
p53MutaGene: an online tool to estimate the effect of
p53 mutational status on gene regulation in cancer

I Amelio1, RA Knight1, A Lisitsa2, G Melino1,3 and AV Antonov*,1

p53MutaGene is the first online tool for statistical validation of hypotheses regarding the effect of p53 mutational status on gene
regulation in cancer. This tool is based on several large-scale clinical gene expression data sets and currently covers breast, colon
and lung cancers. The tool detects differential co-expression patterns in expression data between p53 mutated versus p53 normal
samples for the user-specified genes. Statistically significant differential co-expression for a gene pair is indicative that regulation
of two genes is sensitive to the presence of p53 mutations. p53MutaGene can be used in ‘single mode’ where the user can test a
specific pair of genes or in ‘discovery mode’designed for analysis of several genes. Using several examples, we demonstrate that
p53MutaGene is a useful tool for fast statistical validation in clinical data of p53-dependent gene regulation patterns. The tool is
freely available at http://www.bioprofiling.de/tp53
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Although p53 is probably the most intensively studied gene in
cancer, the molecular basis for p53-mediated gene regulation
is still largely unclear, in particular, in cancers where p53 is
mutated.1 p53 transcriptional programmes are activated in
response to a variety of signals, allowing p53 to control
transcription of many genes and to have important role in
many biological processes including tumour suppression. To
date, over hundred genes have been shown to be direct
transcriptional targets of p53. Although initially described
solely as a transcriptional activator, p53 is now known to
also mediate transcriptional repression,2 the regulation of
translation3 and even the induction of a transcription-
independent apoptotic response.4 Mutations in p53 lead to
the loss of normal p53 function and are present in roughly 50%
of all human cancers. These mutations in the TP53 gene very
often lead not only to loss of wild-type p53 (wt-p53) functions
but also to acquisition of additional properties (gain-of
function, GOF) by mutant p53 (mut-p53). As part of its GOF
activity, mut-p53 is commonly identified in a molecular
complex with other proteins, enhancing or inhibiting their
activity. Alteration of the activity of transcriptional factors (TFs)
is a frequent mechanism of the function of mut-p53.5 Thus,
mut-p53 alters gene regulation, leading to an addiction of the
cancer cells to the expression of mut-p53.6 However, the
molecular mechanism of mut-p53 activity is still largely
unknown.
Significant efforts are still underway to understand the

complexity of gene regulation in cancer. In a majority of cases,
initial evidence of novel gene regulatory patterns is commonly
discovered in vitro or in animal models.7 However, all these
experimental settings have significant limitations in the degree
to which they reproduce human cancer pathology and still
demand extensive validation in the clinical setting. These

limitations are often a bottleneck to upgrading novel-identified
gene regulatory patterns from basic research to a translational
stage. Statistical validation of gene regulatory patterns
identified in vitro and in animal models can be performed by
mining clinical gene expression data sets,8–10 many of which
are currently available.11–13

In many cases, data mining of gene expression data sets
requires advanced bioinformatics skills. The demand for such
services from the biological, clinical and pharmacological
communities has stimulated development of various user-
friendly online tools to exploit the plethora of publicly available
clinical data.8,9,14–18 Despite this variety of available tools, at
present, none are available to test the effects of p53mutational
status on gene regulation in cancer. The current in vitro
animal-experimental pipeline is based on experimental
validation of an abnormal control by mut-p53 of putative target
proteins (such as TFs), supported by experimental evidence
of abnormal regulation of downstream players (such as TF
targets).1,7 In clinical gene expression data, statistically
significant differences between cohorts of mut-p53 and
wt-p53 samples in the correlation of TF and TF target pairs
would represent a signature of this regulatory model
(Figures 1a and b).
To address the wide interest of the scientific community on

mut-p53-mediated gene regulation, we developed p53Muta-
Gene, an online data mining tool for testing the effect of p53
mutational status on gene regulation in cancer. The tool is
based on several clinical gene expression data sets annotated
with p53 mutational status, and currently covers breast and
colon cancers together with lung adenocarcinoma. p53Muta-
Gene detects a shift in the correlation between mut-p53 and
wt-p53-sample cohorts for user-specified genes. The tool can
be used in ‘single mode’ to test a specific pair of genes for
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sensitivity to p53mutation (Figure 1b) or in ‘discovery mode’ to
screen genes to identify candidateswhose regulationmight be
sensitive to p53 mutational status (Figure 1c). To demonstrate
the potential utility of p53MutaGene, we have provided
multiple examples of application of p53MutaGene (single
mode) to validate well known p53-dependent gene regulatory
models. We have also demonstrated the utility of p53Muta-
Gene in ‘discovery mode’ to identify potential candidates
implicated in p53 regulatory programmes from the large list of
candidate genes.

Results and Discussion

p53MutaGene: single mode. To test a single hypothesis,
the user needs to specify two genes: the putative TF and
the putative TF target (Figures 1a and b). As output,

p53MutaGene provides two Pearson correlation coefficients
between the input genes expression profiles in the mut-p53
versus the wt-p53 cohort. A statistically significant shift in
correlation represents a signature in gene expression data
that supports the hypothesis that regulatory relations
between submitted genes are sensitive to mut-p53. Sig-
nificance of differential co-expression (i.e., shift of correlation
coefficients) is computed by random sampling procedure: the
same size as the p53-mut subset is randomly selected (1000
times) from the whole set of samples (both wild type and p53-
mut) that are annotated with p53 mutational status. Each time
the correlation between TF/target is computed. The resulting
distribution of correlation between two genes (of size 1000) is
used to estimate significance of the correlation shift. In this
case, the P-value is an observed probability to select
randomly a subset of samples (of size equal to the number
of p53-mut samples) with correlation between input genes
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Figure 1 p53Mutagene allows statistical validation in clinical settings of mut-p53 effects on gene regulation. (a) Mut-p53 GOF has been associated with its ability to interact
with proteins and altering their physiological activity. Therefore, in a tumour carrying a mutation in p53, the presence of mut-p53 proteins can affect the ability of transcriptional
factors (TFs) to regulate their targets. According to this model, the correlation between a mut-p53-sensitive TF and its TF targets is different in a wt-p53 and mut-p53-expressing
cohort of cancer patients. (b) In single mode, p53Mutagene computes TF/target correlation in the two cohorts of clinical samples (wt-p53 versusmut-p53) and estimates whether
a statistically significant shift in correlation is observed. (c) p53Mutagene discovery mode: the list of putative TF is tested versus the list of putative TF targets (both lists are
specified by the user). p53Mutagene computes correlations for all TF/target pairs in wt-p53 and mut-p53 cohorts. The final output will be the list of ranked TFs associated with
putative targets, whose regulation (TF/target), is significantly different between wt-p53 and mut-p53 samples in gene expression data set
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high (negative shift p53-mut) or lower (positive shift in p53-
mut) than correlation between input genes in the subset of
p53-mut samples.
Recent literature has focused on the GOF of mut-p53 in the

promotion of an invasive phenotype leading to metastasis. In
this context, one of the well-established mechanisms by which
mutant p53 exerts its GOF is the repression of the p53 family
member p63.19 A direct physical interaction between these
two proteins, consequent to the biochemical properties of
mut-p53, leads to an inhibition of the transcriptional ability of
the metastatic suppressor isoform TAp63.20–22 The basic
helix-loop-helix family member e41 (BHLHE41), also known
as Sharp-1/Dec-2, has also been implicated as a crucial
regulator of the invasive and metastatic phenotype in breast
cancer.7,20 TAp63 promotes expression of Sharp-1 that in turn
regulates the stability and pro-metastatic activity of hypoxia
inducible factor 1α (HIF-1α). In vitro studies using cell lines,
complemented by in vivo mouse models have been used to
experimentally prove the ability of mut-p53 ability to alter the
TAp63/Sharp-1 axis. Overexpression and silencing of mutant
p53 modulates TAp63-dependent regulation of Sharp-1. We
used p53MutaGene to validate this in vitro/in vivo experi-
mental evidence in a clinical context. p63 and Sharp-1 were
used as inputs for p53MutaGene (p63 as a TF and Sharp-1
as the TF target), and p53MutaGene reported statistically
significant differential co-expression of p63/SHARP1 between

mut-p53 andwt-p53 breast cancer patients (Figures 2a and b).
A positive correlation between p63/SHARP1 is observed in
the wt-p53 group (Pearson coefficient 0.34) while a lack of
correlation (Pearson coefficient 0.03) is observed in p53-mut
breast cancer samples. Therefore, the statistically significant
negative shift in the p63/SHARP1 correlation provided by
p53MutaGene is indicative of a signature in clinical gene
expression data that supports mut-p53’s role in altering the
p63/Sharp-1 axis in breast cancer (Figures 2c and d). This
example provides an overview of the potential applications of
p53MutaGene ‘single mode’, as a tool for validation of
experimental data, as well as, a method to search for novel
potential genes of interest in the investigation of mut-p53 roles
in cancer biology.

p53MutaGene: discovery mode. Along with its ability to
test single pairs (i.e., one TF and one TF target), p53Muta-
Gene also has a discovery mode. In this case, the user inputs
multiple genes that are putative TFs and multiple genes
that are putative TF targets. For each pair (putative TF and
putative TF target), the algorithm will perform the same
analyses as in single mode. The output of a discovery mode
is a ranked list of input TFs. The ranking is based on a
number of significant models found for a submitted list of
putative targets. Therefore, p53MutaGene in discovery mode
ranks a list of putative TFs for a given list of TF targets based
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Figure 2 p53Mutagene predicts a significant effect of mut-p53 on the p63/Sharp-1 axis. (a and b) Correlation between p63 expression and Sharp-1 expression was
computed in the two cohorts of wt-p53 and mut-p53-expressing breast cancers from the METABRIC data set. A statistically significant negative shift was observed in the Pearson
correlation coefficient from 0.34 to 0.03 (P-value= 0.003) suggesting a disruption by mut-p53 of the p63/Sharp-1 positive axis. (c and d) Schematic representation of the p63/
Sharp-1 axis in the two possible scenarios of wt-p53 and mut-p53-expressing tumours. In wt-p53-expressing tumours, p63 is fully active and is therefore able to control expression
(potentially via direct binding on the promoter) of Sharp-1 expression. In mut-p53-expressing tumours, p63 is sequestered and consequentially repressed by mut-p53. This results
in disruption of the p63/Sharp-1 axis, which is observed in the correlation plot (b) as no increase in Sharp-1 expression parallels the p63-expression increase
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on available expression data (Figure 1c). Discovery mode
can support the interpretation of large amounts of data, such
as the results from omics studies of p53-dependent experi-
mental settings (transcriptome analysis and/or chromatin-
binding sequencing, etc.), where the output represents a list
of genes (or several lists).
To demonstrate the potential of p53MutaGene discovery

mode, we selected a previously published gene list generated
by microarray analysis on MDA-MD-231 cells (expressing
mut-p53 R280K) transfected with shp53 or a scrambled
control construct and subsequently treated with TGFβ to
activate the migration/invasion programme.20 The list consists
of 72 genes differentially expressed after mut-p53 depletion.
Four of these genes (ETS2, ETS1, BHLHE40, JUNB) are well
known TFs. We included these genes in the TF list leaving all
the remaining genes in a putative transcriptional target list.
p53MutaGene discovery mode ranked ETS2 as the top TF for
this list with nine putative targets having a significant shift of
correlation. This indicates that ETS2 activity is sensitive to p53
mutational status (Figure 3a). ARHGAP24 (also known as
FilGAP) was the highest scored target. ETS2/ARHGAP24

gene expression correlation has a strong negative shift in
mut-p53 tumours (Figure 3b), indicating that mutated p53
can affect the ability of ETS2 to attenuate the expression
of ARHGAP24 (Figure 3b). EPHB2 and DIXDC1 are the
other top-ranked genes. The ETS2 correlation with EPHB2
and DIXDC1, respectively, showed a positive and a negative
shift in p53 mutated samples (Figures 3c and d). All these
top-ranked genes have been repeatedly associated with
a metastatic phenotype. FilGAP, a Rho GTPase activating
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Figure 3 p53Mutagene discovery mode identified ETS2 as an effector of mut-p53 in alteration of gene networks. (a) In a gene list generated in a mut-p53 experimental setting
(MDA-MB-231-shGFP or MDA-MB-231-shmut-p53), p53Mutagene discovery mode ranked ETS2 as the most affected TF and indicated nine potential targets. All of these targets
show a significant shift in correlation with ETS2 in mut-p53-expressing breast cancers compared with wt-p53 (METABRIC data set). TF, transcriptional factor; N, number of
targets. Specific P-values are indicated between brackets. (b–d) Plots depict a significant shift in correlation between ETS and ARHGAP24 (0.2 to − 0.15) or EPHB2 (−0.01 to
0.32) or DIXDC1 (0.16 to − 0.09) in mut-p53-expressing tumours compared with those expressing wt-p53

Table 1 Statistics of the data sets used by p53MutaGene

Cancer Data set ID Number of
p53

mutated
samples

Number of
p53 wild-

type
samples

Colon cancer GSE39582 190 161
Lung adenocarcinoma GSE36471 31 76
Breast cancer METABRIC 99 704
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protein, has recently been identified as an actin-binding
protein which has an important role in the central mechan-
otransduction element of the cytoskeleton23 and which has
been implicated in invasion/metastasis. FilGAP expression
and activity has been found to be altered in metastatic
TNBC, highlighting a crucial role for this factor in metastatic
suppression of breast cancer.24 DIXDC1 is a scaffold protein
whose expression is often reduced in human metastatic
cancer, leading to upregulation of Snail1 and consequentially
increased cell invasion.25 Remarkably, wt-p53 inhibits
EPHB2 expression to limit the pro-invasive properties of
TGF-β3 in breast cancer.26 The correlation shift observed for
these genes suggests that ETS2 exerts transcriptional activity
on their promoters that can be affected by mut-p53. Strikingly,
the shift of the correlation was always in agreement with the
pro-metastatic role of mutated p53 in cancer. Therefore,
considering the established role of FilGAP, DIXDC1 and
EPHB2 in metastasis and the mut-p53-dependent sensitivity
of ETS2/targets correlation detected by p53MutaGene, the
analysis suggests that ETS2 is an effector of the mut-p53
pro-metastatic phenotype. Indeed, recent studies have
revealed that ETS2 cooperates with mut-p53 to promote
tumour progression. Mut-p53 increases the transcriptional
expression of the ETS2 target genes, TDP and Pla2g16, in an
ETS2-dependent manner.27,28 Our analyses with p53Muta-
Gene on transcriptomic experimental data led us to similar
conclusions, potentially, extending our understanding of the
mut-p53/ETS2 network. With a similar approach, p53Muta-
Gene can assist in the interpretation of experimental data
by shading light on completely novel networks affected by
mut-p53.

Materials and Methods
Gene expression data sets. Computation of p53MutaGene is based on
several clinical gene expression cancer data sets. Samples in the data sets are
additionally annotated with p53 mutational status. Statistics on the number of
samples for each data set is presented in Table 1. For each data set, the same
procedure was repeated. Each sample from the data set probes were ordered by
expression value, and for each probe, expression rank was computed (i.e., rank 100
means the top expressed probe in the sample and rank 55 means that 55 per cent
of probes have lower expression value in the sample). Expression rank reflects
relative expression level and is more consistent, as it requires no normalisation, and
thus introduces no normalisation bias.13,18,29 Only rank information is used for the
purpose of this analysis.

Single hypothesis mode. Pearson correlation is used as a measure of
correlation between mRNA profiles (expression rank) of two genes. Correlation
between two input genes (i.e., putative TF and putative TF target) is computed in a
subset of p53 mutated samples. The expected correlation between the genes is
computed based on a random permutation procedure: the same size as the p53-
mut subset is randomly selected (1000 times) from the whole set of samples (both
wild type and p53-mut) that are annotated with p53 mutational status. The resulting
distribution of correlation between two genes (of size 1000) is used to estimate
significance of the correlation shift. In this case, the P-value is an observed
probability to select randomly a subset of samples (of size equal to the number of
p53-mut samples) with correlation between input genes high (negative shift in
p53-mut) or lower (positive shift in p53-mut) than correlation between input genes in
the subset of p53-mut samples. In the case of multiple testing (the input gene
can be mapped to multiple probes), a False Discovery Rate procedure is used to
adjust computed P-values.30

Discovery mode. In discovery mode, the list of putative TF is tested versus the
list of putative TF targets. For each pair (TF versus target), the same analysis is
computed as described in the previous section. For each TF, the number of

significant models (P-valueo0.01) is counted. First, TFs are ranked based on the
number of significant models among submitted targets. Second, for each TF genes
from the list of putative targets are also ranked based on the P-value of differential
correlation.
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