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ABSTRACT

CircRNAs are novel members of the non-coding RNA
family. For several decades circRNAs have been
known to exist, however only recently the widespread
abundance has become appreciated. Annotation of
circRNAs depends on sequencing reads spanning
the backsplice junction and therefore map as non-
linear reads in the genome. Several pipelines have
been developed to specifically identify these non-
linear reads and consequently predict the landscape
of circRNAs based on deep sequencing datasets.
Here, we use common RNAseq datasets to scruti-
nize and compare the output from five different algo-
rithms; circRNA finder, find_circ, CIRCexplorer, CIRI,
and MapSplice and evaluate the levels of bona fide
and false positive circRNAs based on RNase R re-
sistance. By this approach, we observe surprisingly
dramatic differences between the algorithms specif-
ically regarding the highly expressed circRNAs and
the circRNAs derived from proximal splice sites. Col-
lectively, this study emphasizes that circRNA anno-
tation should be handled with care and that several
algorithms should ideally be combined to achieve re-
liable predictions.

INTRODUCTION

Long non-coding RNAs (IncRNAs) belong to a diverse
class of transcripts whose common feature is that they are
predicted not to function as messengers for protein trans-
lation. Instead, IncRNAs typically function as regulators
of protein coding gene expression. The modulation medi-
ated by IncRNAs can take place at every step in the gene
expression pathway from transcription and chromatin re-
modelling to translation as well as through regulation of
resulting protein function involving a wide range of differ-
ent mechanisms. The mechanisms discovered to date span
from IncRNAs serving as guides for proteins to IncRNAs
that act as molecular scaffolds with gene regulatory pro-
porties, thereby facilitating formation of active regulatory
complexes. Additionally, IncRNAs can act as target decoys
by redirecting binding of either microRNAs (miRNAs) or

DNA-/RNA-binding proteins from the intended target as
well as bind to and allosterically modifying the function of
regulatory proteins (1). Hence, IncRNAs contribute to cor-
rect and timely regulation of protein expression and are es-
sential for the survival and maintenance of diverse cell func-
tions.

Circular RNA (circRNA) constitutes a particular in-
triguing class of recently recognized IncRNAs. Although
the presence of circRNAs in human cells was established
more than twenty years ago (2-5), the prevalence and abun-
dance of these circular RNAs in human cells has only re-
cently been revealed (6-8). Since many large-scale RNA se-
quencing applications rely on accessible termini or poly(A)-
tail purification steps, circRNAs have evaded recognition
or simply been discarded as artefacts during standard pro-
cessing, which involves alignment to the ‘linear’ genome
(9). circRNA are all characterized by a non-linear ‘back-
splicing’ event between a splice donor (SD) and an up-
stream splice acceptor (SA) in contrast to a downstream
SA in conventional linear splicing. Hence, elucidation of cir-
cRNA abundance requires application of dedicated bioin-
formatic pipelines directed to search specifically for circR-
NAs in datasets generated from deep-sequencing of eu-
karyotic rRNA-depleted RNA (6-8,10-12). These pipelines
all identify circRNAs based on the presence of backsplice
junction-spanning reads. As a consequence, large numbers
of circRNAs derived mainly from exonic regions, but also
from intronic, intergenic and UTR regions, IncRNA loci
and antisense to known transcripts were identified (6,7).
These analyses also revealed that multiple circRNAs may
arise from the same gene locus, a phenomenon termed al-
ternative circularization (3,6,8,10) and that circRNAs may
comprise single to multiple exons (10). Although the num-
ber of circRNAs identified vary widely from >25 000 in
one study (6) to a few thousands in others (7,8), it has
become clear that circRNA constitutes an abundant and
fascinating class of IncRNA. While most circRNAs are
modestly expressed in cells, specific circRNA species are
highly abundant (8) including the CDR 1as/cirRS-7, which
is highly and widely expressed in the brain (13). Aside from
CDR las/ciRS-7, which acts as a miR-7 sponge (7,14) and
circMbl that acts as a decoy for its own protein product
muscleblind (15), not much is currently known regarding
the functional importance of circRNA.
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A repository of circRNA has been developed, termed cir-
cBase (16), containing all annotation information on circR-
NAs predicted and identified thus far. To ensure that the cir-
cBase repository only describes bona fide circular RNAs, it
is important that the prediction algorithms used to identify
circRNAs are stringent and reliable. Here, we compare the
output from 5 different circRNA prediction algorithms and
evaluate the circular nature of each predicted species by its
resistance to RNase R treatment known to specifically en-
rich for circRNA (6). Our results show that the 5 prediction
algorithms yield highly divergent results and a high level of
false positives, underscoring the need for further validation
for example by using multiple prediction algorithms or ide-
ally include a sequencing library of RNase R treated RNA.

MATERIALS AND METHODS
Prediction of circRNA

RNAseq libraries were downloaded from the Sequence
Reads Archive (accession SRR444655, SRR444974,
SRR444975, and SRR445016). The human genome was
downloaded from UCSC Genome Browser (hgl9) and
indexed with default parameters using Bowtiel (v0.12.8),
Bowtie2 (v2.2.3), STAR (v2.4.0h) and BWA (v0.7.5a). For
each RNAseq library, circRNA prediction was performed
with five different algorithms (see Table 1) adhering to
the suggested settings by the respective authors. Gene-
annotations, required for CIRCexplorer and MapSplice,
were collected from UCSC genome browser (UCSC Genes
track) and Ensembl (Homo _sapiens. GRCh37.66.gtf). The
predictions were executed on two Intel Sandy Bridge
E5-2670 CPUs with 64 GB memory except for CIRI where
128 GB memory was allocated.

Analysis of prediction

For each algorithm, the prediction output from all four li-
braries was merged with custom python scripts (available
upon request) into BED files (see supplementary zip-file).
These files were then processed and analysed using R (see
script.R in supplementary zip-file) where, for each algo-
rithm, only circRNAs with at least three reads in one of the
control samples were kept for analysis. The average count
of reads spanning the backsplice junction in the two control
samples was used as a measure of expression level. For each
algorithm, RNAse R resistant circRNAs were classified in-
dependently as entities with at least a 5-fold expression in-
crease in RNAse R treated samples. For CIRCexplorer, we
discarded the circular intronic RNA (ciRNA) candidates in
the analysis. Furthermore, to enable comparison between
algorithms, the starting coordinate was converted from 1-
based to 0-based for circRNA _finder, CIRI and MapSplice.

Annotation of prediction

To annotate the origin of circRNAs, we determined whether
the start- and end-coordinates correspond to annotated
splice sites according to gene annotation from UCSC, which
indicate exonic origin. If not, the start-coordinate of circR-
NAs was matched against annotated 5 splice sites allowing
one nucleotide offset, indicative of lariat origin. If no match
was found, the circRNA was termed ‘Unannotated’.
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RESULTS

Several different tools have been developed for identifi-
cation of circRNAs based on high-throughput RNA se-
quencing (RNAseq) datasets. We set out to scrutinize and
compare the performance of these different pipelines. Us-
ing the RNAseq dataset produced by the Sharpless lab (6)
consisting of two non-treated RNA samples derived from
Hs68 fibroblast (SRR444655 and SRR444975) and two
RNase R treated samples (SRR444974 and SRR445016),
we compared five different circRNA predicting algorithms:
find_circ (7), MapSplice (17), CIRCexplorer (10), cir-
cRNA finder (11), and CIRI (12). We focused the predic-
tion on the control samples (without RNase R treatment)
and used the treated samples to demarcate true circles ver-
sus artefacts based on the level of RNase R enrichment.
From the control samples, the algorithms predicted between
~1500 (circRNA _finder) and ~4000 (CIRI) different circR-
NAs with at least three reads spanning the backsplice junc-
tion identifying a total of 5075 unique circRNAs identified.
Of these, only a modest overlap of 854 circRNAs (16.8%)
was observed between all five algorithms (Figure 1A), in-
dicating that the obtained circRNA landscape differs quite
dramatically depending on the algorithm of choice.

To assess the level of false positive circRNAs, we com-
pared the number of circRNA-supporting reads obtained
in the RNase R digested samples compared to control. A 5-
fold increase in read-count was defined as significant enrich-
ment, while reduced or intermediate read-count was defined
as depleted or unchanged, respectively. The algorithms ex-
hibit between ~12% (MapSplice and CIRCexplorer) and
~28% (CIRI) mis-annotation of circRNAs based on the
above definition (Figure 1B).

Of all the circRNAs predicted, 2043 (~40%) were only
found by a single algorithm. These constitute an ‘exotic’
group of circRNA that would be missed if the prediction
was not performed by the particular algorithm. We anal-
ysed this subset of circRNAs in terms of RNase R resis-
tance (Figure 1C). Here, except those found by CIRCex-
plorer and MapSplice, more than half (ranging from 59 to
79%) of the circRNAs were RNase R sensitive and thus de-
fined as false positives, suggesting that in most cases, cir-
cRNAs not picked up by several algorithms are likely to
be artefacts. Focusing on the resistant circRNAs, a total of
3251 different species were predicted by combining the algo-
rithms, and here only 603 circRNAs (18.5%) were identified
by all five algorithms (Supplementary Figure S1A), which
is a small increase compared to the complete list of circR-
NAs. However, here ~22% of RNAse R resistant circRNAs
were identified as part of the exotic group compared to 40%
above, emphasizing that exotic circRNAs in general are less
likely to be true positives.

Apart from circRNAs, lariats are also resistant towards
RNase R and produce non-linear reads spanning the 5'-2'
branchpoint junction. Thus, by the above demarcation, lar-
iats would be indistinguishable from circRNAs, and even
though lariats in general are highly unstable in contrast to
circRNAs, specific non-debranched lariats have been shown
to exhibit long half-lives (18). Therefore, based on estab-
lished gene annotation, we examined the number of circR-
NAs derived from exonic regions or from intron regions
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Figure 1. Prediction of circRNAs by five different prediction algorithms. (A) Venn diagram depicting the overlap between the five different circRNA
prediction algorithms. (B and C) Stacked barplot of RNase R resistance of the all predicted circRNAs (B) or exotic circRNA (C, only found by one
algorithm) divided into RNAse R resistant (green), Unaffected (grey) and RNAse R sensitive (red), as denoted. Percentage reflects the fraction of RNAse
R sensitive circRNAs. (D) Stacked barplot of circRNA annotation divided into exonic (green), unannotated (grey), or lariat (red). (E and F) Ranked plot
of the top 100 expressed circRNAs (E) or top 100 exotic circRNAs (F) predicted by each algorithm color-coded as in B. Percentage reflects the fraction of
RNase R sensitive circRNAs (false positives) within the plotted top 100.
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Table 1. Overview of algorithms

Tool Version Language =~ Mapper De novo? #circRNAs / #bona fide (%) Pros Cons

circRNA finder N/A Perl STAR Yes 1532/926 (60.4%) Fast Low sensitivity and low accuracy

CIRCexplorer 1.0.6 Python Bowtiel and 2 No 2638/1845 (69.9%) High accuracy and good sensitivity Slow, gene annotation requirement

CIRI 1.2 Perl Bwa Yes 4067/2279 (56.0%) High sensitivity Slow, high RAM requirements and
low accuracy

find_circ N/A Python Bowtie2 Yes 2336/1388 (59.4%) Fast and low RAM requirements Low accuracy

Mapsplice 2.1.8 Python Bowtiel No 2376/1738 (73.1%) High accuracy and good sensitivity Slow, gene annotation requirement

as expected for lariats. Here, only a very small proportion
(<2%) of circRNAs were of the lariat-type (Figure 1D) and
we conclude that all algorithms distinguish lariats from ex-
onic circRNAs very efficiently.

The above analyses are based on all predicted circRNAs.
Of particular interest are often the most highly expressed
circRNA candidates and thus the expression level should
be considered when assessing the quality of each circRNA.
Therefore, we focused on the top 100 most highly expressed
candidates in the five different prediction outputs and evalu-
ated the RNase R resistance of each candidate (Figure 1E).
Here, the algorithms differ dramatically: 63% of the top 100
candidates predicted by CIRI do not qualify as circRNAs
and none of the top 10 species are RNase R resistant (i.e.
5-fold enriched upon RNase R treatment). Also, the top
100 in find_circ prediction performs worse compared to the
bulk output, suggesting that find_circ and CIRI are ‘dis-
tracted’ by highly expressed linear RNA species, and pos-
sibly less stringent regarding the mapping quality of indi-
vidual sequencing reads. Focusing specifically on the exotic
and uniquely predicted species, only CIRCexplorer outputs
reliable circRNAs in the top 100 fraction (Figure 1F). Map-
Splice also performs adequately, but here most of the top
10 expressed circRNAs are not bona fide circles. In contrast,
the vast majority (75-88%) of exotic circRNAs predicted by
circRNA _finder, CIRI or find_circ are depleted by RNase
R, and therefore exotic circRNAs found by these algorithms
are at large mis-annotations.

To assess the sensitivity of the predictions, we turned to
the common 854 circRNAs found by all algorithms. Based
on the number of reads assigned to each circRNA by the in-
dividual prediction algorithms, CIRI and circRNA finder
exhibit the highest and lowest level of sensitivity, i.e. num-
ber of reads per circRNA, respectively (22 versus 9 reads
per circRNA on average, Figure 2A and B). This is also in
part reflected in the total number of circRNAs predicted,
where find_circ and circRNA _finder output the lowest num-
ber of circRNA species (2336 and 1532, respectively) com-
pared to MapSplice, CIRCexplorer and CIRI (2376, 2610
and 4067 species, respectively, see Figure 1A). Inherently,
based on the complete catalogue of 3251 RNAse R resis-
tant circRNA species, the false negative rate defined as cir-
cRNAs missed by each algorithm was inversely related to
the sensitivity (Supplementary Figure S1B and C). It is also
evident that the increase in sensitivity (i.e. true positives) ob-
served for CIRI comes with a specificity trade-off (Supple-
mentary Figure S1D).

Furthermore, sensitivity also correlates roughly with the
duration of the circRNA prediction on the four datasets
ranging from hours (find_circ and circRNA finder) to sev-
eral days (CIRCexplorer, CIRI and MapSplice) (Figure
2C). Apart from the duration of prediction, the RAM usage

of each algorithm was dramatically diverging (Figure 2D):
Only find_circ has the ability to process large datasets on
standard desktops (with 8 GB RAM) using an average 3.4
GB for each dataset. Between 10 and 30 GB of RAM is re-
quired for CIRCexplorer, MapSplice and circRNA _finder,
whereas CIRI demands around 120 GB to complete the
datasets used.

Considering all the circRNAs identified, there is an enor-
mous variation of distances between splice sites engaged in
backsplicing, ranging typically from a few 100 nucleotides
to tens or even hundreds of kilobases. Thus, we compared
the distribution of distances between splice sites for the 5
algorithms (Figure 2E). Interestingly, the distribution of
splice site distances differs markedly in the short-distanced
range (splice sites less than 500 bases apart). CIRI and cir-
cRNA finder predict circRNAs with very proximal splice
sites (<100 bases), whereas MapSplice apparently requires
at least 300 bases between splice sites to be annotated (Fig-
ure 2F) even though a minimum fusion distance of 200 was
used as prediction parameter (see bash.sh in supplementary
zip-file). Assessing specifically the RNase R resistance of
circRNA with proximal splice sites (<500 bases), it is ev-
ident that the allowance for low proximity results in high
false positive output (Figure 2G). Analyzing the RNase
R resistance of all predicted circRNA for each algorithm
ranked by size, suggests that it is predominantly the short
distanced circRNAs that are sensitive to RNase R (Figure
2H), and almost no circRNAs <200 bases (~10%) was here
characterized as bona fide circles. This is even more evident
when performing a similar analysis on the exotic circRNAs
specifically, where the unique outputs from circRNA _finder,
CIRI, and find_circ <200 bases show mis-annotation al-
most exclusively (Figure 21I).

Finally, based on the observation that exotic circRNAs
(i.e. circRNAs only identified by one algorithm) in general
were more likely to be false positives, we combined the al-
gorithms in pairs and focused on the common circRNAs.
For all pairs, this approach resulted in similar levels of false
positives (8-12%) with the total number of circRNAs pre-
dicted ranging from ~1000 to ~2000 candidates (Figure
3A). Combining all five algorithms reduced the false pos-
itive fraction to ~6% and the total number of circRNAs (as
seen in Figure 1A) to 854. Plotting the top 100 expressed cir-
cRNAs from all pairs (Figure 3B) and from the combined
prediction (Figure 3C), a somewhat similar output was ob-
served with a low fraction of RNase R sensitive candidates
in all cases (only 6-15% depleted by RNase R), suggesting
that combining any two algorithms would greatly decrease
the false positive rate and in general strengthen the output
quality.
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Figure 2. Sensitivity and splice site distance. (A and B) Cumulative plot of readcount (A) and barplot showing mean number of reads (B) for the 854
circRNA species predicted by all five algorithms. (C and D) For each algorithm, the duration in minutes (C) or the max RAM usage in gigabytes (GB) (D)
predicting circRNAs in datasets as denoted. Numbers reflect average duration or average RAM usage. (E) Cumulative plot of splice site distances for the
circRNAs predicted by each algorithm. (F) As in E but with delimited X-axis scale. (G) Barplot as in Figure 1B of circRNAs with splice sites below 500
bp apart. (H and I) Ranked distance plot of all circRNAs predicted (H) and exotic circRNAs only (I) colorcoded as denoted.
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Figure 3. Combining prediction algorithms. (A) Stacked barplot of circRNA candidates common for paired prediction using algorithms as denoted. Color
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DISCUSSION

Prediction of circRNA from RNA sequencing datasets is
the first step towards grasping and understanding the abun-
dance and relevance of circRNAs in cells and organisms.
Characterizing the circRNome and elucidating the biol-
ogy of circRNAs requires a sound and trustworthy predic-
tion pipeline to begin with. Here, we have compared multi-
ple aspects of five different circRNA prediction algorithms;
circRNA _finder, CIRCexplorer, find_circ, CIRI, and Map-
Splice. Basically, the number of circRNAs predicted range
from 1532 t0 4067, out of which only 854 are predicted by all
5 algorithms (Figure 1A). The false positive rate measured
by the RNase R resistance of circRNA candidates range
from 12% to 28% (Figure 1B). Strikingly, in the fraction
of highest expressed circRNAs, the false positive rate was
up to 68% using CIRI (Figure 1E), which emphasizes that
care should be taken to avoid mis-annotation of seemingly

high abundant circular RNA. As an example, the highly
abundant TUBA1B gene has high sequence similarity to
the nearby and highly homologous TUBA1A gene (12).
Here, multimapping reads have the potential to wrongfully
‘mix up’ conventional and non-linear splicing, which poten-
tially explains a fraction of false positive in the circRNA
output. Therefore, low map-quality reads and backsplice-
junction sequences with a homology to linear exon junc-
tions should in general be discarded or handled with great
care. CIRCexplorer and MapSplice show the lowest levels of
false positives, but, importantly, not at the expense of total
numbers of circRNA predicted, as CIRCexplorer and Map-
Splice are ranked second and third regarding total number
of circRNA species.

We also observe a notable difference between the algo-
rithms concerning splice site distance requirements. Here,
CIRI and circRNA finder have the capacity to identify cir-
cRNAs with very proximal splice sites (below 100 bp, Fig-
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ure 2F), however most of these circRNAs do not exhibit
RNase R resistance and are therefore deemed false posi-
tives. In fact, most circRNAs below 200 bp are here classi-
fied as mis-annotated (Figure 2H and I) and therefore these
species should in general be handled with care in future cir-
cRNA profiling and annotation studies.

Finally, we show that pairing up the algorithms produces
a much more reliable output (Figure 3A), and therefore this
approach serves as a more secure and trustworthy pipeline
for circRNA annotation.

CIRCexplorer and MapSplice output the most reliable
list of circRNAs, particular when addressing the exotic sub-
set of circRNAs (Figure 1C and F) and the highly expressed
circRNAs (Figure 1E), however, in our hands these two al-
gorithms take 2-3 days to complete individual dataset pre-
dictions (Figure 2C). In addition, they both require gene an-
notation lists, which perhaps in part explains the low false
positive rates, and furthermore, CIRCexplorer requires in-
dexed genomes from both Bowtiel and Bowtie2, and re-
lies on tophat, bedtools, and samtools for mapping and
processing of data, which makes CIRCexplorer one of the
more complex pipelines to implement. For a faster and al-
most equally reliable output, we suggest combining the pre-
diction from circRNA _finder and find_circ. However, while
these are both simple pipelines, circRNA _finder is based on
STAR mapping which has a memory requirement that ex-
ceeds the hardware on most laptops or personal computers,
and compared to CIRCexplorer, less than half the number
of total circRNAs is obtained (1110 versus 2610). Moreover,
find_circ, circRNA _finder, and CIRI all work de novo with-
out knowledge of gene annotations and exon-intron struc-
tures. Thus, these algorithms could prove more useful when
conducting more unbiased circRNA analyses or in poorly
annotated organisms

To recapitulate our findings, we have constructed an
overview of the algorithms listing the required third-party
mapping tools, the ability to perform de novo prediction
(i.e. without gene annotation requirements), the total num-
ber of output circRNAs with the percentage of bona fide
species, and a brief assessment of the pros and cons for ev-
ery pipeline (Table 1).

In the above comparison, KNIFE (19) and segemehl (20),
two other recently developed pipelines for circRNA predic-
tion, were not included as we failed to implement and suc-
cessfully run these algorithms on the sequencing datasets
used here.

Regardless of the algorithm used, there will always be
false positives, and we suggest to the extent possible that
novel and interesting circRNA candidates are individually
validated and confirmed to minimize the fraction of erro-
neous annotation in the circBase circRNA repository.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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