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Abstract

Collective cell migration is ubiquitous in biology, from development to cancer; it occurs in 

complex systems comprised of heterogeneous cell types, signals and matrices, and requires large 

scale regulation in space and time. Understanding how cells achieve organized collective motility 

is crucial to addressing cellular and tissue function and disease progression. While current two-

dimensional model systems recapitulate the dynamic properties of collective cell migration, 

quantitative three-dimensional equivalent model systems have proved elusive. To establish such a 

model system, we study cell collectives by tracking individuals within cell cohorts embedded in 

three dimensional collagen scaffolding. We develop a custom algorithm to quantify the temporal 

and spatial heterogeneity of motion in cell cohorts during motility events. In the absence of 

external driving agents, we show that these cohorts rotate in short bursts, <2 hours, and translate 

for up to 6 hours. We observe, track, and analyze three dimensional motion of cell cohorts 

composed of 3–31 cells, and pave a path toward understanding cell collectives in 3D as a complex 

emergent system.
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Introduction

From early development to morphogenesis, wound healing, and even in cancer pathologies, 

biological function hinges on collective cell migration. Currently, studies of the inter-cellular 

dynamics of collective cell motion are primarily conducted via two dimensional (2D) 

monolayer experiments. Here we present a 3-dimensional study of cell collectives.

Cells must coordinate adherence and motility to maintain organized coherent motion1; 

extensive work continues to probe how cells establish such communication and 

organization2,3. Cells migrate collectively to build and vascularize tissues, heal wounds, and 

occasionally in tumor metastases. A comprehensive review of collective cell motility 
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establishes the many modes of migration available to cell collectives as well as the forces 

that drive motility4. A broad classification for 3D collective migration modes can comprise 

of two categories— in the first, cells never dissociate from their original tissue, as in the case 

of branching morphogenesis, angiogenesis, and multicellular strand invasion of cancers; and 

in the second, a detached cluster moves through ECM and other non-motile cells as observed 

in cancer metastases and drosophila border cells5,6.

From a mechanical and physical standpoint, time-lapse imaging and immunohistochemistry 

reveal relevant characteristics of collective cell migration (CCM) 1,7,8. For example, in 

Drosophila, E-cadherin is essential for collective direction sensing9, and tissue rotation is 

essential for building an extracellular-matrix (ECM) to control egg shape10. In a 3D 

example, human mammary cells embedded in 3D gels reveal that rotation is essential to the 

formation of breast acini- it does not occur for cancerous breast cells, and when disrupted 

within normal cells, acini do not form11. Tracking assays on monolayers reveal density-

dependent phase transitions12, substrate dependence13, and the forces driving CCM14,15. A 

comprehensive study of the mechanical properties of epithelial monolayers identified E-

cadherin and P-cadherin as key proteins contributing to intercellular forces16. Heterogeneity 

emerges within groups of cells exhibiting collective behavior- functionally distinct 

populations of cells are termed leader and follower cells4. Leader cells are located at the 

front of a moving collective; they are responsible for receiving cues and directing the 

collective. Well-defined leader cells are found in cases of sprouting morphogenesis and 

angiogenesis17. In sheet migration, key molecules are upregulated to form leader cells at the 

leading edge; removal of these leader cells disrupts migration18.

Cancer pathologies are not amenable to direct observations of coherent translation due to 

diagnostic limitations; however, indirect evidence from in vivo measurements demonstrates 

that cancer metastases can migrate through tissue layers as collective masses5,6,19. 

Clinically, patients with epithelial-originating cancers or carcinomas present with circulating 

tumor microemboli, or clusters of circulating tumor cells up to 8 cells large20,21. Typical 3D 

studies of cell collectives involve immunohistochemistry assays and invasion assays of 

immortalized cancerous and non-cancerous cell lines. Immunohistochemistry has elucidated 

biochemical markers crucial to the emergence of leader-follower heterogeneity22 in cancer 

cell lines. Invasion assays involve seeding a large spheroid (>200 μm in diameter) of 

cancerous or non-cancerous cells into a 3D matrix; the subsequent invasion of the spheroid 

into the matrix can take the form of single cell invasion or multicellular strand invasion. 

Time-lapse microscopy conducted on invasion assays highlights cell dynamics, leader-cell 

formation23, and cell jamming24; together these data suggest that cancer cells have inherent 

plasticity of migration modes and the ability to transition between these modes25.

The dynamics of collective cell motility are essential to understanding collective processes 

and function. In 2D environments, epithelial cells and fish keratocytes26 have been used as 

model systems to study the dynamic aspects of collective cell migration. Here, we present a 

model system for quantifying 3D collective migration using mammalian cell cohorts 

comprised of three to thirty-one cells. This can serve as a tool for understanding the motility 

of detached cellular clusters that have been observed in cancer metastases in vitro and found 

as circulating tumor microemboli in vivo. We track individual cells within cohorts embedded 

Sharma et al. Page 2

Integr Biol (Camb). Author manuscript; available in PMC 2016 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in a 3D scaffold and identify events of emergent collective behavior in the absence of 

external driving agents. Our system serves as a 3D experimental model for collective 

motility of cells that is able to analyze each cell cohort as an individual entity. It is a first 

step toward a physical understanding of collective cell motility in 3D, including cancer cell 

invasion and the critical conditions that lead toward collective metastasis.

Materials and Methods

Cell Culture

MDCK Type II epithelial cells are propagated in monolayers at 37°C, 5% CO2, and ~ 70% 

humidity; monolayers are cultured in DMEM media supplemented with 10% fetal bovine 

serum and 1% penicillin/streptomycin. Cells are stably transfected to express Nuclear 

Localization Signal (NLS) bound to Green Fluorescent Protein (GFP). Transfection is 

accomplished by a GFP-NLS plasmid (Clontech, Takara Bio, Japan) of Lipofectamine 2000 

(Invitrogen, Life Technologies, Grand Island, NY). To maintain fluorescence 0.5 mg/ml 

G418 is added to the media; Fluorescence Activated Cell Sorting (FACS) selects for the 

brightest 1% of cells. Identical procedures are followed on MDCK GFP-Ecad cell lines27.

3D Cluster protocol

Single cell suspensions are formed by immersing cells in media after trypsinization; cells are 

passed through a 40 μm cell strainer (BD Biosciences, San Jose, CA); cells are then seeded 

onto a 10 cm diameter Ultra Low Attachment Dish (Corning, Corning NY) with 10 ml 

media. After 48 hours, clusters are extracted by passing the solution through a 100 μm cell 

strainer followed by a 40 μm cell strainer, retaining clusters of 10–20 cells. These are 

resuspended and centrifuged at 800 rcf, and then immersed in a collagen solution for 3D 

culture and imaging.

A 2 mg/ml collagen dilution is obtained by mixing equal volumes of collagen Type 1 stock 

(BD Biosciences, San Jose, CA) solution and neutralizing buffer (100mM Hepes in 2x PBS, 

pH 7.3) with PBS. Cell clusters are added to the 2 mg/ml collagen solution; this cluster-

collagen suspension is seeded onto several wells of a 24-well plate or 96 well-plate (MatTek, 

Ashland MA). The plates are incubated at 37°C, 5% CO2 and ~ 70% humidity for 2 hours 

until the collagen has polymerized, after which ~1–2 ml of growth media is added to each 

well. FluoSpheres® Carboxylate-Modified Microspheres in 1.0 μm (Invitrogen) with red 

fluorescence (580/605) are diluted to ~ 108 beads/ml collagen when used.

Imaging and Tracking

Images are acquired with a DMI600B Microscope (Leica, Solms, Germany) and ImagEM 

EM-CCD Camera (Hamamatsu Photonics, Hamamatsu, Japan) using a Spinning Disk 

Confocal setup (Yokogawa, Tokyo, Japan). Micro-Manager 1.4 Software (http://www.micro-

manager.org) employs a 10× 0.3 NA objective lens to image ~560 × 560 × 100 μm3 fields of 

view. 3D stacks are acquired in the XY plane with a Z-step of 4 μm, every 10 minutes, for 

~48 hours over a 100–200 μm depth. For the experiment with GFP-Ecad a 20× 0.4 NA 

objective lens was used with a Z-step of 2 μm over a 42 μm depth. Cells can sense the 

substrate beneath the 3D matrix from inside the collagen gel28, and cells that are closer to 
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the glass bottom show very high proliferation along with sheet-like dynamics. Since the 

scope of this work pertains to 3D cell morphology, acquisition and analysis is restricted to 

cells clusters located >100 μm from the glass bottom. 3D morphology is further verified 

before tracking and analysis.

ImageJ (NIH) is used to estimate the average nuclear diameter (~8 μm). This diameter is 

input into a Matlab (MathWorks, Natick, MA) spot-tracking algorithm designed by the 

Kilfoil group29; the algorithm is modified for 3D nucleus detection and tracking. Parameters 

such as nucleus diameter, mask, minimum track time, and maximum displacement between 

consecutive time points, are optimized until varying each parameter independently has a 

minimal effect on the output. This metric is optimized until on average, 93% of all nuclei 

identified are assigned to a track. New cell identifiers are assigned when tracking is lost after 

3 consecutive time points or after cell division. For a single track, if a cell is missing for up 

to two time points, its position is interpolated by assuming a straight path. A de-drifting 

algorithm designed by the Kilfoil group30 eliminates net motion that is common to all cells 

in the 3-dimensional field of view to account for stage drift, which is ~25–40 μm every 24 

hours.

Clustering Algorithm

A custom hierarchical clustering algorithm is written in Matlab to sort cells into cohorts, or 

groups of cells that are physically attached to each other. The algorithm is agglomerative- 

each cell is initially assigned a unique cluster identifier. For the first cell considered, all cells 

positioned within 35 μm are assigned to its cluster; all cells positioned within 35 μm of those 

cells are then assigned the same cluster. The process repeats until there are no cells that 

could be grouped into the same cluster; then the next cell with a unique cluster ID is 

considered. For these cells, a cutoff distance of 35 μm is empirically determined to be ~1.5 

3D cell lengths; thus minimizing the likelihood of skipping an adherent neighbor. Cutoff 

distances ranging between 25–45 μm do not affect the output data. A custom function auto-

correlates cluster IDs between consecutive time-points to ensure that each cluster has a 

unique ID for the duration of the experiment. A cluster is reassigned the same ID if it retains 

a majority of cell IDs from the previous time point, such that if two cohorts merge, the new 

cluster is labeled as the larger of the two.

Displacement Squared Quartiles and Order

Displacements of each cell in a cohort between time t+ 0.5*Tint and t-(0.5*Tint + ΔT) are 

calculated across the entire timespan of the experiment, where Tint = 1 h and ΔT = 10 min 

(gap between consecutive time points). This results in a distribution with as many values as 

number of cells in the cohort at each time point. Displacements are squared, and the median, 

upper-quartiles, and lower-quartiles of this distribution are evaluated for all time points of 

the experiment. To calculate order parameter31, a smoothing function is run on XYZ 

position data between consecutive time points according to Equation 1 where x represents 

position and t represents time; the interval between consecutive data points is 10 minutes.
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(1)

The Tint order parameter is calculated for the cohort between time t+ 0.5*Tint and t-(0.5*Tint 

+ ΔT) as shown in Equation 2 where v is velocity and N is the number of cells in the cohort.

(2)

Tint is selected by studying Mean Squared Displacement (MSD) vs. time interval plots (data 

not shown) for all cells in the experiment. MSD plots suggest that the cells in these 

experiments have high heterogeneity of behavior over intervals as low as 30 minutes. In 

order to account for bias induced by tracking, de-drifting, and noise, we doubled this number 

to set Tint = 1 h.

Automated Event Selection

To analyze individual cohorts, a custom algorithm is written in Matlab to detect motility 

events from median displacement squared data. Initially, Matlab’s built-in peak finding 

algorithm is used to find all peaks in the data. Peaks are merged if the valley between them > 

0.5*Pmin and the time gap between them <1.5*Tint. Then peaks with width < Tint or height 

>Pmin are eliminated. Pmin, or the minimum peak height for a motility event, is 

conservatively set at 60 μm2, in order to track motion of ~1 3D nucleus diameter and 

minimize the loss of relevant information.

Pairwise Correlations

Once an event is identified, smoothed positions of cells for that event inform correlation 

functions between all possible cell pairs within a cohort. This correlation function is 

represented by Equation 3 where i and j are the cell pair, τ is time difference, t is time, and v 
is the velocity32.

(3)

This correlation function reaches a maximum peak value at a lag time τc; when a peak has a 

height > 0.5, a correlation is considered significant and τc is retained. For positive τc, cell i 
lags cell j with duration τc; conversely, for negative τc, cell j lags cell i with duration τc.

Results

To investigate long term behavior and heterogeneity of motion in time, 3D cell tracking is 

performed on representative cell cohorts comprising 3–31 cells every 10 minutes over a 

duration of 48 hours. Positions, cell IDs, and cluster IDs for twelve cell cohorts are obtained 

from two different 2mg/ml collagen gels and five independent fields of view. Cohorts are 
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dynamic and exhibit spatial and temporal heterogeneity; behavior may include seemingly 

random movement, collective rotation, or collective translation. Planar projections and 

renderings of nuclear tracking at 0 h, 24 h and 48 h are represented in red, green and blue, 

respectively, in Figure 1. Two of the cohorts merge between 24 and 48 h, as visible in Figure 

1 C and D. For this merging event, one cohort changes direction of motion in the second half 

of the experiment. Data for the other 3 fields of view is represented in Supplementary Figure 

1; planar projection time-lapse videos and renderings of nuclear tracking are presented in 

Supplementary Videos 1–5. The videos qualitatively demonstrate rotation and translation of 

individual cohorts at various time-points; individual cohorts within a field of view may or 

may not be correlated to each other. To verify that motion is not caused by external ECM 

deformation, an experiment is performed using 1 μm fluorescent beads embedded alongside 

the cells in the collagen matrix (Supplementary Video 6). This video suggested that the 

matrix is relatively stable except for perturbations caused in the vicinity of cohorts, likely 

due to pulling of the gel. GFP-Ecad planar projections are in Supplementary Video 7, 

illustrating that E-cadherin is membrane bound in the cohorts.

The heterogeneity of cohorts in time is determined by studying the individual cell 

displacements for each cohort. For the 48 hour experiment, 1-hour displacements for all 

cells in a cohort are calculated; these displacements are squared (|d2|), and the median of the 

resulting distribution is plotted corresponding to the left y-axis of Figure 2. The upper and 

lower quartiles for the same distributions are plotted in the gray regions around the lines 

representing the median. The motility events isolated are depicted in shaded vertical strips in 

Figure 2. Upon isolating motility events for each individual cohort, we find evidence of 

coherent rotation and translation within intervals ranging from 1 to 6 hours. For these 12 

cohorts, a total of 61 motility events are obtained; five cohorts have 1–3 events, whereas 

those depicted in Figure 2 are motile for almost the entire duration of the experiment. 

Displacements and events for ten other cohorts are displayed in Supplementary Figure 2.

Order parameters provide a quantitative metric to measure the collectivity of systems. 

Establishing an order parameter for this system identifies the presence of translation, and 

also distinguishes between rotation and translation. For cells translating collectively, the 

order parameter is ~1, and for cells rotating collectively this parameter is low, between 0 – 

0.5. For a cohort rotating about an axis in the center of the cohort, the order parameter is 0. 

For cohorts rotating about an off-center or external axis the order parameter is higher. This is 

because when the axis of rotation is in the middle of the cohort there is an average velocity 

of 0 within the cohort.

For the 48 h experiment, 1-hour order parameters are plotted corresponding to the right y-

axis in Figure 2. All motility events are identified via peaks in displacement; translation 

events are accompanied by peaks in the order parameter; rotation events are accompanied by 

fluctuations or valleys in the order parameter (Figures 2 and Table 1). While translation 

occurs over durations of 1 to 6 hours, rotation only occurs in bursts of 1 to 2 hours (Figure 2, 

Table 1 and Figure 3). For selected motility events, metrics such as total displacement of the 

cohort, average order, and average number of cells are depicted in Table 1; metrics for all 61 

events are in Supplementary Tables.
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The highest observed translation event has a duration of 6 hours and measures ~90 μm, 

corresponding to ~8 3D cell diameters. To visualize a few motility events, cell trajectories 

derived from raw data with events from four different cohorts are mapped in Figure 3. Panels 

A and B show rotation, Panels C and D show translation. Spots are colored to indicate the 

initial and final time point of cell tracks within the event.

Directional correlation functions, defined in Equation 3, probe the inter-cellular dynamics 

within each cohort during a motility event. For the four representative events depicted in 

Figure 3, leading and lagging times are calculated using pairwise correlation functions; 

normalized occurrence frequencies of these times are displayed in Figure 4. For all cohorts 

in motility events, most cell pairs have 0 time lag between trajectories. For the two 

translating events in panels C and D, some cell-pairs have lags up to 200 minutes. For the 

shorter rotating events, the range of lag times is relatively smaller. There is no clear 

correlation between the magnitude of this time lag and the distance between cells.

Discussion and Conclusion

Conventional cell tracking research assumes that the behavior of cells in 2D and 3D is 

homogenous in time; information from all time points is averaged to deduce the timescales 

for various cellular behavior33. This is typically achieved by fitting cell trajectories to a 

stochastic random walk model34 to evaluate speed and persistence of cells in 2D or 3D; 

however the basic assumptions of a persistent random walk fail in a system of cell 

collectives. Simplified versions of this analysis have been used on cell collectives in 3D to 

evaluate diffusion coefficients and angular velocity of human mammary cells11, however 

these techniques are inapplicable to data presented here, since the first assumption to 

evaluating Mean Squared Displacement vs. time-lag is temporal homogeneity. As evident in 

Figure 2 and Supplementary Figure 2, for cell cohorts in this study, temporal heterogeneity 

is observable in patterns of motion. These systems are not correlated within a single field of 

view over the duration of observation— there are intervals in which clusters move away 

(Supplementary Video 1, 4–7 s) and intervals in which the same clusters move toward each 

other and merge (Supplementary Video 1, 33–40 s). Not all cohorts are alike; some exhibit 

higher translation, rotation, and fluctuation than others. For example, Gel I View i Cohort #3 

has fourteen high motility events of both translation and rotation, while Gel II View ii 

Cohort #1 has only one motility event of translation (Figure 2, and Supplementary Tables). 

Cells in 3D are smaller than their 2D counterparts- our average cohort diameter is on the 

order of 2D single cell lengths35, but in 3D, it spans ~6 –15 cells (Figure 1, and 

Supplementary Figure 1). Thus, displacements on the order of tens of microns, which would 

not be relevant for 2D studies, mark coherent collective motility in these 3D studies (Figure 

1 and 2).

Cell collective studies of epithelial monolayers typically calculate the velocity correlation 

length13,36,37 of monolayers. This correlation length is the length at which a radius-

dependent velocity-correlation function equals zero on average for the monolayer. These 

analyses are effective at characterizing properties and differences between 2D cellular 

systems; however the underlying assumption is constant cellular density. Constant density is 

neither feasible nor interesting for 3D-collectives, since it does not pertain to any known 3D 
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collective motility modes and cannot account for the ECM. Therefore analysis techniques 

from the field of collective motion31 are adapted here, specifically order parameters1 and 

directional correlation functions, which have successfully been used to characterize 

heterogeneity in pigeon flocks32. Order parameters are easily adapted for this study— 

instead of calculating the order for the entire field of view, order parameters can be 

calculated on a cohort-by-cohort basis. The larger trajectory lags between cell-pairs that 

occur within a translating cohort as observed in our system may represent information 

transfer and polarity along the cohort. The order parameter of cohorts is seldom lower than 

0.2, and the quartiles follow the same trends as the median (Figure 2); thus there is a 

tendency for cells to stay within cohorts instead of splitting apart and invading the matrix. 

These results imply that cell-cell junctions contribute largely to cohort integrity and 

function. Indeed, GFP E-cadherin MDCK cell cohort experiments displayed E-cadherin 

localized at cell boundaries in 3D (Supplementary Video 6).

Many modes of collective cell motility have been observed in the presence of an external 

driving agent4. The results presented here suggest that the system of cell-matrix interactions 

is complicated and diverse enough to drive collective motion. Emergent motility events arise 

in the absence of external or forced driving agents, and are stochastic, as in the case of the 

two clusters that merged (Figure 1C and D). There are examples of other similarly sized 

clusters that do not merge and in fact move in opposite directions (Supplementary Figure 1E 

and F). The transient nature of these events suggests that this system displays stochasticity 

and plasticity, both suspected to occur in cancer pathologies.38 Our setup provides a model 

system that allows for characterization of inter-cohort and intra-cohort dynamics as well as 

identification and analysis of emergent motility events. The techniques presented here could 

be applied to cancer explants, which are known to show coordinated collective motion in 
vitro5,6. As opposed to visually searching for motility, our work presents quantitative 

algorithms to isolate, observe, and characterize it. Since the methods operate on a cohort-by-

cohort basis, they can be applied to a large amount of data and automated to extract motility 

events and compare different cellular cohorts.

Considering the balance of adherence and motility required for collective motion, translation 

over a few cell lengths in the absence of an external agent provides a promising model for 

the study of emergent phenomena and collective dynamics. Our results suggest that in the 

absence of external driving agents, interactions between cohorts and a collagen matrix are 

sufficient to drive collective cell motility. We show, for the first time, that cells 

spontaneously rotate in short bursts and translate for several hours; our analyses lay the 

foundation for quantitatively identifying supracellular polarity. The short bursts of rotation 

and comparatively larger spans of translation suggest that an internal stimulus arises within 

the dynamic cell-matrix system that attempts to drive collective translation. This work 

presents a quantitative approach to 3D cell collectives that have dynamic spatiotemporal 

heterogeneity– each cellular cohort is unique, and the algorithm finds motility events on a 

cohort-by-cohort basis. We built our custom algorithm using empirical data; however, it can 

be used for other cell types and experimental set-ups in order to probe questions of 3D 

collective mechanics, function, and efficiency. Our approaches can be expanded to study a 

range of phenomena in 3D, including collective cancer migration, density-dependent phase 

transitions, cell jamming, and emergent systems.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Panels A and C show Z-projections of 2 fields of view from the same 3D collagen gel with 

MDCK GFP-NLS cell cohorts at 0 h (red), 24 h (green) and 48 h (blue). The numbers in 

white indicate cohort number as determined by a clustering algorithm. Panels B and D are 

3D renderings of nuclear tracking corresponding to Panel A and C respectively.
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Figure 2. 
Panel A has temporal analysis for Gel I View i Cohort #3, and Panel B has the same for Gel 

I View ii Cohort #1. The left y-axis corresponds to the 1h squared displacement distribution: 

black line is the median, grey shaded regions are upper and lower quartiles. Vertical shaded 

regions represent motility events. The right y-axis and the red line correspond to 1h order 

parameter of the cohort.
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Figure 3. 
Cell trajectories extracted from raw data for four different events and cohorts. Each cell track 

is represented by a single black line. Colors of spots mark initial and final time for each 

track. Panels A and B depict rotation, panels C and D depict translation.
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Figure 4. 
For four events, these histograms show the normalized occurrence frequency of leading and 

lagging times τc. τc is obtained from pair-wise correlation functions, and it represents the 

time lag at which the function has a peak above 0.5, indicating the delay between cell 

trajectories.
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