Neurotherapeutics (2016) 13:395-402
DOI 10.1007/513311-016-0423-9

@ CrossMark

REVIEW

Exercise and Environmental Enrichment as Enablers
of Task-Specific Neuroplasticity and Stroke Recovery

Jessica Livingston-Thomas'? - Paul Nelson ' - Sudhir Karthikeyan'* -
Sabina Antonescu'? - Matthew Strider Jeffers'? - Susan Marzolini'~ -

Dale Corbett!>*5

Published online: 11 February 2016

© The American Society for Experimental NeuroTherapeutics, Inc. 2016

Abstract Improved stroke care has resulted in greater survival,
but >50 % of patients have chronic disabilities and 33 % are
institutionalized. While stroke rehabilitation is helpful, recovery
is limited and the most significant gains occur in the first 2—
3 months. Stroke triggers an early wave of gene and protein
changes, many of which are potentially beneficial for recovery.
It is likely that these molecular changes are what subserve spon-
taneous recovery. Two interventions, aerobic exercise and envi-
ronmental enrichment, have pleiotropic actions that influence
many of the same molecular changes associated with stroke
injury and subsequent spontaneous recovery. Enrichment para-
digms have been used for decades in adult and neonatal animal
models of brain injury and are now being adapted for use in the
clinic. Aerobic exercise enhances motor recovery and helps re-
duce depression after stroke. While exercise attenuates many of
the signs associated with normal aging (e.g., hippocampal atro-
phy), its ability to reverse cognitive impairments subsequent to
stroke is less evident. It may be that stroke, like other diseases
such as cancer, needs to use multimodal treatments that augment
complimentary neurorestorative processes.
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Introduction

Behavioral experience can markedly alter structural properties
of neurons (e.g., alter spine formation, dendritic and axonal
sprouting), as well as molecular processes such as
neurogenesis and angiogenesis in the normal rodent brain
[1-3]. In the first days and weeks following experimental
stroke there is a period of heightened neuroplasticity charac-
terized by an upregulation of growth-promoting genes and
proteins [4]. During this time interval, behavioral interven-
tions such as rehabilitation might be expected to be highly
effective, since the molecular processes of self-repair that
manifest as spontaneous recovery likely overlap with the
neurorestorative mechanisms induced by rehabilitation.
Evidence from rodent models of stroke support the concept
of'a time-limited window or “critical period” that is coincident
with this neuroplastic time window, as rehabilitation delivered
within the first few weeks after stroke, but not at later times,
increases motor recovery and results in profound changes in
dendritic complexity of cortical motor neurons [5]. Preclinical
studies have employed different approaches to enhance recov-
ery from brain injury, including stroke. One effective interven-
tion is environmental enrichment (EE), a form of rehabilita-
tion in which groups of animals are housed in complex envi-
ronments consisting of a large cage containing ladders, beams,
ramps, and a variety of toys to encourage sensorimotor stim-
ulation [1, 2, 6, 7]. By introducing novel objects and/or by
periodically rearranging the objects within the EE cage a de-
gree of cognitive stimulation can be achieved (Fig. 1a).
Collectively, EE provides an environment that promotes phys-
ical and cognitive activity, as well as social interaction. Most
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Fig. 1 (a) A typical enriched
environment cage containing a
variety of colored and textured
toys, platforms, and other objects
to encourage exploration and
sensorimotor stimulation. By
introducing novel objects or
locating them in different places
an element of cognitive
stimulation can be achieved in
addition to social interaction. (b)
Poststroke exercise is most often
administered using voluntary or
motorized running wheels or
treadmills. (¢) Exercise and
enriched environment induce
multiple neuroplastic processes.
Resulting changes, such as the
reorganization of surviving
cortical and subcortical circuits,
ultimately promote poststroke
functional recovery. GAP-43 =
growth-associated protein 43;
MAP2 = microtubule-associated
protein 2; MMP2 = matrix
metalloproteinase 2; VEGF =
vascular endothelial growth fac-
tor; BDNF = brain-derived
neurotrophic factor

stroke patients in the days and weeks following stroke are
alone approximately 60 % of the time and during waking
hours are physically inactive nearly 75 % of the time [8].
Indeed, the contrast between EE and the human poststroke
environment with respect to the amount of stimulation, phys-
ical exercise, and socialization is striking in animal studies
providing earlier and more intense rehabilitation [9].
Fortunately, clinical rehabilitation protocols are being devel-
oped that incorporate exercise and aspects of EE, but the pro-
cess has been slow and is by no means standard practice in
most stroke rehabilitation centers.

Here we review preclinical and clinical evidence showing
how EE and exercise enable neuroplasticity processes to
achieve poststroke motor and cognitive recovery. In addition,
we discuss how the efficacy of such interventions changes
over the lifespan of the organism, and conclude by providing
some suggestions for future translational research.

EE, Exercise, and Stroke Recovery

The ability of EE and other forms of behavioral experience to
induce neuroplastic changes with resulting behavioral modi-
fication is well documented [1, 3, 10]. However, Johansson
[6] was the first to exploit EE to treat the stroke-damaged
brain. In a series of papers, Johansson and colleagues showed
that EE improved recovery of general neurological function
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(e.g., limb placing, balance) when initiated in the first days
and weeks after focal stroke in rats [6]. As EE is comprised of
several different components (socialization, exercise, sensori-
motor and cognitive stimulation) a question that often arises is
which element(s) is responsible for the improvement in
postinjury recovery? Experiments that dissect the individual
elements of EE (e.g., exercise vs socialization) show that EE is
superior to any one of the components, including exercise, in
promoting recovery from brain injury [2, 11]. Another impor-
tant issue concerns the generalizability or specificity of the
actions of EE on behavior. At one level of analysis it seems
that EE is universally effective; it enhances sensorimotor be-
haviors, learning and memory, and other cognitive and psy-
chosocial functions across many different types and sites of
brain injury [2]. However, while EE reduces impairments in
some tasks following frontal cortex lesions, it does not reverse
deficits in certain species-typical behaviors such as food
hoarding and grooming [12]. Further, analysis of many stroke
studies indicates that EE is effective in reducing general neu-
rological impairments (e.g., limb placing, balance) but has
limited efficacy in attenuating deficits in skilled reaching fol-
lowing stroke [13]. Seemingly, EE by itself does not provide
the task-specific training necessary for relearning skilled fore-
limb movements such as grasping. For this reason, we devel-
oped a rehabilitation paradigm combining EE with daily reach
training sessions [14]. This paradigm, which we termed
enriched rehabilitation (ER) to distinguish it from standard
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EE, is very effective in enhancing recovery of upper limb
function (and other functions) following damage to forelimb
motor cortex regions and as such represents what might be
considered preclinical “best practice” [7, 15]. Training of the
upper limb results in use-dependent growth of cortical den-
dritic arbor that correlates with recovery of forelimb function
[13, 16]. Similarly, rats housed in EE show increased forma-
tion of dendritic branches and spines in layer II/IIl motor neu-
rons compared with standardly housed animals [17].
However, it is important to note that ER produces a more
selective and more robust use-dependent activation of layer
II/IIT motor neurons in peri-infarct cortex, as revealed by ac-
tivation of the immediate early gene, FosB/AFosB [18], than
EE or reach training (individual components of ER). In fact,
the latter interventions were no more effective than standard
housing in inducing FosB/AFosB expression. As cortical lay-
er II/IIT neurons have extensive cortico-cortical interconnec-
tions, neuroplastic changes in this region produced by ER may
be important for the neural remodeling contributing to stroke
recovery [19].

An important distinction between preclinical and clinical
stroke exercise studies is that animal studies are invariably
initiated early (1-2 h to several days, poststroke) in the acute
or subacute phase after stroke and have focused mainly on
neuropathological outcomes (e.g., changes in infarct volume)
[20]. In contrast, exercise interventions in patients are often
conducted in the chronic phase of stroke (i.e., >6 months) or
when done early as part of inpatient services, exercise over-
laps with usual care (i.e., rehabilitation) and hence is an ad-
junctive therapy. In animal studies exercise can be either vol-
untary (e.g., wheel running) or forced, using motorized tread-
mills or running wheels (Fig. 1b). Unlike human studies, an-
imal studies rarely set a training intensity goal such as a per-
centage of maximal heart rate or maximal oxygen uptake
(VO, max). Herein, we did not include preclinical exercise
studies initiated earlier than 24 h poststroke, because cell death
is not complete at this time [21].

A perusal of the animal literature reveals that very few
investigators have initiated exercise beyond the time when
the stroke injury may still be evolving (i.e., 1-3 days
poststroke); consequently, such studies are confounded as it
is impossible to determine if improvement in behavioral out-
come is due to a neuroprotective or a neurorestorative effect,
or both. In one study young and middle-aged female rats had
access to 6 h of wheel running per day alone or in combination
with daily reach training. Only reach training facilitated recov-
ery of skilled reaching following sensorimotor cortex lesions.
Running exercise did not improve recovery, nor did it add to
the benefit provided by reach training [22]. In another study,
18-month-old rats were subjected to daily walking in motor-
ized running wheels beginning 7 days after an endothelin-1-
induced stroke of sensory cortex. The exercise protocol mir-
rored clinical studies in that it became progressively more

challenging over the 4-week exercise period. Results show
that exercise facilitated somatosensory recovery in the ab-
sence of any effect on neurogenesis [23]. Like EE, physical
exercise improves recovery of general neurological function
(e.g., limb placing, balance) [24, 25] but not motor move-
ments requiring a high level of dexterity such as reaching in
rodents after stroke.

The human literature provides more compelling evidence
for the ability of acrobic exercise to improve motor recovery
after stroke [26], and this information has culminated in an
American Heart Association position paper outlining exercise
recommendations for stroke survivors [27]. A particularly
successful exercise program is the Fitness and Mobility
Exercise protocol that has achieved significant improvement
in muscle strength, balance, walking speed, cardiovascular
fitness, and bone density [28]; however, questions concerning
the optimal dose, frequency, duration, and therapeutic time
window of exercise remain. Initial studies suggest that com-
bining aerobic exercise with resistance training appears to be
an effective means for improving poststroke cognition, includ-
ing executive function [29]. Combination therapies may prove
useful in treating other stroke-related functional impairments.

Stroke recovery research has primarily focused on restoring
lost motor function. However, deficits in cognition and psy-
chosocial function, including depression, affect 40-60 % of
individuals living with stroke [30-32]. This area of research
has received little attention, especially in the preclinical set-
ting. Therefore, a concentrated effort to understand the mech-
anisms underlying recovery of cognitive function and normal-
ization of mood is urgently needed in order to develop new
treatments.

As with motor function, housing rodents in EE improves
cognitive functions in global and focal stroke models [33-35].
Improvement in cognitive function is correlated with changes
in plasticity-related genes and growth factors [33],
neurogenesis [36], and endothelial cell proliferation [37].
Aerobic exercise has also been shown to induce cortical an-
giogenesis and improve executive function in middle-aged
Cynomolgus monkeys [38].

As exercise and enrichment alter processes that are modu-
lated by antidepressant drugs [e.g., elevation of brain-derived
neurotrophic factor (BDNF)], it is not surprising that exercise
and enrichment attenuate depression and anxiety. Clinically,
poststroke exercise appears to prevent or reduce depressive
symptoms in both subacute and chronic patients [39].
Promisingly, enrichment reverses depression-like behavior
and increases cell proliferation and survival in an uninjured
depression model [40], mechanisms that may translate to
poststroke improvements.

In the studies highlighted herein, animals were housed in
EE beginning within the first week poststroke, and subse-
quently exhibited improved spatial memory and increased
markers of neuroplasticity in the ensuing weeks [33-37].
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Rehabilitation of motor function is subject to a permissive
neuroplastic time window following injury, during which
there are alterations in the regulation of both growth promot-
ing and growth inhibiting factors [4]. The existence of a sim-
ilar “growth-permissive” period may exist with respect to
cognition. Clinically, spontaneous recovery of cognitive func-
tion continues beyond the 3—4-month poststroke period when
motor recovery plateaus [41], suggestive of a broader cogni-
tive therapeutic time window. The development of stroke
models that target cognitive function will hopefully lead to
new insights into the nature of poststroke cognitive and psy-
chosocial recovery [42, 43].

How do Exercise and Enrichment Enhance Plasticity
and Recovery?

The growth-permissive poststroke epoch, which lasts for ap-
proximately 30 days in rodents, is associated with the greatest
potential for functional recovery and is later followed by a
temporal increase in the regulation of growth-inhibitory fac-
tors that limit recovery [4]. Poststroke exercise and EE have
the potential to augment endogenous brain plasticity processes
and enhance functional recovery, either alone or in conjunc-
tion with other therapies (Fig. 1C).

The most well-characterized growth factor linked to
poststroke recovery is BDNF. Following stroke, aerobic exer-
cise increases serum BDNF levels in patients [44], and effec-
tively enhances recovery [29, 44]. Similarly, preclinical
models have demonstrated that poststroke exercise and EE
both increase cortical and hippocampal BDNF expression
and improve recovery [33, 45-47]. Most importantly,
blocking BDNF attenuates spontaneous recovery and the ef-
fects of poststroke rehabilitation in rodent models of stroke
[47, 48].

Poststroke exercise and EE also increase expression of
growth-associated proteins such as growth-associated protein
43 [49], microtubule-associated protein 2 [44], and netrin
(along with the associated deleted in colorectal cancer recep-
tor) [50], as well as markers of synaptogenesis [46, 51, 52].
Such proteins are involved in axonal sprouting, dendritic com-
plexity, and spine growth [4], phenomena occurring in the
peri- and contralesional cortex of functionally recovered ani-
mals [14, 53].

Stroke induces neurogenesis and triggers migration of new-
ly born cells to the site of damage [54]. Poststroke exercise
and EE further augment these processes in various stroke
models [36, 55-57]. Interestingly, Komitova et al. [57] report-
ed that while poststroke EE enhanced neurogenesis in the
subventricular zone, unlimited access to exercise beginning
24 h poststroke attenuated this effect. Notably, the effects of
exercise and EE are difficult to separate, because most enrich-
ment paradigms incorporate an element of exercise. In an
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attempt to separate the effects of each modality, Bechara and
Kelly [58] and Grégoire et al. [59] used intact animals and
found that exercise, but not EE, increased neurogenesis. This
differential effect could be a result of differences in exercise
intensity, and stress inherent to wheel-running and EE para-
digms. Furthermore, the milieu of the poststroke brain may
respond differently to activity-dependent interventions and
associated stress, especially when initiated 24 h poststroke.

An integral component that contributes to the growth-
permissive environment following stroke is a reduction of
growth inhibitors. Growth inhibition is largely mediated by
components of the extracellular matrix termed perineuronal
nets (PNNs), and growth inhibitory proteins such as Nogoa.
Exposing animals to poststroke EE and exercise decreases the
expression of PNNs and Nogo, in perilesional tissue [60, 61],
potentially contributing to the observed functional recovery.
Similarly, treating poststroke animals with anti-Nogo, anti-
body or PNN-digesting chondroitinase ABC is associated
with enhanced axonal plasticity and enhanced recovery [62,
63]. Together, these findings suggest that exercise and EE
contribute to the induction of a permissive environment for
structural remodeling of neural networks by decreasing the
involvement of growth inhibitory molecules.

Following stroke, reperfusion of perilesional tissue is
critical for recovery. In intact animals, exercise and EE
increase angiogenesis in the hippocampus, striatum, and
cortex [3, 37]. Similarly, in the poststroke brain, exercise
enhances vascular growth, contributing to sustained in-
creases in microvasculature, cerebral blood flow, and func-
tional recovery [64, 65].

While activity-dependent neuroplasticity can be beneficial
for functional recovery it can also be detrimental. For exam-
ple, following stroke humans spontaneously develop a reli-
ance on their nonparetic limb [65, 66], which leads to learned
nonuse of the affected limb and persistent compensatory be-
havior with further reduction in use of the impaired limb [67].
In rats, forced training of the nonimpaired forelimb has a neg-
ative effect on the recovery of the impaired limb [68, 69]. The
mechanisms mediating this maladaptive plasticity appear to
be associated with alterations in transcallosal connections
from the contralesional cortex [70], decreased neuronal acti-
vation of the perilesional cortex [68], and aberrant synapto-
genesis and reorganization of the perilesional tissue [71]. The
detrimental effects of nonimpaired limb training can be over-
come by using bilateral training [66], emphasizing that com-
pensatory use of the unimpaired limb can drive maladaptive
forms of plasticity and ultimately limit functional recovery.

Therapeutic Interventions Across the Lifespan

While stroke is more likely to occur with increasing age, it can
occur at any age, leaving survivors with persistent motor and
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cognitive disabilities [72]. While some studies show that the
immature brain is more vulnerable to brain damage resulting
from stroke [73], others have suggested that increasing age
has no effect on stroke volume [74], or may worsen infarct
size [75]. Nevertheless, age affects many of the molecular
processes commonly associated with neuroplasticity and
stroke recovery.

Comparing efficacy of poststroke therapies between young
and aged animals is difficult, owing to the paucity of preclin-
ical research using senescent animals. In neonates, EE repre-
sents a promising therapeutic treatment. The immature brain is
highly receptive to environmental stimuli; indeed, even gentle
handling of rat pups for 15 min per day following neonatal
injury improves long-term spatial learning ability [76].
Notably, in a neonatal model of hypoxia-ischemia, EE im-
proves object recognition and spatial memory [77, 78], attrib-
uted in part to preservation of hippocampal dendritic spine
density [77]. In aged rats, EE improves recovery of cognitive
function following focal cerebral ischemia [79]. Furthermore,
aging studies suggest that animals may require more intense
stimulation or longer time in EE than younger animals in order
to display similar beneficial effects [80]. Aged rats subjected
to clinically relevant mild walking exercise also show en-
hanced somatosensory function following stroke, through un-
identified, non-neurogenic mechanisms [23]. Elements of EE
can be adapted for use in the clinic by providing a more stim-
ulating environment, enriched by physical (adapted exercise
equipment), social (communal activities such as cards, bingo,
etc.), and cognitive (e.g. reading material, internet) activities.
For example, tablet technology allows for patients to engage
in cognitive exercises and games that can be tailored to their
specific impairments and made progressively more challeng-
ing as they improve. Along these lines, Janssen et al. [81] have
reported encouraging preliminary results in a study where EE
was incorporated into a stroke rehabilitation unit.

Aged animals exhibit a slower and less complete poststroke
recovery than their younger counterparts on both cognitive
and motor tasks [73, 79, 82]. Interestingly, although aged rats
are not able to recover as fully as younger rats on a single
pellet reaching task, all ages use similar compensatory move-
ments to improve their performance [83]. Clinically, advanc-
ing age appears to be related to declines in ability to recover
from stroke if considered from the perspective of performing
activities of daily living (ADL) [74]. However, by examining
both ADL and the more neurologically focused Scandinavian
Stroke Scale, Nakayama et al. [74] dissociated ADL perfor-
mance (easily influenced by compensatory strategies) from
true neurological improvement, which was not affected by
age. Thus, age does not necessarily influence the ability to
recover from the stroke per se, but rather may reflect differ-
ences in the compensatory motor strategies enacted by elderly
stroke survivors. As such, recovery may be affected by factors
such as decreases in overall mobility, which can affect the

ability to successfully enact new movement strategies [74].
The differences in physical abilities of each person emphasize
the importance of individually tailoring poststroke treatments.

In accordance with the STAIR recommendations, further
research comparing poststroke treatment efficacy, as well as
the neurological response, should be performed across a vari-
ety of subject ages [84]. This would allow the investigation of
interactions between decreasing neuroplasticity and other fac-
tors that decline with age, such as mobility, and how they
might be controlled to optimize recovery from stroke at dif-
ferent ages throughout the lifespan. In addition, the vast ma-
jority of exercise and enrichment studies have been conducted
in healthy, male animals. Given the high incidence and ad-
verse effects of disease comorbidity factors on stroke occur-
rence and outcomes it is imperative that future preclinical
studies incorporate such factors into animal models to help
mitigate translational failure to the clinic [85, 86]. Similarly,
there is much debate in the human stroke rehabilitation field
about the influence of timing, duration, and intensity of reha-
bilitation [9, 27, 87]. These variables have received scant at-
tention in preclinical exercise and enrichment studies, and thus
would be a fruitful avenue for future investigation [23, 46, 80].

Summary

Pleiotropic interventions such as exercise and EE to enhance
motor recovery following stroke appear to hold great promise
given the widespread failure of monotherapeutic approaches
[88]. The same strategy may be beneficial for cognitive recov-
ery but the research in this area is less advanced. As discussed,
factors such as age, disease comorbidity, sex, and dose of
exercise and enrichment can markedly influence functional
outcome and need to be thoughtfully incorporated into animal
models of stroke in order to minimize translational failure.
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