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Abstract. Genomic events including gene loss, duplication, pseudogenization and rearrangement in plant gen-
omes are valuable sources for exploring and understanding the process of evolution in angiosperms. The family
Melanthiaceae is distributed in temperate regions of the Northern Hemisphere and divided into five tribes (Helonia-
deae, Chionographideae, Xerophylleae, Melanthieae and Parideae) based on the molecular phylogenetic analyses. At
present, complete chloroplast genomes of the Melanthiaceae have been reported from three species. In the previous
genomic study of Liliales, a trnI-CAU gene duplication event was reported from Paris verticillata, a member of Parideae.
To clarify the significant genomic events of the tribe Parideae, we analysed the complete chloroplast genome
sequences of two Trillium species representing two subgenera: Trillium and Phyllantherum. In Trillium tschonoskii (sub-
genus Trillium), the circular double-stranded cpDNA sequence of 156 852 bp consists of two inverted repeat (IR)
regions of 26 501 bp each, a large single-copy (LSC) region of 83 981 bp and a small single-copy (SSC) region of 19
869 bp. The chloroplast genome sequence of T. maculatum (subgenus Phyllantherum) is 157 359 bp in length, consist-
ing of two IRs (25 535 bp), one SSC (19 949 bp) and one LSC (86 340 bp), and is longer than that of T. tschonoskii. The
results showed that the cpDNAs of Parideae are highly conserved across genome structure, gene order and contents.
However, the chloroplast genome of T. maculatum contained a 3.4-kb inverted sequence between ndhC and rbcL in the
LSC region, and it was a unique feature for subgenera Phyllantherum. In addition, we found three different types of
gene duplication in the intergenic spacer between rpl23 and ycf2 containing trnI-CAU, which were in agreement with
the circumscription of subgenera and sections in Parideae excluding T. govanianum. These genomic features provide
informative molecular markers for identifying the infrageneric taxa of Trillium and improve our understanding of the
evolution patterns of Parideae in Melanthiaceae.

Keywords: Chloroplast genome; comparative genomics; gene duplication; single inversion; Trillium maculatum;
Trillium tschonoskii, trnI-CAU.

Introduction
The chloroplast that characterizes all green plants
(Viridiplantae) originated from an endosymbiotic event
between independent living cyanobacteria and a non-

photosynthetic host (Dyall et al. 2004). Chloroplast gen-
omes of flowering plants are typically circular double-
stranded DNA molecules, and usually contain two
inverted repeat (IR) regions (IRA and IRB) separated by
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a large single-copy and a small single-copy (LSC and SSC,
respectively) regions (Ravi et al. 2008). The plastid gen-
ome is mostly stable in structure, gene content and
gene order across land plant lineages (Jansen et al.
2005). Due to this stability, it demonstrated great utility
for developing phylogenetic hypotheses across the plant
tree of life (Jansen et al. 2007; Zhang et al. 2011; Li et al.
2013). Within seed plants, plastid genomes usually con-
tain 101–118 unique genes with the majority of those
66–82 coding for proteins involved in photosynthesis
and gene expression, 29–32 of these genes code for
transfer RNAs and 4 code for the ribosomal RNA genes
(Jansen and Ruhlman 2012). The advance of next-
generation sequencing has facilitated rapid growth of
complete chloroplast genomes due to time-saving and
low-cost advantages (Shendure and Ji 2008). To date,
�500 complete chloroplast DNA genome sequence
data have been released in GenBank’s Organelle Genome
Resources (http://www.ncbi.nlm.nih.gov/genome).

Melanthiaceae, a member of Liliales, comprises 17 gen-
era and �178 species of perennial herbs that are mostly
distributed in the temperate regions of the Northern
Hemisphere (Zomlefer et al. 2001). Species of this family
are characterized by their extrorse anthers and carpels
bearing three distinct styles (Rudall et al. 2000). The fam-
ily has been divided into five tribes: Heloniadeae, Chiono-
graphideae, Xerophylleae, Melanthieae and Parideae
(The Angiosperm Phylogeny Group 2009). Prior to any
molecular systematic analyses, Melanthiaceae were
divided into several taxonomically independent families
by Takhtajan (1997) due to their unique autapomorphies.
Trilliaceae, which is now recognized as tribe Parideae (Tril-
lieae), are unique in having solitary flowers, berries, mem-
branous nectary and large chromosomes with five
chromosomes as the base number. The phylogeny of spe-
cies within the Trilliaceae (now Parideae) was highly
debated by many researchers using molecular and
morphological data (Kato et al. 1995; Osaloo et al. 1999;
Osaloo and Kawano 1999; Farmer and Schilling 2002;
Farmer 2006). Tribe Parideae includes three genera:
Paris, Trillium and Pseudotrillium. Paris has 4–15 leaves
in a whorl, flowers 4-merous or more and inner perianth
segments that are much narrower than outer ones, while
Trillium has only 3 leaves in a whorl, flowers 3-merous and
inner perianth segments that are a little narrower than
the outer ones. Pseudotrillium has thick, tough, heart-
shaped leaves, spotted petals and flower stalks that
extend until the ripe fruit touches the ground. Trillium
has been divided into two subgenera differing in the pres-
ence of pedicel: subgenus Trillium (with pedicels) and
Phyllantherum (without pedicels) (Freeman 1969, 1975).
The monophyly of subgenus Phyllantherum was strongly
supported in many previous studies (Osaloo et al. 1999;

Osaloo and Kawano 1999; Farmer and Schilling 2002;
Farmer 2006). On the other hand, subgenus Trillium is ren-
dered a paraphyletic group by the inclusion of
Phyllantherum.

Currently, complete chloroplast genomes of the
Melanthiaceae have been reported from Paris verticillata
(KJ433485; Do et al. 2014), Veratrum patulum (KF437397;
Do et al. 2013) and Chionographis japonica (KF951065;
Bodin et al. 2013), which represent three tribes of Pari-
deae, Melanthieae and Chionographideae, respectively.
In this study, we analysed complete chloroplast genome
sequences of subgenera Trillium and Phyllanthrum
of Trillium to better understand the evolution of the
chloroplast genomes in tribe Parideae and across the
Melanthiaceae. We analysed the sequence variation
between two subgenera and proposed novel molecular
markers for phylogenetic studies by comparing the two
newly generated genome sequences. In addition, we
characterized the trnI-CAU duplication event in Pari-
deae, detected in P. verticillata chloroplast genome
(KJ433485), to determine the origin of the repeating
unit. Consequently, these results provide additional
knowledge about the patterns of the chloroplast gen-
ome evolution within tribe Parideae.

Methods

DNA extraction, sequencing and annotation

We collected Trillium tschonoskii from Ulleung Island,
South Korea. The voucher specimen and plant materials
were deposited at the herbarium (GCU) and Medicinal
Plant Resources Bank (MPRB) of Gachon University. Tril-
lium maculatum was obtained from the Abraham Baldwin
Agricultural College, USA (voucher No. Susan Farmer
19990006). We used silica gel-dried leaves from each spe-
cies to extract total genomic DNA using the DNeasy Plant
Mini Kit (Qiagen, Seoul, South Korea).

The Hiseq 2000 system was employed to sequence
chloroplast genomes of T. tschonoskii and T. maculatum.
Raw data were assembled using Geneious ver. 7. 1
(Biomatters Ltd, New Zealand) with default settings.
After trimming the sequences, we mapped pair-end
reads to the reference sequence of P. verticillata
(KJ433485). Aligned contigs were ordered according to
the reference genome and the gaps were filled via direct
sequencing of polymerase chain reaction (PCR) products
with newly designed primers. In addition, the ambigu-
ous sequences including low assembly coverage regions
and the borders of the four junctions between LSC,
SSC and IR regions were confirmed using the Sanger
method.

Complete chloroplast genomes of both species were
annotated by Geneious ver. 7. 1 (Biomatters Ltd), with
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manual corrections for putative start and stop codons.
The exon positions of protein-coding genes and intron
were determined using released Liliales chloroplast gen-
ome sequences as references. All tRNA sequences were
confirmed utilizing the web-based online tool of
tRNAScan-SE (Schattner et al. 2005) with default settings
to corroborate tRNA boundaries identified by Geneious.
The genome maps were generated using OGDraw (Orga-
nellarGenomeDRAW; Lohse et al. 2007) followed by man-
ual modification.

Comparison of the chloroplast genome sequences
of two subgenera

The simple sequence repeats (SSRs) were analysed using
Phobos Version 3.3.12 (Kraemer et al. 2009), with thresh-
olds of eight repeat units for mononucleotide SSRs,
four repeat units for dinucleotide, trinucleotide SSRs and
three repeat units for tetranucleotide, pentanucleotide
and hexanucleotide SSRs. All the detected repeats were
manually verified, and the redundant results were
removed. We aligned the plastid genome sequences of
two Trillium using MAFFT (Katoh et al. 2002). The identi-
fied insertion/deletion mutations (indels) from the results
were confirmed by reassembling the whole reads gener-
ated by HiSeq 2000. The single nucleotide polymorphisms
(SNPs) were analysed using Geneious 7.1 (Kearse et al.
2012), and each indel and SNP were separated based on
the position excluding one of IR regions. Since we
are comparing only two genomes, we quantified the
sequence divergence as the ratio of aligned nucleotide
sites within specifically different regions ( p-distance).
Sanger sequences and assembled genomes were calcu-
lated using mean p-distance in MEGA 6.0 (Tamura et al.
2013).

Twenty-nine species, representing the two subgenera
of Trillium in Parideae, were selected for comparative
sequencing of inversion. The PCR amplification primers
were designed based on the sequence comparisons
among three chloroplast genome sequences of two
Trillium species (in this study), and P. verticillata (KJ433485).
Presence and absence PCR amplifications were carried
out using various combinations of the three primers
(I1F: 5′-CCC TAG GTT TTT TTC TTC AAG-3′, I1R: 5′-TTA TGT
AGC TTA TCC TTT AGA CC-3′ and I2R: 5′-AGA AGG TCT ACG
GTT CGA G-3′).

trnI-CAU duplication pattern in the tribe Parideae

To clarify the trnI-CAU duplication pattern in the tribe
Parideae, we designed two primers (Primer 1: 5′-GAA
GAG TTC GAC CCA ATG CT-3′, Primer 2: 5′-TTA TGA AAC
TCT TTG ACC CC-3′) for amplifying the intergenic spacer
(IGS) region of rpl23-ycf2 based on the identical

sequence among the three species (P. verticillata,
T. maculatum and T. tschonoskii). The PCR condition for
IGS region of rpl23-ycf2 was at initial denaturation at
94 8C for 5 min, followed by 30 cycles of denaturation
at 94 8C for 1 min, annealing at 50 8C for 1 min and
extension at 72 8C for 2 min, with a final extension at
72 8C for 5 min. We obtained variously sized PCR pro-
ducts ranging from 500 to 1200 bp, and compared the
sequences of this region from 33 species covering
the infrageneric classification of the tribe. Sequence
editing and assembly were performed using Sequencher
(ver. 5.1). The sequence alignment was initially per-
formed using MAFFT (Katoh et al. 2002) and was
adjusted manually.

Results

Comparison of the complete chloroplast genomes
of subgenera Trillium and Phyllantherum

We sequenced the complete chloroplast genome se-
quence of two Trillium species, T. tschonoskii (subgenera
Trillium; GenBank accession number KR780076) and
T. maculatum (subgenera Phyllantherum; GenBank ac-
cession number KR780075) (Fig. 1). In total, 4 292 702
(T. tschonoskii) and 18 348 134 (T. maculatum) paired-
end reads were generated. Out of those, 60 805 and
246 240 reads were identified as the chloroplast genome
sequences for T. tschonoskii and T. maculatum, respect-
ively. The chloroplast genome of T. tschonoskii was
composed of 156 852 bp in length (AT content 62.5 %),
and it comprised a LSC region (83 981 bp), a SSC re-
gion (19 869 bp) and two IR regions (26 501 bp), while
T. maculatum was 157 359 bp in length (AT content
62.5 %, 86 340 bp of LSC, 19 949 bp of SSC and 25
535 bp of IRs).

The gene content and order were slightly different
between both species because of the rpl22 position in
the IR-LSC boundary and trnI-CAU duplication in IR.
While the rpl22 gene remained in the LSC region of the
T. maculatum plastid genome, this gene was present in
the IR region of T. tschonoskii plastid genome (Fig. 2). In
total, 116 genes of T. maculatum were identified and con-
sisted of 78 coding genes, 4 rRNA genes, 31 tRNA genes
and 3 pseudogenes, while those of T. tschonoskii were 115
genes without tRNA gene duplication [see Supporting
Information—Table S1]. In addition, T. tschonoskii has
7 coding genes, 4 rRNA genes, 9 tRNA genes, 2 pseudo-
genes, whereas T. maculatum has 8 coding genes, 4
rRNA genes, 8 tRNA genes, 2 pseudogenes, duplicated
in the IR region, making a total of 138 genes and 137
genes presented in the T. tschonoskii and T. maculatum
chloroplast genome, respectively. Among these genes,
22 intron-containing genes were found including
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15 protein-coding genes and 7 tRNA genes. Among them,
ycf3 and clpP gene contained two introns. The trnK-UUU
has the largest intron (T. tschonoskii: 2614 bp,

T. maculatum: 2640 bp) including the matK gene. Ycf15
and ycf68 in the IR region were pseudogenized because
of the presence of several internal stop codons.

Figure 1. Gene maps and summary of the T. tschonoskii Maxim. and T. maculatum Raf. chloroplast genomes. IR, inverted repeat; LCS, large
single-copy region; SSC, small single-copy region.
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Furthermore, the cemA gene located in the LSC of both
genomes was also pseudogenized.

Characterization of single inversion in subgenus
Phyllantherum

Based on comparison of T. maculatum, T. tschonoskii and
P. verticillata, a single inversion of 3.4 kb is characterized
in the chloroplast genome of T. maculatum. This inversion
is located between the ndhC and rbcL genes. We designed
three different primers including I1F (5′-CCC TAG GTT TTT
TTC TTC AAG-3′), I1R (5′-TTA TGT AGC TTA TCC TTT AGA
CC-3′) and I2R (5′-AGA AGG TCT ACG GTT CGA G-3′) to con-
firm and clarify the distribution of this inversion through-
out the genus Trillium. Specifically, the primer pairs of I1F
and I1R worked only in the normal type, while I2R and I1R
primer pairs were utilized for the recognized inversion
type among examined species. The results showed that
the inversion occurred in all examined species of the sub-
genera Phyllantherum (Fig. 3A and B).

Indels, SNPs and SSR between two subgenera
of Trillium

A total of 402 indels were detected between T. macula-
tum and T. tschonoskii, and most indels were located in
the IGS regions (78.2 %). 66.2 % of the total number of
indels were found in the LSC, while 22.1 and 11.7 %
were present in the SSC and IR regions, respectively
[Table 1, see Supporting Information—Table S2]. The
average length of indels was 74.8 bp, and the largest
indel was located in ycf1 and ycf2. The frequency of
1 bp indels was 10.6 %, while 79.3 % of all indels were
over 20 bp in length. In rRNA sequences, one indel of
3 bp and four indels of 5 bp were found in 16S rRNA and
23S rRNA. In addition, indel events were identified in 20

coding genes of both species (accD, atpB, ccsA, cemA,
clpP, infA, matK, ndhF, rpl2, rpl20, rpl22, rpl32, rpoC1,
rpoC2, rps11, rps15, rps18, rps19, ycf1 and ycf2).

A total of 2861 SNPs were detected between
T. maculatum and T. tschonoskii (Table 2), and 1620
SNPs were transversions. In total, 1707 (59.7 %) SNPs
were located in the coding regions, and 1154 (40.3 %)
were within IGS regions or within introns.

In our result of SNPs, p-distance values in coding
regions range from 0.002 to 0.23 and the average value
was 0.02. On the other hand, the average p-distance
value in non-coding regions was 0.034. Figure 4 shows
the average p-distance for five classes of genomic
regions: protein-coding genes, tRNAs, rRNAs, IGSs and
introns. The IGS divergence is almost double that of the
next highest class (genes). Introns hold the lowest
sequence divergence, at an average of 0.011%.

We detected SSRs longer than 8 bp in T. maculatum,
T. tschonoskii and P. verticillata chloroplast genomes by
the method of Qian et al. (2013). According to Qian
et al., the threshold was set because 8 bp or longer SSRs
are prone to slipstrand mispairing, which is thought to be
the primary mutational mechanism causing their high
level of polymorphism. In this analysis, the total number
of SSRs was 204 in P. verticillata, 205 in T. maculatulatum
and 213 in T. tschonoskii (Table 3). The most abundant
type of SSR in Parideae was a mononucleotide, with
138 in P. verticillata, 121 in T. maculatulatum and 133 in
T. tschonoskii. In addition to mononucleotide SSRs,
there are 52 dinucleotide SSRs in P. verticillata, 57
in T. maculatulatum and 53 in T. tschonoskii. Trinucleotide
SSRs were less frequent with 6, 14 and 7 in P. verticillata,
T. maculatum and T. tschonoskii, respectively. The hexa-
nucleotide SSRs were found only in Trillium species.

Figure 2. Comparison of the IR boundaries among five species within Melanthiaceae.

AoB PLANTS www.aobplants.oxfordjournals.org & The Authors 2016 5

Kim et al. — Complete chloroplast genome sequences of two Trillium species

http://aobpla.oxfordjournals.org/lookup/suppl/doi:10.1093/aobpla/plw015/-/DC1


Figure 3. Confirmation of inversion (3492 bp) between ndhC and rbcL in the genus Trillium. (A) Design of primer to amplify junction regions
between atpB and rbcL regions. The positions of atpB and rbcL genes in LSC regions are drawn based on the sequence assembly results of
T. tschonoskii, T. maculatum in this study (red text). *The data downloaded from the NCBI. The forward primer I1F contains the sequence in
atpB region. The sequence of the reverse primer (I1R) is located in the rbcL gene. Polymerase chain reaction amplification of IGS between
atpB and rbcL. Relationships of Parideae lineages followed the phylogenetic trees of S. C. Kim, J. S. Kim, W. C. Mark, F. F. Michael and J. H. Kim
(unpublished data). (B) Primers were designed to amplify junction regions between trnV-UAC and rbcL regions. The positions of trnV-UAC and
rbcL genes in LSC regions are drawn based on the sequence assembly results of T. tschonoskii, T. maculatum in this study (red text). *The data
downloaded from the NCBI. The forward primer I2R contains the sequence in trnV-UAC region. The sequence of the reverse primer I1R is located
in the rbcL gene. Polymerase chain reaction amplification of IGS between trnV-UAC and rbcL. Relationships of Parideae lineages followed the
phylogenetic trees of S. C. Kim, J. S. Kim, W. C. Mark, F. F. Michael and J. H. Kim (unpublished data).
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The majority of mononucleotide repeats were A-T rich
(Table 3).

Type of trnI-CAU of Parideae

We compared the sequences of the IGS region between
rpl23 and ycf2 using 33 species including Xerophyllum
to understand the evolutionary implication of trnI-
CAU duplication, which was reported from the Paris
chloroplast genome (Do et al. 2014). Based on the results,
we found that this region is of highly variable length
among the species, and we distinguished three major
types based on the number of copies of trnI-CAU
(Fig. 5). Type A was composed of a single trnI-CAU and
was found in Xerophyllum, Pseudotrillium rivale and
T. undulatum. It was also identified in several Trillium
and Paris species, but with variable lengths: in subgenus
Trillium species, the sequences ranged from 207 to
445 bp, in which there are two tandem repeats of ‘CAG
GTA TTA TCA TAC TGA AA’ (20 bp) and ‘CAT ATT ATC ATA
CTG AAA’ (18 bp). Similarly, in subgenus Daiswa of Paris,
there were 24 bp random tandem repeats of TAT AAC
TTA ACA GGA ATC ATC GTA. Type B contained two copies
of trnI-CAU. This type is found in subgenus Phyllantherum
of Trillium and section Kinugasa of subgenus Paris. The
lengths of tandem repeat sequences were 180 bp (sub-
genera Phyllantherum) and 155 bp (section Kinugasa of
subgenus Paris), which included 74 bp of trnI-CAU.
Remarkably, section Kinugasa (Paris japonica) has the
longest length of IGS between rpl23 and ycf2 among
the tribe Parideae. Type C, possessing three copies of trnI-
CAU genes in the sequenced region, was detected in
T. govanianum and section Paris of subgenus Paris. They
included three fully repeated units including trnI-CAU,
and the lengths were 155 and 139 bp, respectively.

Discussion

Comparison of complete plastid genomes of
subgenera Trillium and Phyllantherum

The plastid genome structure of the two Trillium species,
T. maculatum and T. tschonoskii, have a typical form
found in most angiosperms (Zhang et al. 2011; Kim and
Kim 2013; Li et al. 2013; Qian et al. 2013). The

T. tschonoskii chloroplast genome was 507 bp shorter
than T. maculatum, and we confirmed that the length
variation among Parideae chloroplast genomes including
Paris verticillata occurred by gene deletion and duplica-
tion as well as its IR expansion.

Although chloroplast genomes are considered highly
conserved among land plants, sequence polymorphisms
were often observed among closely related species. From
the T. tschonoskii and T. maculatum chloroplast genome
sequences, we confirmed that 402 indels and 2861
SNPs were present between the two species.

In addition, we found that SSRs (i.e. microsatellites),
composed of 1–6 bp in length per unit, are distributed
throughout both genomes. The SSRs have been accepted
as one of the major molecular markers for genome vari-
ation between species or within populations due to their
high polymorphism within the species and have been
widely practiced for analysing plant population structure,
diversity, differentiation and maternity analysis (Liu et al.
2013). Simple sequence repeats have successfully been
applied to the study of Poaceae, Brassicaceae and Sola-
naceae (Provan et al. 1997, 1999; Bryan et al. 1999; Flan-
nery et al. 2006). Simple sequence repeats detected in the
present study will provide basic information for the fur-
ther analysis of genetic diversity in Parideae.

Based on our results, the IR/LSC boundary and the IR/
SSC boundary differed between the two subgenera of Tril-
lium. Inverted repeat/large single-copy junction was
expanded to a part of rps3 in T. tschonoskii, whereas
that of T. maculatum was found at rps19. The ycf1 was
completely located in SSC of T. tschonoskii, but a part of
the ycf1 gene was duplicated in IR of T. maculatum.
Within the Parideae, the IR boundary pattern of
T. tschonoskii was more similar to P. verticillata than
T. maculatum (Fig. 2).

Inversion events in Melanthiaceae

Inversions caused by the recombination between
repeated sequences are considered to be a main mech-
anism for changes in gene order among plastid genomes
(Jansen and Ruhlman 2012). Most of the reported inver-
sions in plastid genomes are in the LSC region (Kim et al.
2005). In subtribe Phaseolinae of Fabaceae, there is a
78 kb inversion between trnH/rpl14 and rps19/rps8 in
the chloroplast genome (Tangphatsornruang et al.
2010). Additionally, Kim et al. (2005) reported that the
inversion occurred in the spacer between tRNAGly and
tRNASer genes of Lactuca sativa. Also, they defined two
inversions that characterize Asteraceae. The two inver-
sions were identical across all members of Asteraceae,
suggesting that the inversion events are likely to occur
simultaneously or within a short period of time following
the origin of the family. In Campanulaceae, .50 large

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1. The number and total length of insertion–deletion
mutations between the chloroplast genomes of T. tschonoskii and
T. maculatum in Parideae.

Region Number of indels Total length of indels

IGS 262 5139

Intron 51 528

Coding gene 86 3005
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Table 2. Single nucleotide polymorphisms found between the plastid genomes of T. tschonoskii and T. maculatum. (A) Single nucleotide polymorphisms in coding gene. (B) Single nucleotide
polymorphisms in intron. (C) Single nucleotide polymorphisms in IGS regions. Bold values represent p-distance .0.08.

Gene Aligned

length (bp)

No.

SNP

p-Distance Gene Aligned

length (bp)

No.

SNP

p-Distance Gene Aligned

length (bp)

No.

SNP

p-Distance

(A)

psbD 1062 2 0.002 ycf4 555 4 0.007 rpl2 828 14 0.017

psaB 2205 5 0.002 cemA 695 5 0.007 rrn5S 121 2 0.017

psaA 2253 4 0.002 rrn23S 2814 19 0.007 rpl36 114 2 0.018

atpE 405 1 0.002 ndhD 1503 10 0.007 rrn4.5S 103 2 0.019

psbB 1527 3 0.002 ndhE 306 2 0.007 rrn16S 1494 30 0.02

petB 648 1 0.002 ndhI 543 4 0.007 rpl14 369 9 0.024

psbA 1062 3 0.003 rps15 276 3 0.007 ycf2 7209 146 0.024

ndhK 768 2 0.003 rpoB 3213 25 0.008 rps7 468 11 0.024

ndhC 363 1 0.003 psbF 120 1 0.008 rpl20 387 9 0.025

rbcL 1434 5 0.003 rps8 399 3 0.008 rps18 363 8 0.026

petA 963 3 0.003 psbN 132 1 0.008 rps3 657 18 0.027

ndhB 1533 5 0.003 ycf15 234 2 0.009 trnT-UGU 73 2 0.027

ccsA 969 3 0.003 pebT 108 1 0.009 trnE-UUC 73 2 0.027

rps16 252 1 0.004 rps14 303 3 0.01 trnC-GCA 71 2 0.028

atpA 1524 6 0.004 rps4 606 6 0.01 trnQ-UUG 72 2 0.028

atpH 246 1 0.004 rpoA 1023 10 0.01 rps12 372 11 0.03

psbC 1422 6 0.004 infA 243 2 0.01 rpl33 201 7 0.035

psbE 252 1 0.004 rpoC1 2097 22 0.011 rpl22 387 13 0.035

petD 483 2 0.004 trnS-GCU 88 1 0.011 rpl32 156 6 0.04

atpB 1521 7 0.005 rpl23 282 3 0.011 trnP-UGG 74 3 0.041

ycf68 376 2 0.005 ndhF 2232 26 0.012 trnI-CAU 74 3 0.041

ndhG 531 3 0.006 matK 1554 22 0.014 rps11 405 19 0.048

ndhA 1083 7 0.006 trnH-GUG 74 1 0.014 rps19 351 24 0.084

ndhH 1182 7 0.006 trnW-CCA 74 1 0.014 clpP 639 65 0.111

atpF 555 4 0.007 rpl16 411 6 0.015 ycf1 6778 664 0.121

rpoC2 4140 27 0.007 rps2 711 12 0.017 accD 1566 323 0.23
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Gene Aligned

length (bp)

No.

SNP

p-Distance Gene Aligned

length (bp)

No.

SNP

p-Distance

(B)

atpF intron 812 14 0.018 rpoC1 intron 714 9 0.013

clpP intron 1 709 12 0.034 rps16 intron 783 11 0.015

clpP intron 2 983 29 0.012 trnI-GAU intron 936 2 0.002

ndhA intron 1077 6 0.006 trnK-UUU intron 1109 34 0.012

ndhB intron 695 1 0.001 trnL-UAA intron 538 2 0.004

petB intron 823 4 0.005 trnV-UAC 595 4 0.007

petD intron 747 5 0.007 ycf3 intron1 737 7 0.006

rpl16 intron 1075 26 0.026 ycf3 intron2 738 8 0.01

rpl2 intron 664 3 0.005

IGS Aligned

length (bp)

No.

SNP

p-Distance IGS Aligned

length (bp)

No.

SNP

p-Distance

(C)

trnL-CAA_ndhB 578 1 0.002 rrn23S_rrn4.5S 102 2 0.02

ndhB_rps7 323 1 0.003 rpl32_trnL-UAG 938 16 0.02

atpI_rps2 242 1 0.004 ndhH_rps15 110 2 0.02

rps12_trnV-GAC 1905 8 0.004 rpoB_trnC-GCA 859 16 0.022

psaI_ycf4 376 2 0.005 rps19_trnH-GUG 147 3 0.022

petB_petD 205 1 0.005 atpA_atpF 92 2 0.023

psbE_petL 952 6 0.006 trnG-GCC_trnfM-CAU 132 3 0.023

psbB_psbT 168 1 0.006 petA_psbJ 1139 26 0.023

ycf4_cemA 785 5 0.007 petG_trnW-CCA 138 3 0.023

rrn16S_trnI-GAU 296 2 0.007 rps8_rpl14 179 4 0.023

trnA-UGC_rrn23S 144 1 0.007 ndhE_ndhG 301 4 0.023

trnR-ACG_trnN-GUU 572 4 0.007 rps15_ycf1 429 9 0.023

rps14_psaB 132 1 0.008 trnK-UUU_rps16 783 23 0.024

psbN_psbH 124 1 0.008 rpl20_clpP 1208 25 0.024

infA_rps8 296 2 0.008 trnL-UAG_ccsA 82 2 0.025

Continued

A
oB

PLA
N

TS
w

w
w

.aobplan
ts.oxford

jou
rn

als.org
&

Th
e

A
u

th
ors

2016
9

K
im

et
al.—

Com
plete

ch
loroplast

gen
om

e
sequ

en
ces

of
tw

o
Trillium

species



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Continued

IGS Aligned

length (bp)

No.

SNP

p-Distance IGS Aligned

length (bp)

No.

SNP

p-Distance

trnC-GCA_petN 831 8 0.01 ndhD_psaC 119 3 0.025

trnD-GUC_trnY-GUA 412 4 0.01 cemA_petA 242 6 0.026

trnS-GGA_rps4 307 3 0.01 trnQ-UUG_psbK 360 9 0.027

ycf15_trnL-CAA 674 2 0.01 trnG-UCC_trnR-UCU 150 4 0.027

psbM_trnD-GUC 1031 11 0.011 trnT-UGU_trnL-UAA 739 21 0.029

trnT-GGU_psbD 1016 12 0.011 rpoA_rps11 68 2 0.029

ndhJ_ndhK 89 1 0.011 atpH_atpI 655 19 0.031

psaJ_rpl33 482 3 0.011 rps16_trnQ-UUG 1204 37 0.037

petD_rpoA 179 2 0.011 trnW-CCA_trnP-UGG 167 6 0.037

ndhG_ndhI 283 3 0.011 ndhF_rpl32 778 28 0.038

trnF-GAA_ndhJ 686 8 0.012 psbK_psbI 396 15 0.039

rps2_rpoC2 246 3 0.013 psaC_ndhE 380 14 0.04

ycf3_trnS-GGA 759 8 0.013 psbH_petB 134 5 0.042

rps4_trnT-UGU 320 4 0.013 trnE-UUC_trnT-GGU 724 26 0.044

trnL-UAA_trnF-GAA 386 5 0.013 rpl33_rps18 200 8 0.049

atpF_atpH 474 7 0.015 clpP_psbB 507 23 0.049

psbZ_trnG-GCC 296 4 0.015 rps11_rpl36 151 7 0.051

trnM_CAU- atpE 206 3 0.015 trnS-GCU_trnG-UCC 1178 57 0.052

psaA_ycf3 642 10 0.016 psbI_trnS-GCU 124 6 0.054

petL_petG 183 3 0.016 psbC__trnS-UGA 140 8 0.057

rpl36_infA 154 2 0.016 rpl23_trnI-CAU 210 11 0.065

rpl14_rpl16 126 2 0.016 rpoC1_rpoB 37 2 0.077

psbA_trnK-UUU 243 10 0.017 trnN-GUU_ndhF 782 31 0.086

petN_psbM 712 12 0.017 rpl22_rps19 115 4 0.091

trnY-GUA_trnE-UUC 59 1 0.017 rps3_rpl22 80 5 0.098

ccsA_ndhD 242 4 0.018 accD_psaI 285 20 0.099

rpoC2_rpoC1 154 3 0.019 psbT_psbN 65 10 0.154

trnP-UGG_psaJ 388 7 0.019 trnH-GUG_rpl2 44 8 0.186

rpl16_rps3 166 3 0.019 trnI-CAU_ycf2 210 20 0.238

rps7_rps12 54 1 0.019 rbcL_accD 2090 236 0.291
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inversions occurred during diversification of the family, in
which at least 20 occurred in Cyphia, and a minimum of 53
are now known in Lobelia (Knox 2014). Fabaceae are
known to exhibit a number of unusual phenomena in
their chloroplast genome: Trifolium subterraneum has
undergone extensive genomic reconfiguration, including
the loss of six genes and two introns and numerous gene
order changes, attributable to 14–18 inversions (Cai et al.
2008).

Our results confirmed a single inversion in Melanthia-
ceae. It was remarkable that a single inversion of
3492 bp embedded four genes between ndhC and rbcL
genes, which specifically occurred in the monophyletic
subgenus Phyllantherum (Fig. 3). This event is thought
to have occurred after the evolutionary divergence
between subgenus Phyllantherum and subgenus Trillium.
This new finding may be an effective molecular marker
for classifying subgenera of the genus Trillium.

Diverse patterns of trnI-CAU duplication in Parideae

Gene duplication is an important process in organellar
genome evolution. Most duplicated genes occur within
the IR regions due to the mechanisms underlying IR
expansion and contraction (Xiong et al. 2009). Gene dupli-
cation in plastid genome has been reported in tRNA
genes (Hipkins et al. 1995; Vijverberg and Bachmann
1999; Schmickl et al. 2009) and in some protein-coding
genes. Most of the duplications can be detected only in
rearranged chloroplast genomes, as in grasses, legumes
and conifers. Hipkins et al. (1995) compared the number
of direct repeats between partially duplicated trnY-GUA and
the complete trnY-GUA gene in Pseudotsuga. They found
that the length-variable region in Pseudotsuga comprised
imperfect tandem direct repeats based on the trnY gene
sequence. Schmickl et al. (2009) used the 5′-trnL-UAA_trnF-
GAA region for phylogeographic reconstructions, gene
diversity calculations and phylogenetic analyses among
the genera Arabidopsis and Boechera. The Cruciferous
taxa are characterized by these pseudogenes in at least

four independent phylogenetic lineages. In addition, the
tRNA gene as well as the coding gene could be confirmed
by duplication events in Jasminum and Menodora, which
have the duplicated rbcL_psaI region. Most chloroplast
gene duplications outside of the IR involve tRNAs, as in
the case of Oleaceae (Lee et al. 2007).

A total of 30–32 tRNA genes are present within the
chloroplast genome of land plants (Tsudzuki et al. 1994;
Vijverberg and Bachmann 1999), and they may be
involved in chloroplast genome rearrangements through
their secondary structure (Howe et al. 1988). These genes
are dispersed throughout the genome, but five to eight

Figure 4. Average p-distance across five classes of genomic regions
between two Trillium.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Number of SSRs present in the three Parideae chloroplast
genomes.

Taxon Paris

verticillata

Trillium

maculatum

Trillium

tschonoskii

Genome size 157 379 157 359 156 852

No. of SSRs

A/T 133 117 127

C/G 5 4 6

AC/GT 3 3 3

AG/CT 17 19 18

AT/TA 32 35 32

AAG/CTT 2 2

AAT/ATT 6 10 3

ACT/AGT 2 1

ATC/GAT 1

AAAG/CTTT – – 1

AAAT/ATTT 3 4 4

AAGG/CCTT 1 1 1

AATC/GATT 1 1 1

AATG/CATT 1 1 3

AGAT/ATCT 1 1 1

ACTAT/ATAGT 1 – 1

AAAAT/ATTTT – 1 1

AATAT/ATATT – 2 1

AATATG/CATATT – 1 –

AAAATC/GATTTT – 1 –

ATATCC/GGATAT – – 1

AAAAAT/ATTTTT – – 2

AAGACT/AGTCTT – – 1

AACTAC/GTAGTT – – 1

AAAGAG/CTCTTT – – 1

Total 204 205 213

AoB PLANTS www.aobplants.oxfordjournals.org & The Authors 2016 11

Kim et al. — Complete chloroplast genome sequences of two Trillium species



genes are located in the IR (Maréchal-Drouard et al.
1993). We found that three major types of trnI-CAU
gene duplication are located between rpl23 and ycf2 at
the IR of tribe Parideae (Fig. 5). Traditionally, Parideae
included two genera, Paris and Trillium; however, Trillium
was separated into two genera Trillium and Pesudotrillium
in recent classifications (Farmer and Schilling 2002).
Using the various duplication patterns of trnI-CAU in the
IR region, the infrageneric circumscription of Parideae
member was strongly supported. The type of trnI-CAU
that had been discovered in Xerophyllum, Pesudotrillium
and T. undulatum with one trnI-CAU between rpl23 and
ycf2 was seen to be similar to the ancestor of Parideae
(Type A, Fig. 5). This type was found also in most chloro-
plast genomes of Liliales (Liu et al. 2012; Bodin et al. 2013;
Do et al. 2013; Kim and Kim 2013). It was modified in sub-
genus Trillium of Trillium and subgenus Daiswa of Paris to
be extended by the tandem repeat between trnI-CAU and
ycf2. Type B was found in subgenus Phyllantherum of

Trillium and section Kinugasa of subgenus Paris although
section Kinugasa possessed the additional tandem
repeat between trnI-CAU units. Type C, which was found
in T. govanianum and section Paris of subgenus Paris,
has three copies of the trnI-CAU gene. From the results,
we suggested that duplicate events of trnI-CAU have
occurred independently in the tribe Parideae of Mel-
anthiaceae, and it provided useful information for de-
termining the infrageneric circumscription. However,
T. govanianum, which was classified into another genus
Trillidium by Farmer and Schilling (2002) based on mor-
phological characters and geographical distribution,
was more similar to Paris than Trillium. Also, this result
showed that the trnI-CAU gene duplication pattern of
T. govanianum was more similar to Paris than Trillium.
Interestingly, it was positioned at the same clade
together with the North American species T. undulatum
in the molecular phylogenetic tree (Farmer and Schilling
2002; S. C. Kim, J. S. Kim, W. C. Mark, F. F. Michael, J. H. Kim,

Figure 5. Summary of three types of trnI-CAU gene duplication in the tribe Parideae. *Including tandem repeats.
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unpublished data). Further studies are necessary to clarify
the relationship between both species.

Conclusions
We analysed the complete chloroplast genomes of
two species of T. tschonoskii (subgenus Trillium) and
T. maculatum (subgenus Phyllantherum) to verify the spe-
cific feature in the genome level. As a result, we found a
3.4 kb inverted sequence between ndhC and rbcL in the
LSC region in the chloroplast genome of T. maculatum,
which was unique to subgenus Phyllantherum. In add-
ition, three different gene duplication patterns of trnI-
CAU gene were found and they were the informative
molecular markers for identifying the infrageneric taxa
of Trillium.
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