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Abstract

Women are more vulnerable to stress- and fear-based disorders, such as anxiety and post-traumatic 

stress disorder. Despite the growing literature on this topic, the neural basis of these sex 

differences remains unclear, and the findings appear inconsistent. The neurobiological 

mechanisms of fear and stress in learning and memory processes have been extensively studied, 

and the crosstalk between these systems is beginning to explain the disproportionate incidence and 

differences in symptomatology and remission within these psychopathologies. In this review, we 

discuss the intersect between stress and fear mechanisms and their modulation by gonadal 

hormones and discuss the relevance of this information to sex differences in anxiety and fear-

based disorders. Understanding these converging influences is imperative to the development of 

more effective, individualized treatments that take sex and hormones into account.
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Introduction

Women are twice as likely as men to develop stress- and anxiety-related psychiatric 

disorders (Kessler et al., 1995, 2006, 2009; Tolin & Foa, 2006). This sex bias may be 

attributed in part to a greater sensitivity to stressful and traumatic life experiences in women. 

Indeed, numerous studies have examined sex differences in the response to stress and have 

identified differences in the neural circuits that impact emotional reactivity (Goldstein et al., 

2010; Kogler et al., 2014). However, how these mechanisms may be mediating sex 

differences in anxiety disorders remains unclear. It is often observed that individuals who 

suffer from anxiety have great difficulty forming memories and learning new or challenging 
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tasks. Profound sex differences have been documented in laboratory experiments, where 

inducing stress or fear has also led to impaired learning and memory consolidation. 

Therefore, investigating the mechanisms of learning and memory that are differentially 

affected by stress, fear, or the combination of both may provide insight into the systems that 

mediate these sex differences.

In this review, we focus on processes of fear regulation (acquisition and extinction) to 

explore these sex differences and compare the findings to what has been reported in the 

stress literature. As gonadal hormones, such as estrogen and testosterone, are known to 

influence learning and memory processes as well, these factors will be included in our 

discussion. By describing the intersection of stress, fear, and gonadal hormones in learning 

and memory modulation, we aim to promote a better understanding of the factors that 

increase vulnerability to anxiety disorders to potentially improve the efficacy and efficiency 

of treatment.

Sex differences in anxiety disorders

Anxiety disorders are the most prevalent of mental disorders, with an estimated lifetime 

prevalence rate of about 16% world-wide and 20% in the U.S. alone (Kessler et al., 2005, 

2009). Epidemiological reports consistently indicate that women are at about a two-fold 

higher risk for any anxiety-related disorder compared to men (Breslau et al., 1997; Foa & 

Street, 2001; Kessler et al., 1994, 1995, 2005; McLean et al., 2011; Nolen-Hoeksema & 

Girgus, 1994; Tolin & Foa, 2006). The higher incidence rate in women is maintained across 

all anxiety- and fear-based disorders, including social anxiety disorder, generalized anxiety 

disorder, panic disorder, specific phobia, and post-traumatic stress disorder (PTSD; Breslau, 

2009; Breslau et al., 1997; Kessler et al., 1994, 1995). Although PTSD and obsessive 

compulsive disorder (OCD) are no longer classified as anxiety disorders in the DSM-V, we 

will include them in our discussion as they share important features with anxiety disorders 

and were defined as such in previous DSMs.

Women seem to be more negatively affected by symptoms of anxiety disorders, often 

experiencing symptoms to a greater degree (Altemus et al., 2014). Women comprise more 

than half of the population with generalized anxiety disorder and have a greater vulnerability 

to comorbid mental disorders that persists later in life (60 years of age and older; American 

Psychiatric Association, 2013; Bakish, 1999; van der Veen et al., 2014). Women are not only 

twice as likely to develop PTSD following a traumatic event, but they also experience more 

severe, debilitating, and persistent symptoms (Breslau et al., 1998; Holbrook, Hoyt, Stein, & 

Sieber, 2002; Seedat, Stein, & Carey, 2005). In individuals with panic disorder, this 

increased severity of symptoms is demonstrated by women, who experience a higher 

frequency of panic attacks than men (Kessler et al., 2006; Reed & Wittchen, 1998). These 

differences contribute to an overall worse quality of life for women suffering from anxiety 

disorders compared to men with these disorders (Breslau et al., 1998; Breslau, 2002; Frans 

et al., 2005; Holbrook et al., 2002; Kilpatrick et al., 2013; Perrin et al., 2014; Seedat et al., 

2005). In addition to these pronounced differences in symptom severity, men and women 

also differentially express the characteristics and symptoms of anxiety disorders. For 

instance, women are more likely to show obsessive-compulsive disorder symptoms in the 
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contamination/cleaning domain, whereas men exhibit more obsessive behaviors related to 

the sexual/religious dimension of OCD (Labad et al., 2008).

Epidemiological studies suggest that women may have a higher risk for developing anxiety 

disorders, or exacerbation of their present symptoms, during different phases of their 

reproductive lives, such as puberty, menses, pregnancy, postpartum, and menopause (Hickey, 

Bryant, & Judd, 2012; Pigott, 2003; Ross & McLean, 2006; van Veen, Jonker, van Vliet, & 

Zitman, 2009; Vesga-López et al., 2008). These periods of elevated risk coincide with times 

of drastic hormonal fluctuations, implicating a role for gonadal hormones in the onset, 

maintenance, and persistence of anxiety disorders in women. This sex-specific elevated risk 

for developing fear and anxiety disorders may be due to an inability to down regulate 

negative emotional responses to stress and fear (Campbell-Sills, Barlow, Brown, & 

Hofmann, 2006; Cover, Maeng, Lebrón-Milad, & Milad, 2014; Lebron-Milad & Milad, 

2012; Mennin, Heimberg, Turk, & Fresco, 2005; Nolen-Hoeksema, 1991).

Neurobiology of fear extinction

Fear is a necessary and adaptive response that is critical for survival, but it can develop into 

debilitating psychopathology if it does not subside in the absence of threat. Pavlovian fear 

conditioning is a learning paradigm that is commonly used to investigate fear learning and 

memory processes. Fear learning occurs after several presentations of a neutral conditioned 

stimulus (CS), such as a light or tone, which is paired with an aversive unconditioned 

stimulus (US), such as a mild shock. The subject learns that the CS predicts the US and 

expresses conditioned responses (CRs) to subsequent CS presentations. The CR that is 

usually measured to assess fear is freezing behavior in rodents and skin conductance 

response (SCR) or fear-potentiated startle in humans. During fear extinction, the CS is 

repeatedly presented without the expected negative consequence; the subject learns that the 

CS no longer predicts the aversive US and exhibits a reduction in either freezing or SCR. As 

the neurobiology of fear extinction has been studied extensively and implicated in the 

etiology of anxiety and stress-related disorders (Bishop, 2007; Dias, Banerjee, Goodman, & 

Ressler, 2013; Hofmann, 2008), it is not surprising that stress and fear responses are 

mediated by overlapping neural circuits. Here, we focus on the fear extinction network, 

including the ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex 

(dACC), amygdala, and hippocampus (Linnman et al., 2012; Linnman, Rougemont-

Bücking, Beucke, Zeffiro, & Milad, 2011; Milad et al., 2007).

Relevance to anxiety disorders

The exaggerated fear response is a signature characteristic of anxiety- and stress-related 

disorders. This is especially true for individuals suffering from PTSD, who struggle to 

control fear elicited by stimuli associated with past traumatic events. Understanding the fear 

extinction network can inform research on anxiety disorders not only because of their shared 

neurobiology, but also because fear extinction processes model some of the core behavioral 

features of anxiety disorders (for review, see Graham & Milad, 2011; Maren, Phan, & 

Liberzon, 2013; Pitman et al., 2012). These shared characteristics allow findings from the 

rodent fear extinction model to be easily translated to clinical applications (Briscione, 

Jovanovic, & Norrholm, 2014; Milad & Quirk, 2012; Norrholm et al., 2011). For instance, 
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PTSD patients exhibit poor extinction recall, which appears to be associated with disruptions 

in the fear extinction network, e.g. hyperactivity within the dACC and hypoactivity within 

the vmPFC (Etkin & Wager, 2007; Liberzon & Sripada, 2008; Milad et al., 2009; Pitman et 

al., 2012). Similarly, extinction recall and its neural correlates are disrupted in OCD patients 

(Milad et al., 2013). Although more studies are necessary to evaluate the implications of its 

use, the fear extinction model may be an effective transdiagnostic tool to detect 

susceptibility to anxiety disorders and predict recovery after a stressful life event in humans 

and rodents (Marin, Camprodon, Dougherty, & Milad, 2014). In addition to identifying 

biomarkers of vulnerability to anxiety disorders, another potential application of this model 

may also be to help assess the efficacy of treatment. Prolonged exposure therapy is one of 

the most effective forms of cognitive behavioral therapy for the treatment of anxiety 

disorders (Foa, 2000; Foa, 2011; McLean & Foa, 2013). This treatment induces extinction 

learning by exposing the individual to the stimulus that provokes their uncontrollable fear in 

the absence of any negative outcomes or danger. Fear extinction may be a good experimental 

model for investigating the neural mechanisms that underlie these treatments and identifying 

the dysfunctional target areas that make some individuals less responsive to therapy.

Rodent fear circuitry

The above described fear extinction network in humans was based and driven by numerous 

studies conducted on rodents. In rodents, the circuit modulating fear expression involves 

excitatory input from the prelimbic (PL) medial prefrontal cortex (mPFC) to the basolateral 

amygdala (BLA), which activates the central amygdala (CeA) for enhanced fear expression 

(Likhtik, Pelletier, Paz, & Paré, 2005; Sierra-Mercado, Padilla-Coreano, & Quirk, 2011; 

Sotres-Bayon, Bush, & LeDoux, 2004). The infralimbic (IL) area of the mPFC projects to, 

and activates inhibitory intercalated cells in, the amygdala. These cells connect the BLA to 

the CeA and inhibit fear output (Likhtik et al., 2005; Quirk, Likhtik, Pelletier, & Paré, 2003; 

Quirk & Mueller, 2008; Sierra-Mercado et al., 2011; Sotres-Bayon et al., 2004). The 

hippocampus interacts with this network in response to contextual cues and can induce or 

suppress fear memory expression depending on the context (Sotres-Bayon, Sierra-Mercado, 

Pardilla-Delgado, & Quirk, 2012). For instance, the hippocampus will activate IL to 

suppress fear when the CS is presented in the context in which it was extinguished 

(Corcoran & Maren, 2001).

Human fear circuitry

The rodent circuitry for fear conditioning and extinction appears to have functional 

homologies with that of humans (Milad & Quirk, 2012). Neuroimaging studies illustrating 

brain activations during fear conditioning and extinction suggest that the human dACC and 

vmPFC are homologous with the rodent PL and IL, respectively (Fig.1; Linnman et al., 

2011, 2012). Extinction memory recall (as indicated by low SCR to the CS) was positively 

associated with increased activation of the vmPFC during presentation of the extinguished 

CS (Kalisch et al., 2006; Milad et al., 2007; Phelps, Delgado, Nearing, & LeDoux, 2004). In 

addition, the amygdala and hippocampus were also activated during these tasks, 

demonstrating similar functional roles as in rodents (Kalisch et al., 2006).
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Effects of stress on fear circuitry

The neural nodes of the fear extinction network are sensitive to stress. Acute and chronic 

stress exposure can alter the structure and function of both the hippocampus and medial 

prefrontal cortex, with these changes often accompanied by behavioral consequences/

impairment (Arnsten, 2009; Cook & Wellman, 2004; de Quervain, Roozendaal, & 

McGaugh, 1998; Luine, Villegas, Martinez, & McEwen, 1994; McEwen, 2005; Watanabe, 

Gould, & McEwen, 1992). For instance, acute inescapable forced swim stress induces 

dendritic retraction in IL neurons and impairs fear extinction, but not fear conditioning, in 

mice (Izquierdo, Wellman, & Holmes, 2006). Amygdala structure and function are also 

altered by stress (LeDoux, 2000; McGaugh, 2002). For instance, acute immobilization 

stress, as well as a single administration of glucocorticoids, induces neuronal hypertrophy 

within the basolateral amygdala and heightened anxiety (Kim et al., 2014; Mitra & Sapolsky, 

2008; Mitra, Jadhav, McEwen, Vyas, & Chattarji, 2005).

This brain circuitry is also clinically relevant as patients with anxiety-related disorders and 

patients with PTSD, exhibit alterations in hippocampal and prefrontal volume as well as 

amygdala hyperactivity (Bremner et al., 1997; Coffey et al., 1993; Fani et al., 2015; Lebron-

Milad et al., 2012; Machado-de-Sousa et al., 2014; Shin, Rauch, & Pitman, 2006). 

Interestingly, in both human and nonhuman animals, these brain regions not only subserve 

cognition and emotional processing, but they are also differentially activated between the 

sexes during stress and fear learning (Bangasser & Shors, 2010; Baran, Armstrong, Niren, & 

Conrad, 2010; Goldstein et al., 2010; Lebron-Milad et al., 2012).

Sex differences in fear extinction

Rodents

Given the marked sex differences observed in psychopathology, it is not surprising that the 

regions comprising the fear extinction network also exhibit sexual dimorphisms. Although 

sex differences in fear extinction have not been examined as thoroughly as sex differences in 

stress, converging findings in these two areas may still contribute to our understanding of the 

sex bias in anxiety disorders. The sexually dimorphic nature of the brain regions that 

respond to stress and fear learning (e.g. mPFC, amygdala, and hippocampus) may underlie 

the sex differences observed in fear conditioning and extinction, although the direction of 

these behavioral sex differences are not consistent. Some studies report that females do not 

perform as well as males in fear conditioning and extinction learning (Baker-Andresen, 

Flavell, Li, & Bredy, 2013; Baran et al., 2009, 2010; Fenton et al., 2014). Male rats exhibit 

more freezing to the conditioned stimulus in fewer trials during fear conditioning compared 

to females (Aguilar et al., 2003; Baran et al., 2009, 2010; Daviu, Andero, Armario, & Nadal, 

2014; Maren, De Oca, & Fanselow, 1994; Pryce, Lehmann, & Feldon, 1999; Ribeiro et al., 

2010). Moreover, male rats trained to avoid an aversive arm (bright light and loud noise) in a 

plus maze, made more entries into the arm when the aversive stimuli were no longer present 

during extinction, while female rats decreased aversive arm exploration, indicating failure to 

extinguish the behavior (Ribeiro et al., 2010). In a separate study, males performed better in 

a contextual fear conditioning task, while females expressed less fear and a higher extinction 

rate than males (Daviu et al., 2014). Baran and colleagues (2009), however, reported that 
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although males and females acquired fear similarly, the female rats did not extinguish as 

well as males.

Humans

The mixed findings in rodents are also observed in human studies. Milad et al. (2006) 

demonstrated in healthy humans that although men exhibited a greater conditioned fear 

response compared to women during fear acquisition, they did not differ during extinction 

learning. In contrast, healthy women exhibited greater fear conditioning to a CS paired with 

viewing mock panic attacks, with increased electrodermal responding and distress ratings 

compared to men in an observational fear conditioning procedure (Kelly & Forsyth, 2007). 

Although the literature appears inconsistent in these findings, this may be due to differences 

in fear paradigm, strain, or species studied as well as not controlling for menstrual cycle 

phase or oral contraceptive use.

Sexually dimorphic circuitry

Differences in the neural mechanisms modulating fear may underlie these sex differences in 

fear learning and extinction (Baran et al., 2010; Ter Horst, Carobrez, van der Mark, de Kloet, 

& Oitzl, 2012). In a study examining the role of the medial prefrontal cortex (mPFC), rats 

were fear conditioned to a paired tone-footshock. During extinction training, males with and 

without mPFC lesions and sham-lesioned females successfully reduced freezing, whereas 

mPFC-lesioned female rats continued to freeze to the tone and failed to extinguish, an effect 

that persisted 24 hours later (Baran et al., 2010). Male rats with mPFC lesions showed 

impaired extinction recall, but like sham females, were able to reacquire extinction. Thus, 

the mPFC was necessary for extinction recall in males but for extinction acquisition in 

females (Baran et al., 2010). Others have reported no behavioral differences between males 

and females during fear conditioning and extinction (Milad et al., 2009). Despite a lack of 

perceived sex differences in performance, males and females may engage different brain 

regions to execute the same behavior. In a functional magnetic resonance imaging (fMRI) 

study, men and women exhibited equivalent SCR during fear conditioning and extinction, 

but showed differential activations within fear circuitry (Lebron-Milad et al., 2012). Women 

showed greater changes in activation than men within the amygdala and the dorsal and 

rostral anterior cingulate cortices during fear conditioning. During extinction recall, men 

exhibited greater rostral anterior cingulate cortex activations (Lebron-Milad et al., 2012). 

Interestingly, the brain regions in which sex differences were observed during fear 

conditioning and extinction overlap with those that are differentially activated by men and 

women during stress.

The sex differences observed across the various fear paradigms (in the absence or presence 

of stress) have important clinical implications, as reports of sex differences in fear 

conditioning and extinction in individuals with PTSD are beginning to emerge (Felmingham 

et al., 2010; Glover et al., 2012; Inslicht et al., 2013; Shvil et al., 2014). In one such study, 

enhanced fear conditioning was observed in women compared to men with PTSD (Inslicht 

et al., 2013). In contrast, neural activations and psychophysiological responses that were 

associated with poor extinction memory recall were exhibited in men but not in women with 

PTSD (Shvil et al., 2014). Because the clinical relevance of these sex differences in fear 
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behaviors and circuitry, it is imperative that studies take sex into account when considering 

the neurobiological mechanisms underlying the pathophysiology of anxiety- and stress-

related disorders.

Sex differences in stress

Rodents

Stress can differentially disrupt cognitive processes such as learning and memory as a 

function of sex. In a Pavlovian eyeblink conditioning paradigm, rats are trained to emit a 

well-timed eyeblink CR, associating a neutral white noise CS with an eyelid stimulation US. 

Acute stress exposure the day before training facilitates conditioned eyeblink responding in 

male rats, whereas females are impaired in this type of associative learning (Wood & Shors, 

1998). The sex differences in the effect of stress on learning appear to be mediated by 

differences in the critical brain regions involved. The male stress effect relies on activity in 

the bed nucleus of the stria terminalis (BNST), whereas the female stress effect depends on 

mPFC activity (Bangasser, Santollo, & Shors, 2005; Bangasser & Shors, 2010; Maeng, 

Waddell, & Shors, 2010). These data indicate that the neural circuits that mediate the 

opposing effects of stress on eyeblink conditioning differ between males and females. Sex 

differences are also observed in the stress-induced changes in brain structure. Chronic 

restraint stress can induce different morphological changes in the prefrontal cortex and 

hippocampus in male versus female rats (Luine, 2002; Wellman, 2001).

Humans

Within the stress response circuitry in humans, including the hypothalamus, hippocampus, 

amygdala, brainstem, orbitofrontal cortex (OFC), mPFC, and anterior cingulate gyrus 

(ACG), activation is also sexually dimorphic (Goldstein et al., 2010). In one neuroimaging 

study, healthy men and women were presented with negative valence/high arousal images to 

examine whether there were sex differences in their brain responses. The data demonstrated 

that although men were similar to women in the low estrogen phase, the men had 

significantly higher activation within the hippocampus and ACG, with the greatest effect 

sizes in the mPFC and OFC, relative to high estrogen women (Goldstein et al., 2010). 

Moreover, in a psychosocial achievement stress test, women reported feeling more stress 

than men, which was associated with higher activation in limbic and attention-related brain 

structures (Kogler et al., 2014). Together, the data in both humans and rats demonstrate sex 

differences not only in the effects of stress on behavior, but also in the structure and function 

of the neurocircuitry mediating them. Interestingly, the critical brain regions that respond to 

stress are shared with those implicated in anxiety disorders and fear neurocircuitry, 

suggesting that these responses are interrelated and can modulate each other.

Sex differences in stress effects on fear processes

Literature on the effects of stress on fear conditioning and extinction also report sex 

differences (Farrell, Sengelaub, & Wellman, 2013; Zorawski, Blanding, Kuhn, & LaBar, 

2006; Zorawski, Cook, Kuhn, & LaBar, 2005). In humans, a psychosocial stressor produced 

differential responding, both behavioral and in the critical brain regions of fear learning and 

expression, during a fear conditioning task in men and women taking oral contraceptives. 
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Stressed men displayed reduced fear conditioning, which correlated with impaired fear 

responses in the anterior cingulate cortex and amygdala, whereas stressed women showed 

enhanced fear learning, which correlated with facilitated differential responses within these 

same brain regions (Merz et al., 2010, 2013). Similarly, pharmacological treatment with 

stress hormone cortisol impaired fear conditioning in men, but facilitated acquisition of fear 

in women (Merz et al., 2010; Stark et al., 2006). Fear extinction and recall were not assessed 

in these studies. In another study, stress exposure following fear acquisition reduced 

conditioned fear memory retrieval in men compared to women, but there were no sex 

differences in extinction (Bentz et al., 2013). However, in rodents, sex differences in both 

fear conditioning and extinction have been observed in response to stress. Chronic exposure 

to restraint stress impairs extinction recall in males, but it facilitates fear extinction recall 

and impairs fear acquisition in female rats (Baran et al., 2009). The effect of stress on fear 

conditioning appears to be mixed and may also be attributed to species differences, type of 

stressors, time and duration of stressful experience, and/or fear paradigms used. Despite 

these discrepancies, the differential effects of stress on males and females are consistently 

observed and thus highlight the need to further pursue these studies.

Gonadal hormones, stress, and fear extinction

Estrogen- Rats

The inconsistent findings on sex differences in fear conditioning and extinction may be 

explained in part by the influence of gonadal hormones. Given the amount of evidence 

suggesting that sex hormones, and estrogen in particular, can modulate various learning and 

memory processes, the role of these hormones should be included in the study of sex 

differences in fear extinction learning and memory. As the primary gonadal hormone in 

females, estrogen will be the focus of this section. Moreover, it is important to note our 

discussion is centered on the activational effects of estrogen, which are more dynamic and 

occur throughout life, and not on its organizational effects, which are more permanent and 

occur during the early developmental hard-wiring of the brain (Arnold & Breedlove, 1985). 

The rodent estrous cycle consists of 4-5 days with 4 distinctive phases that are associated 

with varying levels of ovarian hormones: proestrus, estrus, metestrus, and diestrus (Fig. 2). 

Unfortunately, many rodent fear extinction studies do not control for estrous phase, 

overlooking the potential effects of the naturally fluctuating ovarian hormone levels on 

extinction learning and memory. Not accounting for estrous phase can mask underlying sex 

differences and mislead our understanding of important aspects of stress- and fear-related 

behaviors. For instance, Milad et al. (2009) did not observe sex differences in auditory cued 

fear conditioning, extinction, and recall in male and female rats when estrous phase was not 

considered. However, when the females were divided by the estrous phase during extinction 

training, sex differences in fear expression were observed in extinction recall. Specifically, 

females extinguished in the metestrus phase (low ovarian hormones) exhibited more freezing 

during recall compared to females extinguished in the proestrus phase (high ovarian 

hormones) as well as compared to male rats (Milad et al., 2009; Rey, Lipps, & Shansky, 

2014). Moreover, exogenous administration of estrogen to metestrus females, prior to and 

within 4 hours after extinction training, enhanced fear extinction memory and reduced 

freezing during recall (Zeidan et al., 2011). The effect of estrogen on fear extinction was 
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evident specifically during the retrieval of the extinction memory one day after training, 

which was associated with enhanced neuronal activity within the IL. Thus, it appears that 

estrogen modulates the consolidation of extinction memory and does so by increasing IL 

activity. In further support of these findings, endogenous estrogen facilitates synaptic 

potentiation within the IL, which would potentially allow for strengthening of extinction 

circuitry (Galvin & Ninan, 2014). The facilitatory role of estrogen on extinction has also 

been described in other tasks. Estrogen administration enhances extinction in a passive 

avoidance task in male Wistar rats (Rivas-Arancibia & Vazquez-Pereyra, 1994), as well as in 

conditioned taste aversion in both gonadectomized males and females (Yuan & Chambers, 

1999). Moreover, intrahippocampal infusions of estrogen in ovariectomized female rats 

enhances contextual fear extinction (Chang et al., 2009). Together, these data demonstrate 

that estrogen is a potent neuromodulator of fear extinction learning and memory 

mechanisms. The molecular mechanisms underlying estrogen’s effect on extinction 

processes have been discussed in a recently published review (Cover et al., 2014; Glover, 

Jovanovic, & Norrholm, In press).

Interestingly, estrogen appears to also enhance fear acquisition. For instance, ovariectomized 

female mice given estrogen exhibited enhanced fear conditioning (Jasnow, Schulkin, & 

Pfaff, 2006; Morgan & Pfaff, 2001), which was associated with increased corticotropin-

releasing hormone (CRH) mRNA expression in the central amygdala (Jasnow et al., 2006). 

Similarly, fear-potentiated startle was facilitated by estrogen administration in 

ovariectomized female rats (Hiroi & Neumaier, 2006). In contrast, estrogen replacement in 

ovariectomized female rats reduced contextual fear conditioning (Gupta, Sen, Diepenhorst, 

Rudick, & Maren, 2001). Although some of these findings appear to challenge estrogen’s 

enhancement of fear extinction processes, it is important to note that these studies only 

examined the role of estrogen in males and ovariectomized females, neither of which 

experience steady variations in hormone levels. This makes it somewhat challenging to 

directly compare these findings with those in naturally cycling females. Moreover, given the 

overall learning and memory enhancement provided by estrogen administration, findings 

that report estrogen-facilitated fear conditioning should not be wholly unexpected. While 

they appear counterintuitive considering estrogen’s beneficial effects, they may simply be 

additional support for estrogen’s ability to increase learning capacity. Furthermore, estrogen 

depletion via ovariectomy may alter receptor density and function, producing varying dose 

dependent effects of estrogen replacement and making interpretation of the results difficult. 

This may be due to the inverted U-shaped effects of estrogen administration in which some 

doses may be optimal to produce protective effects, whereas other doses that are too low or 

high may induce impairments (Barha, Dalton, & Galea, 2010; Inagaki, Gautreaux, & Luine, 

2010). In our studies, we have shown that naturally cycling high and low estrogen females 

exhibit no significant differences in fear conditioning, suggesting that high estrogen at 

normal physiological levels does not increase fear expression during conditioning and 

extinction, but does enhance extinction recall (Milad et al., 2009).

Estrogen- Humans

Similar to the female rodent, the hormonal milieu in women is constantly changing 

depending on reproductive stage throughout their lifespan. Estrogen’s influence on 
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extinction retention in women follows the same pattern as in the rodent model as well, with 

low estrogen status associated with impaired extinction memory (Glover et al., 2013; Milad 

et al., 2010; Wegerer, Kerschbaum, Blechert, & Wilhelm, 2014). Women that underwent 

extinction training during the high estrogen luteal phase had comparable extinction recall to 

men, with both of these groups showing significantly better extinction memory than women 

trained during their low estrogen early follicular phase (Milad et al., 2010). Moreover, 

suppression of endogenous levels of estrogen in women taking hormonal contraceptives also 

impairs fear extinction, an effect that was also produced in female rodents (Graham & 

Milad, 2013). These alterations of extinction behavior in women taking hormonal 

contraceptives are associated with differences in activity of neural substrates within fear 

circuitry, e.g. increased differential activation to paired CS compared to unpaired CS in the 

amygdala, thalamus, anterior cingulate, and vmPFC during extinction (Merz et al., 2012).

Neural activity within the fear network also differs across the phases of the menstrual cycle 

in women (Goldstein et al., 2005; Milad et al., 2006; Protopopescu et al., 2005). Estrogen 

appears to enhance the functional activation of the vmPFC, the human homolog of the 

rodent IL, which is a critical structure in fear extinction (Protopopescu et al., 2005; Zeidan et 

al., 2011). Women in the late follicular-midcycle menstrual phase (high estrogen and 

progesterone) not only have better extinction retention than women in the early follicular 

menstrual phase (low estrogen and progesterone), but they also had significantly increased 

activation of the vmPFC during extinction learning and recall; vmPFC activation positively 

correlated with estrogen levels (Fig. 2; Zeidan et al., 2011). Interestingly, among women 

with low estrogen levels, women with PTSD exhibited higher fear-potentiated startle during 

extinction compared to women in the trauma-exposed control group, a distinction that was 

not observed in women with high estrogen levels (Glover et al., 2012). As mentioned 

previously, individuals with PTSD exhibit impaired extinction recall, which is associated 

with dysfunction in the vmPFC and thus may be related to activity during low estrogen 

states in women. Together, these findings highlight the vmPFC as a brain region that not 

only modulates fear, but is also affected by interactions between stress and estrogen and may 

be disrupted in anxiety disorders.

Estrogen- Stress

A similar pattern of stress sensitivity as in the modulation of fear appears to be associated 

with changing levels of ovarian hormones across the menstrual cycle and lifespan in women 

(Goldstein et al., 2005; Handa & Weiser, 2014; Jacobs et al., 2014; Ter Horst, Wichmann, 

Gerrits, Westenbroek, & Lin, 2009). Women are especially vulnerable to stress and 

disturbances in mood during drastic hormonal fluctuations (Brummelte & Galea, 2010). The 

higher prevalence of anxiety- and stress-related mental illness in women may also be 

associated with these changes, as it appears during puberty and lasts until menopause (Hyde, 

Mezulis, & Abramson, 2008; Kessler, McGonagle, Swartz, Blazer, & Nelson, 1993; Nolen-

Hoeksema & Girgus, 1994; Silberg et al., 1999; Sonnenberg, Beekman, Deeg, & van 

Tilburg, 2000; Kaltiala-Heino, Kosunen, & Rimpelä, 2003; Piccinelli & Wilkinson, 2000). 

Just as for fear extinction recall, women taking hormonal contraceptives exhibit differences 

in emotional responding, such as blunted stress responses and memory for different aspects 

of an emotional story compared to those that are naturally cycling (Nielsen, Ahmed, & 
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Cahill, 2014; Nielsen, Ertman, Lakhani, & Cahill, 2011; Nielsen, Segal, Worden, Yim, & 

Cahill, 2013). However, it is important to note that in this study, menstrual phase, which can 

also be influencing these effects, was not accounted for in the naturally cycling group.

Estrogen and stress effects on fear circuitry

These changes in stress sensitivity are also manifested in altered neural activity. During the 

low estrogen phase, healthy women presented with negative valence/high arousal images 

showed increased activation of brain regions in stress response circuitry, i.e. PFC, amygdala, 

hippocampus, paraventricular nucleus (PVN), and brainstem, compared to women in their 

high estrogen phase (Goldstein et al., 2005). A recent study examined the interaction of 

menstrual phase, stress, and fear during exposure to a psychosocial stressor prior to fear 

conditioning. These data demonstrated that there were no differential effects of stress on fear 

acquisition, but it enhanced extinction recall in women stressed in the high estrogen phase of 

their menstrual cycles. The opposite was seen in women stressed in their low estrogen phase, 

who exhibited impaired extinction memory (Antov & Stockhorst, 2014). Therefore, 

experiencing trauma in a low estrogen state may contribute to resistance to extinction and 

greater fear recovery during extinction recall. Because of their interconnected relationship 

with stress and fear mechanisms, ovarian hormones such as estrogen have been implicated in 

the etiology of anxiety disorders in women. At the very least, these data suggest that low 

levels or fluctuations in estrogen that occur in cycling women at the time of a traumatic 

event, in addition to their hormone status during therapy, can predict treatment outcomes.

As alluded to previously, the medial prefrontal cortex is one key brain region in the fear 

extinction network that is also sexually dimorphic (Baran et al., 2010; Goldstein et al., 2005; 

Maroun, 2013; Quirk, Russo, Barron, & Lebron, 2000) that is not only sensitive to estrogen 

levels (Merz et al., 2012; Zeidan et al., 2011), but is also responsive to stress (Arnsten, 2009; 

Garrett & Wellman, 2009; Maeng & Shors, 2013; Maeng et al., 2010; Shansky & Lipps, 

2013; Shansky & Morrison, 2009). As such, this brain region seems to be a neurobiological 

point of intersection for estrogen, fear, and stress. Stress increases the number and length of 

apical dendritic branches in the medial prefrontal cortex, but this process is prevented by 

ovariectomy, suggesting that it may be dependent on the presence of estrogen (Garrett & 

Wellman, 2009). Acute stress disrupts classical eyeblink conditioning (Shors et al., 1998), an 

effect that is dependent on medial prefrontal cortex activity in low estrogen female rats but 

not in male rats (Maeng et al., 2010). Moreover, differential contributions of the PL and IL 

subregions of the mPFC to stress and fear have been identified (Akirav & Maroun, 2007; 

Fenton et al., 2014; Laurent & Westbrook, 2009; Maeng & Shors, 2013). Inactivation of the 

PL during acute forced swim stress exposure prevents the subsequent impairment in 

classical eyeblink conditioning, whereas the inactivation of the IL does not (Maeng & Shors, 

2013). This suggests that stress may be engaging the PL to induce the negative effect of 

stress on associative learning. This may be related to the persistent PL activity observed in 

female rats that express high contextual fear during extinction and recall, although estrous 

phase was not accounted for in this study (Fenton et al., 2014). Together, these data suggest 

that the PL may be one brain target that is especially sensitive to stress and involved in 

impairments in fear extinction. Chronic restraint stress induces increases in dendritic 

branching in IL neurons that project to the BLA in estrogen-treated ovariectomized females 

Maeng and Milad Page 11

Horm Behav. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Shansky et al., 2010). This finding indicates that the IL-BLA pathway is sensitive to both 

stress and estrogen. The estrogen-enhanced IL plasticity may suggest increased pathway 

connectivity or functioning. Although fear learning and extinction were not assessed in this 

particular study, this effect on IL-BLA connectivity may be involved in the previously 

described stress-enhanced extinction recall in women stressed during their high estrogen 

phase (Antov & Stockhorst, 2014).

In males, the robust connections between the prefrontal cortex and the amygdala have been 

studied extensively in stress and fear modulation experiments (Garcia, Vouimba, Baudry, & 

Thompson, 1999; Laurent & Westbrook, 2008; Maroun & Richter-Levin, 2003; Quirk et al., 

2003; Sotres-Bayon et al., 2004). However, this may be an especially critical circuit for 

stress and fear modulation in females (Maeng et al., 2010; Shansky et al., 2010). The 

amygdala also contains estrogen receptors (Jasnow et al., 2006; Shughrue, Scrimo, & 

Merchenthaler, 1998), and estrogen infusion influences amygdala function in fear and 

emotional responses (Frye & Walf, 2004). Disconnecting the mPFC and amygdala via 

contralateral lesions of these structures prevents the stress-induced suppression of eyeblink 

conditioning, indicating that the mPFC communicates with the amygdala to modify learning 

after stress in females (Maeng et al., 2010). Together, these data suggest that estrogen may 

be altering structure and function within the medial prefrontal cortex (via connections to the 

amygdala specifically in females) to modulate its role in stress and fear circuitry and the 

interactions between both systems.

HPA-HPG interactions

Stress exposure induces numerous responses, including those of the sympathetic nervous 

system (catecholamines) and immune system (cytokines). One of the principal outputs of the 

stress response is activation of the glucocorticoid system. Thus, stress, fear, and sex 

interactions may also be related to activity within the hypothalamic-pituitary-adrenal (HPA) 

axis, which modulates responses to stress and also appears to be dysregulated in anxiety and 

PTSD. There are indirect connections to the HPA axis that originate from the hippocampus, 

mPFC, and amygdala, regions described above in which stress, fear, and sex appear to 

interact-- essential structures in learning and fear circuitry that also contain receptors for 

stress hormones (Arnsten, 1997; Gray & Bingaman, 1996; McEwen, Weiss, & Schwartz, 

1968; Patel, Katz, Karssen, & Lyons, 2008; Veldhuis, Van Koppen, Van Ittersum, & De 

Kloet, 1982). It has been reported that the mPFC has inhibitory control of HPA activity 

(Weinberg, Johnson, Bhatt, & Spencer, 2010). Interestingly, the HPA axis response to stress 

differs in males and females, with females appearing to have faster HPA reactivity and a 

higher release of stress hormones (Goel, Workman, Lee, Innala, & Viau, 2014; for review, 

see Kudielka & Kirschbaum, 2005). What may be critical to understanding these differences 

is the crosstalk between the HPA axis and the hypothalamic-pituitary-gonadal (HPG) axis, 

which regulates secretion of gonadal hormones such as estrogen, progesterone, and 

testosterone (Toufexis, Rivarola, Lara, & Viau, 2014). Estrogen and testosterone levels can 

regulate HPA responses with some reports that testosterone can inhibit HPA activity, 

whereas estrogen can enhance function of the stress axis, an effect also dependent on which 

estrogen receptor type is activated (Handa, Burgess, Kerr, & O’Keefe, 1994; Handa & 

Weiser, 2014; Kirschbaum et al., 1996). Moreover, exposure to stress, and more specifically 
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stress-induced HPA activity, appears to inhibit estrogen and testosterone secretion (Lu et al., 

2015; Toufexis et al., 2014). For instance, male rats exposed to predator odor stress showed 

reduced levels of testosterone (Fenchel et al., 2015). Female rats also exhibited a significant 

decrease in plasma levels of estrogen and testosterone following foot shock and chronic 

unpredictable mild stress (Lu et al., 2015). In females, the HPG axis regulates the menstrual/

estrous cycle. HPG activity increases and decreases throughout the female lifespan, 

contributing to the hormonal fluctuations that occur during different reproductive life events 

(i.e. puberty, pregnancy, menopause), and thus, may play an important role in the 

neurocircuitry mediating the interactions between stress, estrogen, and fear. Both the HPA 

and HPG axes are influenced by similar factors such as trauma, and dysregulation in either 

system can lead to disturbances in emotional health, and in turn, learning and memory 

deficits (Dismukes, Johnson, Vitacco, Iturri, & Shirtcliff, 2014; Du et al., 2014; Toufexis et 

al., 2014). Given this relationship, crosstalk between the HPA and HPG circuitry may be 

critical to understanding the greater vulnerability to stress and anxiety disorders during the 

different hormonal phases across the female lifespan (Fig. 3).

Progesterone

Although much of the literature is on the role of estrogen in stress and fear learning and 

memory, progesterone is also an important female sex hormone involved in the menstrual/

estrous cycle and pregnancy. High progesterone levels have been associated with enhanced 

memory for emotionally arousing stimuli in women (Ertman, Andreano, & Cahill, 2011). 

Endogenous progesterone levels also interact with stress exposure to regulate emotional 

memory. Women in a high progesterone state of their menstrual cycle had increased cortisol 

levels and better memory recall for negative images that were paired with the cold pressor 

stress task (Felmingham et al., 2010). Some report that progesterone and estrogen produce 

effects on arousal brain circuitry that interact or may even oppose each other. Increased 

amygdala activity during presentation of negative images was observed in women in the 

luteal phase when both estrogen and progesterone levels are high, despite previous reports of 

reduced amygdala activity during high estrogen states (Andreano & Cahill, 2010; Ferree, 

Kamat, & Cahill, 2011).

Progesterone may also be contributing to estrogen’s enhancing effects on extinction 

memory. Exogenous administration of progesterone facilitates extinction recall in female 

rats, similar to the effect of estrogen administration (Milad et al., 2009). However, 

progesterone did not have this effect in women (Milad et al., 2010). This may be due to 

species differences; however, progesterone has been shown to suppress HPA axis activity via 

conversion to its metabolite allopregnanolone (Biggio, Pisu, Biggio, & Serra, 2014). In fact, 

a number of studies have reported anxiolytic properties of allopregnanolone (Nillni, 

Toufexis, & Rohan, 2011; Pibiri, Nelson, Guidotti, Costa, & Pinna, 2008; D. J. Toufexis, 

Davis, Hammond, & Davis, 2004). Human imaging studies have shown that 

allopregnanolone is associated with reduced amygdala responsivity to aversive stimuli, 

further supporting the anxiolytic role of this hormone (Sripada et al., 2013; Sripada, Welsh, 

Marx, & Liberzon, 2014). Allopregnanolone is a positive modulator at GABA-A receptors, 

and women with PTSD have altered GABA-A receptor sensitivity as well as reduced 

cerebrospinal fluid levels of allopregnanolone (Möller, Bäckström, Nyberg, Söndergaard, & 
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Helström, 2014; Rasmusson et al., 2006). Administration of ganaxolone, a synthetic analog 

of allopregnanolone, was shown to reduce anxiety-like behavior in the elevated plus maze, 

reduce high fear expression during contextual fear conditioning, and enhance fear extinction 

retention in mice (Pinna & Rasmusson, 2014). Given the evidence that progesterone and its 

neuroactive steroid metabolite allopregnanolone are involved in emotional memory 

formation and mood disorders (Bäckström et al., 2014), it is important to further examine 

their role in fear extinction mechanisms as potential therapeutic agents for anxiety disorders.

Testosterone

Testosterone also exerts effects on anxiety and fear processes that may be relevant in this 

discussion (McHenry, Carrier, Hull, & Kabbaj, 2014). Testosterone and its metabolites have 

been shown to possess anxiolytic properties, reducing anxiety behaviors and enhancing 

cognition in male rodents (Frye, Koonce, Edinger, Osborne, & Walf, 2008; Hodosy et al., 

2012; McDermott, Liu, & Schrader, 2012). Findings for the role of testosterone in fear 

conditioning and extinction are not yet clear. Some report no role of testosterone in 

contextual fear conditioning (Anagnostaras et al., 1998), while others suggest a role of 

testosterone in cued fear conditioning (Chen et al., 2014). Testosterone is converted to 

estrogen in the brain via the enzyme aromatase. Thus, aromatase inhibitors, such as 

fadrozole, prevent estrogen synthesis. Interestingly, we have found that administration of 

fadrozole prior to extinction training impairs fear extinction recall in male rats, which can be 

rescued by estrogen administration (Graham & Milad, 2014). In a recent study, extinction 

learning was better in men with elevated testosterone to cortisol ratios (Pace-Schott et al., 

2013), further implicating this hormone in fear extinction. As its presence is needed for the 

production of estrogen, testosterone may indirectly modulate fear extinction processes via 

this conversion.

Hypogonadal men with low testosterone have an increased risk for developing anxiety- and 

stress-related disorders (DiBlasio et al., 2008; Shores et al., 2004; Zarrouf, Artz, Griffith, 

Sirbu, & Kommor, 2009). The risk of developing pathological anxiety can also be reversed 

with testosterone administration, improving affect and reducing anxiety and depression 

(Kanayama, Amiaz, Seidman, & Pope, 2007; Pope, Cohane, Kanayama, Siegel, & Hudson, 

2003; Wang et al., 1996; Zarrouf et al., 2009). Moreover, testosterone replacement in 

castrated male rodents ameliorates anxiety behaviors (Hodosy et al., 2012; Khakpai, 2014). 

Although there are mixed reports on the role of testosterone in PTSD, there is evidence 

suggesting that a single administration of testosterone to women may reduce the stress 

response and startle reflex, which is typically heightened in PTSD (Hermans et al., 2007; 

Hermans, Putman, Baas, Koppeschaar, & van Honk, 2006). Future studies will be necessary 

to examine the influence of testosterone on the mechanisms mediating fear extinction and its 

interactions with estrogen and other sex hormones.

Future of treatment for anxiety disorders

This line of research can significantly impact future treatment of anxiety disorders. More 

individualized, sex-specific treatments may not only ameliorate the sex bias in prevalence 

for these psychopathologies, but they could also: 1) eliminate symptoms, 2) reduce symptom 

severity to levels that allow proper life functioning, and 3) increase the duration of improved 
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treatment outcomes to make them longer lasting or permanent. Further investigation of the 

mechanisms underlying the interactions between estrogen and antidepressants may also be 

warranted. For instance, chronic fluoxetine improves extinction recall in females but not in 

males and facilitates extinction learning in low estrogen rats while having no effect on high 

estrogen rats (Lebrón-Milad, Tsareva, Ahmed, & Milad, 2013). In addition to fear 

extinction, sex differences have also been reported in the effect of antidepressants on stress 

and associative learning, as well as their overall pharmacokinetics; studies suggest that 

females respond better to selective serotonin reuptake inhibitors (SSRIs), a response that 

may be attributed to the known interactions between estrogen and serotonin (Dalla, 

Pitychoutis, Kokras, & Papadopoulou-Daifoti, 2010; Damoiseaux, Proost, Jiawan, & 

Melgert, 2014; Keers & Aitchison, 2010; Kokras, Dalla, & Papadopoulou-Daifoti, 2011; 

Leuner, Mendolia-Loffredo, & Shors, 2004). Interestingly, some of these effects have been 

associated with naturally cycling female sex hormones, which may be influencing the 

differences in therapeutic response to antidepressant pharmacotherapy (Frackiewicz, 

Sramek, & Cutler, 2000). These data underscore the need to consider the impact that sex 

hormones may have on treatment options. Regimens that are scheduled around menstrual 

cycle phase, account for oral contraceptive use, and/or include the measurement of hormone 

levels prior to the start of treatment appear necessary.

Future research aimed at localizing and identifying cellular, molecular, and genetic 

mechanisms by which estrogen modulates fear extinction and anxiety can guide our 

treatment targets and ultimately improve the efficacy of clinical applications. Fairly recently, 

pituitary adenylate cyclase-activating polypeptide (PACAP), a stress- and fear-related 

peptide, was found to be associated with the diagnosis and symptoms of PTSD in women. 

This peptide appears to be modulated in the BNST by estrogen administration in 

ovariectomized female rats (Ressler et al., 2011). Further advances in this field could enable 

us to use the extinction-strengthening properties of estrogen (perhaps targeting critical 

regions such as the mPFC) without the potentially harmful side effects that typically 

accompany it, potentially enhancing the benefits of pharmacotherapy and/or prolonged 

exposure therapy. To this end, we must improve our understanding of the complex processes 

that underlie stress and fear responses and interact with sex hormones to contribute to the 

etiology of anxiety disorders.

Conclusions

The goals of this review are to (1) present current literature on hormonal influences on fear 

and stress mechanisms that may underlie sex differences in anxiety disorders and (2) 

highlight the gaps that need to be filled in order to enhance our understanding of the 

pathophysiology and treatment of anxiety disorders. Converging data from studies on stress, 

fear, and sex hormones indicate that heightened sensitivity to stress and impaired extinction 

memory consolidation are associated with low estrogen states in females. This may be 

related to vulnerability to psychopathology. Stressful life experiences can disrupt fear 

extinction, a behavioral process that models the psychopathology of PTSD and anxiety 

disorders. This negative effect of stress can be further amplified during low levels of, or 

fluctuations in, estrogen. Because stress is a major contributor to the development of anxiety 

disorders, stress and fear mechanisms should be studied together and not in isolation.
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Although there is a substantial amount of literature on the effects of estrogen on stress and 

fear regulation, few studies have examined the role of other gonadal hormones. More studies 

are needed to understand the roles and interactions these hormones may have with the 

effects of estrogen in fear extinction memory consolidation. It is important to emphasize that 

although low estrogen levels are linked with poor extinction memory recall, the elevated risk 

for anxiety may be more dependent on fluctuations and less on the absolute “low” versus 

“high” levels of estrogen. Studies examining ovariectomized females may provide some 

initial information about the role of estrogen on the specific behavior being tested; however, 

conducting experiments using naturally cycling females may provide insight on the many 

interactions that take place in normal animals and thus offer more clinical relevance to the 

affected population, who are typically of child-bearing age. Moreover, the effects of estrogen 

can be dose-dependent and follow an inverted U shape in their interactions with stress and 

fear to influence subsequent learning and memory processes; estrogen levels that are too low 

or too high can have negative consequences (Arnsten, 2009; Shors & Leuner, 2003). This 

may explain some of the inconsistencies in the effects of estrogen in the literature, and 

should also illustrate why it is imperative to consider natural fluctuations, as they can 

determine whether estrogen treatment will have beneficial or harmful effects. These data 

highlight the intersection of stress, fear, and sex hormones to elucidate their role in the 

increased vulnerability of females to anxiety-related disorders (Fig. 3). We also highlight the 

medial prefrontal cortex and its communication with the amygdala as a potentially critical 

circuit that is affected by, and in turn modulates, these interactions. Based on the clinical 

implications of these data, it is evident that ovarian hormone levels should be taken into 

consideration when treating women for stress- and anxiety-related disorders.
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Highlights

• Women are more vulnerable to anxiety and fear-related disorders than men.

• Estrogen levels can modulate fear and stress responses in women and female 

rodents.

• Stress affects the critical nodes of fear circuitry.

• Interactions between sex hormones, stress, and fear should be further examined.

• Treatment for anxiety and fear-based disorders should account for hormone 

status.
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Figure 1. 
Functional homologies within the fear extinction circuitry. The rodent prelimbic (PL) and 

infralimbic (IL) areas of the medial prefrontal cortex (mPFC) appear to be homologous with 

the human dorsal anterior cingulate cortex (dACC) and ventromedial prefrontal cortex 

(vmPFC), respectively. Based on rodent and neuroimaging studies, the PL and dACC are 

associated with high fear expression, whereas the IL and vmPFC are associated with fear 

suppression (Modified from Milad & Quirk, 2012). Estrogen appears to modulate activity 

within the vmPFC and IL to enhance fear extinction memory.
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Figure 2. 
Ovarian hormone levels fluctuate across the phases of the menstrual cycle. Estrogen levels 

peak during the proestrus phase of the estrous cycle and the late follicular phase of the 

woman’s menstrual cycle, times of enhanced extinction memory (shaded in pink). Left) 
Rodent estrous cycle. M: metestrus; D: diestrus; P: proestrus; E: estrus. Right) Human 

menstrual cycle.
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Figure 3. 
Female HPA-HPG circuitry. The HPA axis is activated by stress signals that travel from the 

paraventricular nucleus (PVN) of the hypothalamus to the pituitary gland and then to the 

adrenal glands for glucocorticoid release. In the HPG axis, the hypothalamus produces 

gonadotropin-releasing hormone, which binds to receptors within the anterior pituitary to 

release luteinizing hormone (LH) and follicle-stimulating hormone (FSH). LH and FSH then 

stimulate the gonads for the release of estrogen and progesterone, as well as a small amount 

of testosterone, in females. Red lines represent inhibitory action of negative feedback; green 

lines represent excitation. Estrogen levels can regulate HPA responses. HPA activity can 

inhibit estrogen secretion. The reciprocal modulation of gonadal hormone and stress 

response neurobiology may underlie the sex differences and influence of gonadal hormones 

in fear extinction and anxiety disorders. These systems are also indirectly connected to the 

hippocampus, mPFC, and amygdala, critical regions in fear circuitry that are affected by 

stress and estrogen.
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