600 inhibitory) with exponential inhibitory and excitatory
currents. The spike times for every cell were recorded for
a duration of 10 seconds. This data was inhomogeneous,
i.e., the network activity died off quickly, and only few cells
continued to fire during the course of the simulation. The
different variants possible in NSDF for event type data are
shown here.

Example 2 Membrane potentials from a detailed compart-
ment model

We considered a Layer 5 pyramidal cell (Hay et al.
2011), which models Ca2+ spikes and BAC firing. In this
example we illustrate how to save the data obtained from
this simulation in an NSDF file. We save the transmem-
brane currents from all the compartments of the cell, spike
times, and the current injections from the patch clamps,
artificial EPSPs.

Example 3 Large detailed compartmental model simula-
tions

In order to see how NSDF model handles large data,
we saved data obtained from the largest publicly avail-
able single thalamo-cortical column model developed by
Traub et al. (2005). This model consists of 3560 neurons
of 14 different types. The model was modified to record
transmembrane currents from all the compartments, while
recording spike times of all the cells. We present samples of
data obtained from an example simulation.

Example 4 Storage of multiscale model simulations

As an example of storing multiscale data, we used a
model that incorporates reaction-diffusion as well as elec-
trical signaling in neurons. This model was implemented in
MOOSE. The reaction-diffusion model includes Ca2+ and
calmodulin (CaM). Calcium influx through ion channels is
simulated in the electrical portion of the model, and this is
mapped to calcium concentration in the chemical model. In
the NSDF file, we store the membrane potential and concen-
tration of Ca2+ from electrical compartments as time-series.
We also store the Ca2+ and CaM concentration within all
of the reaction-diffusion voxels as they vary over time.
We use this example to illustrate the possibility to extend
the current uniform 2D datasets to higher dimensional
datasets.

http://bit.ly/nsdf
http://bit.ly/nsdf


Neuroinform (2016) 14:147–167 163

Example 5 Storage of external model description files

As an example of storing external model files with simu-
lated data in NSDF we took a model of a cerebellar granule
cell (Maex and De Schutter 1998) which was exported to
NeuroML using NeuroConstruct (Gleeson et al. 2007). A
script based on MOOSE NeuroML interface (Gilra 2014)
loaded and simulated it in MOOSE using its Python inter-
face (Ray and Bhalla 2008). We stored the data and the
model using the nsdf library in Python. In this case the entire
directory structure of the model, along with the contents of
the files are stored under the group /model/filecontent.
Since creating uids for model components described in arbi-
trary model description language is beyond the scope of
nsdf, we used MOOSE element paths for uid. However, this
has the advantage that the user can easily reproduce the
directory structure along with file contents for the model
locally and rerun the simulation with appropriate software.
This can be very useful for reproducing and verifying results
in the data file.

Example 6 Storing connectivity information

In simulations of a large network of neurons, connectivity
information is often crucial. To illustrate saving the connec-
tivity information in NSDF format, we generated a sample
dataset, where the presynaptic indices and the postsynaptic
indices are stored along with the strength of the synapse. We
save this data as a compound arrays under data/static

in which the first two columns correspond to the pre and
post synaptic indices respectively, and the third is the synap-
tic weight. This dataset has a source array of synapse index
linked as a dimension-scale stored in map/static.

Example 7 Storing data that is streaming

Long running simulations can generate large amounts of
data that cannot be stored in memory. In such cases the sim-
ulated data can be streamed to an NSDF file. The exact
implementation of when and how the data are flushed is
simulator dependent. However, if the nsdf writer finds that
the given variable and populations match existing data, then
it tries to append the new data to the existing dataset. For
demonstration purpose we use the cerebellar granule cell
model from example 5 above while appending the data to
NSDF file after every 100 steps.

Example 8 Storing molecular diffusion simulations

To test storing simulations at single molecular level, we
used a tutorial from the STEPS solver (Hepburn et al. 2012).
This tutorial illustrates diffusion of two molecular species
in a cylindrical volume defined by a tetrahedral mesh. One
of these molecule types can only diffuse in a restricted part
of the volume. In this example, we store the count of each

molecular species in every tetrahedron over time. We also
store the vertices that constitute the tetrahedron, and the
spatial coordinates of each vertex.

Benchmarks

We carried out extensive benchmarking to characterize the
performance of NSDF for different data types, and for dif-
ferent variants for storing the same data. For benchmarking
we generated random uniform, nonuniform and event data.
For uniform data we generated 100 datasets with 100 rows
(sources) and 10000 columns. For each row of nonuniform
and event data we chose a random number of columns
uniformly distributed between 5000 and 10000. The data
were kept identical through all runs by using a fixed seed
for the pseudo random number generator. We compared
the following cases: uniform data, nonuniform data and
event data for each of NANPADDED, VLEN, and ONED
variants, with and without compression, each for one-time
as well as incremental writing. We used the nsdf library
to write the data with cProfile module from Python stan-
dard library to deterministically profile the run time of
each function and computed the mean and standard devia-
tion of the times from five runs. The results are shown in
Fig. 6.

Efficiency in Time

Uniform data writing does not depend on the variant, but
incremental writing is much slower than one-time writing
for the same amount of data. For nonuniform and event data,
while all three variants are almost equally efficient for one-
time writing, ONED variant is 2–3 times faster than VLEN
and NANPADDED variants. Writing the data sources in the
map group is more expensive for ONED variant, but this
is negligible compared to that of writing the main data and
for incremental writing this is a one-time cost at the start
(Fig. 6a).

Efficiency of Space

In terms of file size VLEN variant produces equal file
sizes with and without compression because variable length
datasets cannot be compressed in HDF5. NANPADDED
variant produces larger files than ONED variant without
compression, but with compression it is smaller. Both NAN-
PADDED and ONED variants compress well and produce
files that are smaller than VLEN variant (Fig. 6b).

Efficiency of Reading

When reading all the data at one go (not streaming), read-
ing is fastest for VLEN, followed by NANPADDED and



164 Neuroinform (2016) 14:147–167

ONED. One should note that since this is a one-time read-
ing, overhead of traversing through many one-dimensional
datasets is included. However in case of incremental read-
ing, a program has to do this traversal only once at the
beginning. Also notice that compression shifts the workload
from slow I/O system to the CPU, which is much faster, and
hence reading compressed data tends to be faster (Fig. 6c).

Discussion

NSDF is designed to store the most common kinds of neu-
ronal simulation data: model configuration, uniform and
non-uniform time-series, and spiking events. The special
characteristics of the NSDF format are that it is open, self-
documenting and modular. Furthermore, since it is built
upon HDF5 it is efficient both in speed and in storage
requirements, and supports streaming to disk so that the
entire dataset needs not be stored in memory. The basic per-
formance of NSDF relies on the underlying HDF5 library,
but our specification also aims to optimize the use of HDF5.
For example, by limiting the depth of the data tree we not
only keep the data simple for humans to browse using a
generic HDF5 viewer, but also make it efficient because
traversing a deep tree is more expensive in HDF5 than read-
ing or writing large chunks of flat data. We also utilize the
extensibility of HDF5, which is the ability to define new
data structures using the existing ones. NSDF itself is exten-
sible in a different sense. First, we emphasize the abstract
concept of associating every dataset with the unique identity
of its source — which can be any model component or even
an electrode if one desires to use it for experimental data.
Second, by associating field names in composite datasets
and the properties of the source object, we impose a seman-
tic connection, which can be extended to variables with any
number of components. Thus the semantics of this extensi-
bility is beyond HDF5 while the low level implementation
exploits HDF5 as intended by its designers. The present
specification of NSDF is intentionally general and allows
multiple possibilities. We expect its use cases to converge on
an efficient subset, leading to further refinements in future
versions. Refinements can be incorporated in several ways:
(1) restricting definitions of datasets, for example, requiring
specific names for predefined data, like morphology infor-
mation under /static/cell/morphology, which will facilitate
software that needs to locate such data easily, (2) adding
metadata via HDF5 attributes, and (3) object references to
entire subtrees in HDF5 storing metadata. In general, NSDF
provides the semantics to fit the need for simulation data
while trying to utilize the features of HDF5 optimally.

Field Context and Ecosystem Numerous formats have
been used for storage of simulation and experimental data,

as outlined in the introduction. The key developments that
NSDF delivers are structured metadata and simulator inde-
pendence. This is enormously important for data sharing
and for the emergence of an ecosystem of simulator inde-
pendent tools. At the time of writing, two NSDF-aware
data visualization tools are in development (Moogli (Goel
et al. 2014) and dataviz (Ray 2014)) (both in alpha ver-
sion). Many standard visualization tools, such as the widely
used VTK (Schroeder et al. 2003) system, provide a Python
interface. Specific visualization tasks could therefore be
implemented with small Python wrappers using the nsdf
module.

As a way to seed NSDF use, we have two production
use-cases which will be made publicly available. In one of
our groups, we run simulations of a biologically detailed
multicompartment model of single thalamocortical column
based on Traub 2005 model (Traub et al. 2005; Gła̧bska
et al. 2014). We record all the transmembrane currents from
all the compartments under different stimulation protocols.
We then compute the local field potentials generated in an
in vivo and in vitro context. We use this as ground truth test-
ing data to validate methods of experimental data analysis.
These datasets containing transmembrane currents, mem-
brane potentials, spike timing, morphology of the cells in
the column and their placement, have been ported to NSDF
(release candidate). Analysis scripts for these datasets to
compute the extracellular potentials have been developed
(alpha version). A manuscript elaborating these datasets is
in preparation. In the other group, we run large cortical
models also based on the Traub 2005 model, for which
we need to store both the connectivity and the spike tim-
ing data for further analysis. This dataset too will be ported
to NSDF. In addition, we implemented the NSDF writer
class in MOOSE (beta version) which can export simulation
results as an NSDF file.

Given the Python library interface to NSDF it should
be relatively easy to develop further tools for analy-
sis and visualization. Several major neuronal simulators
(e.g., BRIAN (Stimberg et al. 2014), NEST (Gewaltig and
Diesmann 2007), NEURON (Carnevale and Hines 2006),
MOOSE (Ray and Bhalla 2008)) and many data analy-
sis tools provide a Python scripting interface. Again, the
availability of the Python library for NSDF facilitates sav-
ing and loading data from within these simulators. NSDF
also has the potential to interface to analysis and con-
version libraries, and other tools for neuroscience data
through its Python library, such as NEO (Garcia et al.
2014), NeuroTools (The NeuralEnsemble Initiative 2014),
or Geppetto (Open Worm 2014). Each of these tools have
their strength in a specific domain and NSDF fills a posi-
tion complementing them. For example, NEO allows read-
ing and writing data from electrophysiological experiments
in different formats using a common object model, thus



Neuroinform (2016) 14:147–167 165

shielding the user from the idiosyncrasies of different data
formats, yet tying her to the Python language and the API of
the library. NEO can store its data structures in HDF5 format
via the PyTables module, but it is not focused on describ-
ing the data and has the limitations of PyTables discussed
earlier. However, the NeoHDF5 format is not documented
except for the Python API. Also, since the same data can
be included in multiple sources (RecordingChannelGroup)
and temporal containers (Segments), the generated HDF5
files are not easy for human exploration. NSDF on the other
hand provides a language agnostic format which is focused
on simulation data, rich with metadata and tries to be as
general as possible while remaining specific enough to effi-
ciently address the common needs of simulation data. Data
in this format can be shared without conversion and used
with different tools capable of handling HDF5. The exten-
sibility of NEO with new input/output functions will allow
one to read and write NSDF using NEO and thus provide
a way to convert data to/from other formats using the NEO
API to the extent possible. A wrapper around NSDF could
facilitate the use of standard visualization tools such as
VTK (Schroeder et al. 2003). NSDF is based on HDF5, and
this already brings in a variety of data visualization tools
(e.g. hdfview (The HDF Group 1997b)). NSDF will benefit
from further tool development in the HDF5 community, as
well as refinements in the HDF5 standards. Data reposito-
ries are another emerging aspect of the ecosystem in which
NSDF is positioned. The CARMEN project (The CARMEN
Project 2006) and INCF dataspace (INCF 2014a) are devel-
oped to facilitate sharing of data and shared data analysis,
and the availability of a standard for these data will further
facilitate exchange.

In the context of data sharing, maintaining prove-
nance of scientific data is a major challenge. Scientific
workflow management systems like Kepler (Ludäscher
et al. 2006) allow storage of provenance information
(Davidson and Freire 2007). There are several projects like
NIF (INCF 2015), NIDM (Keator et al. 2013) and Sumatra
(Davison et al. 2014) for provenance management in dif-
ferent subdomains of neuroscience. Though it is currently
outside the scope of NSDF, as provenance related metadata
become standardized, the flexibility of HDF5 will allow
easy incorporation of such information into NSDF format.

NSDF and Experimental Data Could the design princi-
ples of NSDF be extended to experimental data? There
is an obvious and substantial overlap of NSDF capabil-
ities with those required by experimental neuroscience.
Specifically, the major data types (time-series and events)
are identical to those for a wide range of electrophysiol-
ogy experiments. Indeed, while our goal was development
of a format for efficient and self-documenting storage of
data coming from simulations, the possibility of extending

NSDF towards storing experimental data was also factored
in its design. The main point of departure is that NSDF
data sources are closely tied to data structures charac-
teristic of simulations, whereas experimental data sources
are typically instrument-driven. To the extent that experi-
ments and simulations both monitor equivalent biological
concepts, the NSDF model specification capabilities could
readily be extended to experiments. Thus NSDF shares
many design requirements with experimental data formats
insofar as the data content is concerned. However, the
experimental world is much richer than the NSDF hierar-
chical vocabulary of biological entities. The specification
of experimental data sources is a much more challenging
problem, and despite the flexibility of NSDF, the current
implementation may not be sufficient for this. In particu-
lar, experiments usually have complex temporal structure,
e.g. consisting of sessions and trials, data for all of which
needs to be organized in a logical way. Technically this can
be accommodated either with dimension scales and region
references or additional structures in an NSDF file, but
is not implemented in NSDF at this point. More impor-
tantly, development of adequate metadata for the description
of experimental context will require work which should
be integrated with existing efforts (NEO, INCF, NWB,
CARMEN).

Future of NSDF While the data structures provided in
the present specification of NSDF allow to store spatial
and spatiotemporal data, NSDF lacks dedicated data-types
for spatial datasets, in particular image sequences and
static 3-dimensional reconstructions. These are increasingly
important for imaging experiments in different modalities,
including but not limited to structural and functional MRI,
voltage sensitive dyes, and calcium imaging. Additionally,
it is often convenient to treat electrophysiology data from an
imaging perspective. For example, data coming from mod-
ern high-density multi-electrode arrays with thousands of
contacts is often represented as an image where each elec-
trode is a pixel. We anticipate that simulation requirements
will eventually also develop to require such datasets as there
is a growing interest in simulations of different measure-
ment modalities (Denker et al. 2014). Our use of HDF5
dimension-scales in mapping between data sources and con-
tent is entirely consistent with a future extension of NSDF
to handle multidimensional image data. Selection of opti-
mal provisions for such datasets will require study of typical
uses of such data and benchmarking of different possibilities
to develop solution which would facilitate typical imaging
analyses.

NSDF Governance Governance and community engage-
ment are essential for the longevity of any proposed data



166 Neuroinform (2016) 14:147–167

References

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry,
J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris,
M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese,

J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., & Sher-
lock, G. (2000). Gene ontology: tool for the unification of biol-
ogy. The Gene Ontology Consortium. Nature Genetics, 25, 25–
29.

Bhalla, U.S., & Bower, J.M. (1993). Genesis: a neuronal simula-
tion system, In F. Eeckman (Ed.), Neural systems: analysis and
modeling (pp. 95–102). New York: Springer.

Bloom, T., Ganley, E., & Winker, M. (2014). Data access for the open
access literature: plos’s data policy. PLoS Medicine, 11.

Brooks, D.J., Hunter, P.J., Smaill, B.H., & Titchener, M.R. (2011).
BioSignalML - A meta-model for biosignals., 2011 annual inter-
national conference of the IEEE engineering in medicine and
biology society (pp. 5670–5673).

Carnevale, N.T., & Hines, M.L. (2006). The NEURON book Vol. 30.
Cambridge: Cambridge University Press.

Cohen, S., & Hindmarsh, A. (1996). CVODE, a stiff/nonstiff ODE
solver in C. Computers in Physics.

Davidson, S., & Freire, J. (2007). Provenance and scientific work-
flows: challenges and opportunities. In Proceedings of the 2008
ACM SIGMOD international conference on management of data
(pp. 1345–1350).

Davison, A., Mattioni, M., Samarkanov, D., & Teleńczuk, B. (2014).
Sumatra: a toolkit for reproducible research, In V. Stodden, F.
Leisch, & R. Peng (Eds.), Implementing reproducible research
(pp. 57–79): Chapman & Hall/CRC.

Denker, M., Einevoll, G., Franke, F., Grün, S., Hagen, E., Kerr,
J., Nawrot, M., Ness, T.B., Ritz, R., Smith, L., Wachtler,
T., & Wójcik, D. (2014). Report from the 1st INCF work-
shop on validation of analysis methods. Technical report,
INCF.

Durka, P.J., & Ircha, D. (2004). SignalML: Metaformat for description
of biomedical time series. Computer Methods and Programs in
Biomedicine, 76, 253–259.

Furber, S.B., Galluppi, F., Temple, S., & Plana, L.A. (2014). The
SpiNNaker Project. Proceedings of the IEEE, 102(5, SI), 652–
665.

G-Node (2004). Neuroshare API Specification Rev. 1.3.
Gadde, S., Aucoin, N., Grethe, J.S., Keator, D.B., Marcus, D.S., &

Pieper, S. (2012). XCEDE: An extensible schema for biomedical
data. Neuroinformatics, 10, 19–32.

Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R.,
Rautenberg, P.L., Rodgers, C.C., Sobolev, A., Wachtler, T., Yger,
P., & Davison, A.P. (2014). Neo: an object model for handling
electrophysiology data in multiple formats. Frontiers in Neuroin-
formatics, 8, 10.

Gewaltig, M.-O., & Diesmann, M. (2007). Nest (neural simulation
tool). Scholarpedia, 2(4), 1430.

Gilra, A. (2014). MOOSE Demo - Granule cell.
Gła̧bska, H., Potworowski, J., Łȩski, S., & Wójcik, D.K.

(2014). Independent components of neural activity carry
information on individual populations. PLoS One, 9(8),
e105071.

Gleeson, P., Crook, S., Cannon, R.C., Hines, M.L., Billings, G.O.,
Farinella, M., Morse, T.M., Davison, A.P., Ray, S., Bhalla, U.S.,
Barnes, S.R., Dimitrova, Y.D., & Silver, R.A. (2010). NeuroML:
a language for describing data driven models of neurons and net-
works with a high degree of biological detail. PLoS Computational
Biology, 6, 1–19.

Gleeson, P., Steuber, V., & Silver, R.A. (2007). neuroConstruct: a tool
for modeling networks of neurons in 3D space. Neuron, 54(2),
219–35.

Goel, A., Chintaluri, C., & Bhalla, U.S. (2014). Moogli.
Gorchetchnikov, A., Cannon, R., Clewley, R., Cornelis, H., & Davison,

A. (2011). NineML: declarative, mathematically-explicit descrip-
tions of spiking neuronal networks.

standard. NSDF will initially be driven by its core develop-
ers, and is expected to transition to a community maintainer
structure in a couple of years. NSDF is and will remain
open-source. The NSDF development approach has been
to have a working package and definition for a few well-
developed use-cases as a first release. We have already
initiated a period of extensive but informal community dis-
cussions to strengthen the baseline feature-set developed by
the core team. During this period we will engage closely
with related efforts especially in the experimental data
domain (e.g., Neo, NWB, CARMEN). We will transition
to a formal standards development process, as commonly
employed by similar communities such as SBML, with a
users group meeting and elected maintainers of the stan-
dard. We propose to utilize the institutional structures of the
International Neuroinformatics Coordination Facility in the
long-term governance of the project through this users’ body.

Information Sharing Statement

The necessary information to store simulation data in
NSDF is included in this document. We provide exam-
ple files in NSDF and these are available for downloading
at http://bit.ly/nsdf. We provide a Python based library
which is available under GNU General Public License at
http://github.com/nsdf/nsdf. The scripts used to generate the
above mentioned example files are also provided here. The
documentation for this library is available at https://nsdf.
readthedocs.org/. This library has been tested on Ubuntu
14.04, and on Windows 7 using Anaconda Scientific Python
Distribution.

Acknowledgments This work is supported by EC-FP7-PEOPLE
sponsored NAMASEN Marie-Curie ITN grant 264872, Polish Min-
istry for Science and Higher Education grant 2948/7.PR/2013/2, and
by National Centre for Biological Sciences, Tata institute of Funda-
mental Research, Bangalore, India. The authors would like to thank
the HDF Group/NASA for providing sample NASA HDF/HDF-EOS
data files. Aviral Goel, Johannes Rieke and Matteo Cantarelli for their
critical comments.

Open Access This article is distributed under the terms of the
1408 Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

http://bit.ly/nsdf
http://github.com/nsdf/nsdf
https://nsdf.readthedocs.org/
https://nsdf.readthedocs.org/
http:// creativecommons.org/licenses/by/4.0/
http:// creativecommons.org/licenses/by/4.0/


Neuroinform (2016) 14:147–167 167

Hay, E., Hill, S., Schürmann, F., Markram, H., & Segev, I. (2011).
Models of neocortical layer 5b pyramidal cells capturing a wide
range of dendritic and perisomatic active properties. PLoS Com-
putational Biology, 7(7), e1002107.

Hepburn, I., Chen, W., Wils, S., & De Schutter, E. (2012). STEPS:
efficient simulation of stochastic reaction–diffusion models in
realistic morphologies. BMC Systems Biology, 6, 36.

Hucka, M., Bergmann, F., Hoops, S., Keating, S., Sahle, S., Schaff, J.,
Smith, L., & Wilkinson, D. (2010). The Systems biology markup
language (SBML): language specification for level 3 version 1
core.

INCF (2014a). INCF dataspace.
INCF (2014b). INCF Electrophysiology task force.
INCF (2015). Neuroscience information framework.
ISO (2009). ISO 80000-1:2009 - Quantities and units – Part 1: General.
Kandel, E.R., Markram, H., Matthews, P.M., Yuste, R., &

Koch, C. (2013). VIEWPOINT neuroscience thinks big
(and collaboratively). Nature Reviews Neuroscience, 14(9),
659–664.

Keator, D., Helmer, K., Steffener, J., Turner, A., Erp, T.V., Gadde,
S., Ashish, N., Burns, G., & Nichols, B. (2013). Towards struc-
tured sharing of raw and derived neuroimaging data across existing
resources. NeuroImage, 82, 647–661.

Kemp, B., & Olivan, J. (2003). European data format ’plus’ (EDF+),
an EDF alike standard format for the exchange of physiological
data. Clinical Neurophysiology, 114, 1755–1761.

Le Franc, Y., Davison, A.P., Gleeson, P., Imam, F.T., Kriener, B.,
Larson, S.D., Ray, S., Schwabe, L., Hill, S., & De Schutter,
E. (2012). Computational Neuroscience Ontology: a new tool to
provide semantic meaning to your models. BMC Neuroscience,
13(Suppl 1), P149.

Liang, B., Simonotto, J., Knowles, A., & Fletcher, M. (2010). The
neurophysiology data translation.

Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones,
M., Lee, E.A., Tao, J., & Zhao, Y. (2006). Scientific workflow
management and the Kepler system. Concurrency and Computa-
tion: Practice & Experience, 18(10), 1039–1065.

Maex, R., & De Schutter, E. (1998). Synchronization of golgi and
granule cell firing in a detailed network model of the cerebel-
lar granule cell layer. Journal of Neurophysiology, 80(5), 2521–
37.

Mattioni, M., Cohen, U., & Novère, N.L. (2012). Neuronvisio: A
graphical user interface with 3d capabilities for neuron. Frontiers
in Neuroinformatics, 6(20).

Mead, C. (1990). Neuromorphic electronic systems. Proceedings of
the IEEE, 78(10), 1629–1636.

Moore, H.M., Kelly, A.B., Jewell, S.D., McShane, L.M., Clark, D.P.,
Greenspan, R., Hayes, D.F., Hainaut, P., Kim, P., Mansfield, E.A.,
Potapova, O., Riegman, P., Rubinstein, Y., Seijo, E., Somiari, S.,
Watson, P., Weier, H.-U., Zhu, C., & Vaught, J. (2011). Biospec-
imen reporting for improved study quality (BRISQ). Cancer
Cytopathology, 119(2), 92–101.

Nature Neuroscience (2007). Got Data?
Oliphant, T.E. (2007). Python for Scientific Computing. Computing in

Science & Engineering, 9(3), 10–20.
Open Worm (2014). Geppetto simulation engine.
Piwowar, H.a., Day, R.S., & Fridsma, D.B. (2007). Sharing detailed

research data is associated with increased citation rate. PloS One,
2(3), e308.

Poon, C.-S., & Zhou, K. (2011). Neuromorphic silicon neurons and
large-scale neural networks: challenges and opportunities. Neuro-
morphic Engineering, 108.

Prinz, A.A., Billimoria, C.P., & Marder, E. (2003). Alternative to hand-
tuning conductance-based models: construction and analysis of
databases of model neurons. J Neurophysiol, 90(6), 3998.

Ray, S. (2014). dataviz.
Ray, S., & Bhalla, U.S. (2008). PyMOOSE: Interoperable Scripting in

Python for MOOSE. Frontiers in Neuroinformatics, 2, 6.
Schroeder, W., Martin, K., & Lorensen, B. (2003). The visualization

toolkit, 3rd edn.: Kitware, Inc.
Science Magazine (2014). Science/AAAS — Science Magazine:

About the Journal: Information for Authors: General Information
for Authors.

Sejnowski, T.J., Churchland, P.S., & Movshon, J.A. (2014). Putting big
data to good use in neuroscience. Nature Neuroscience, 17(11),
1440–1441.

Stimberg, M., Goodman, D.F.M., Benichoux, V., & Brette, R. (2014).
Equation-oriented specification of neural models for simulations.
Frontiers in Neuroinformatics, 8(February), 6.

The CARMEN Project (2006). CARMEN and CARMEN II.
The HDF Group (1997). HDF5.
The HDF Group (1997). HDFView.
The HDF Group (2005). HDF5 dimension scale specification and

design notes.
The NeuralEnsemble Initiative (2014). Neurotools.
Traub, R.D., Contreras, D., Cunningham, M.O., Murray, H., LeBeau,

F.E.N., Roopun, A., Bibbig, A., Wilent, W.B., Higley, M.J., &
Whittington, M.a. (2005). Single-column thalamocortical net-
work model exhibiting gamma oscillations, sleep spindles, and
epileptogenic bursts. Journal of Neurophysiology, 93(4), 2194–
232.

Unidata Program Center of the University Corporation for Atmo-
spheric Research (UCAR) (2014). UDUNITS software package.


	NSDF: Neuroscience Simulation Data Format
	Abstract
	Introduction
	Materials and Methods
	NSDF File Format
	Design Considerations
	File Structure

	Model Specification
	Model Entity Definition Using an Internal Tree Structure
	Model Definition Using External Formats

	Data Structures
	General Storage Guidelines
	Common Attributes
	Data Type: Static
	Data Type: Uniformly Sampled Continuous Data
	Data Type: Nonuniformly Sampled Continuous Data
	Data Type: Event Times
	Trade-offs
	Summary

	Mappings
	Dimension Scales
	Mapping Sampling Time to Data Points

	Environment Specification
	NSDF Library

	Results
	Examples
	Benchmarks
	Efficiency in Time
	Efficiency of Space
	Efficiency of Reading


	Discussion
	Field Context and Ecosystem
	NSDF and Experimental Data
	Future of NSDF
	NSDF Governance



	Information Sharing Statement
	Acknowledgments
	Open Access
	References


