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Abstract

Motivation: Computational models of multicellular systems require solving systems of PDEs for re-

lease, uptake, decay and diffusion of multiple substrates in 3D, particularly when incorporating the

impact of drugs, growth substrates and signaling factors on cell receptors and subcellular systems

biology.

Results: We introduce BioFVM, a diffusive transport solver tailored to biological problems. BioFVM

can simulate release and uptake of many substrates by cell and bulk sources, diffusion and decay

in large 3D domains. It has been parallelized with OpenMP, allowing efficient simulations on desk-

top workstations or single supercomputer nodes. The code is stable even for large time steps, with

linear computational cost scalings. Solutions are first-order accurate in time and second-order ac-

curate in space. The code can be run by itself or as part of a larger simulator.

Availability and implementation: BioFVM is written in Cþþ with parallelization in OpenMP. It is

maintained and available for download at http://BioFVM.MathCancer.org and http://BioFVM.sf.net

under the Apache License (v2.0).

Contact: paul.macklin@usc.edu.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mathematical modeling of many biological systems requires solving

for secretion, diffusion, uptake and decay of multiple substrates in

three dimensions. Cells change phenotype (division rate, metabol-

ism, secretions, etc.) in response to their microenvironment; the spa-

tial distribution of cells (and their uptake and secretion of

substrates) alters the substrates’ distribution, affecting later cell be-

havior (Lowengrub et al., 2010). BioFVM solves PDEs driven by

such problems, of the form
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with zero flux conditions on oX. Here, X is the computational do-

main with boundary oX; ~q is the vector of substrate densities,~q� are

the substrate saturation densities, ~D are the diffusion coefficients, ~k
are the decay rates, ~S and ~U are the supply and uptake rates (may

vary throughout the domain), fð~xk;Wk; ~Sk; ~Uk;~q
�
kÞ : 1 � k � NðtÞg

is a collection of cells centered at ~xk with volume Wk, supply and

uptake rates ~Sk and ~Uk and saturation densities ~q�k. 1kð~sÞ is defined

by 1kð~xÞ ¼ 1 inside cell k and 1kð~xÞ ¼ 0 otherwise. All products of

vectors are element-wise.

While most multicellular models [e.g. Morpheus (Starruß et al.,

2014), Chaste (Mirams et al., 2013)] include diffusion solvers, they

generally are not designed to scale well to large 3D domains with

more than a few substrates. Most are not designed for multithreaded

parallelization on multicore desktops. The solvers tend to use expli-

cit time steppings (require strict stability restrictions on Dt) or impli-

cit time steppings (stable but require inverting large matrix systems).

Those that invert large linear systems often have large dependencies

that complicate cross-platform use.

BioFVM implements simple methods that can readily be parallel-

ized by OpenMP. It can efficiently and accurately simulate systems
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of 5–10 or more diffusing substrates on 1–10 million or more vox-

els, with desktop workstations or single compute nodes. The code is

first-order accurate in time and second-order accurate in space. Its

performance scales linearly in the number of substrates (it takes

2.6� longer to increase from 1 to 10 substrates), the number of

voxels and the number of cells. The code is stable; it often achieves

good accuracy with Dt ¼ 0:01 to 0.1 min.

2 Method and implementation

We use a first-order, implicit (and stable) operator splitting, allow-

ing us to create separate, optimized solvers for the diffusion-decay,

cell-based source/sinks and bulk source/sinks (Marchuk, 1990). We

solve the diffusion-decay terms using the finite volume method

(Eymard et al., 2000), further accelerated by an additional first-

order splitting into separate solutions in the x-, y- and z-directions

via the locally one-dimensional method (LOD) (Marchuk, 1990;

Yanenko, 1971). For each dimension, we solve the resulting tridiag-

onal linear systems with the Thomas algorithm (Thomas, 1949). We

use OpenMP where loops can be parallelized (e.g. many instances of

the Thomas solver when solving x-diffusion across multiple strips of

domain). Other optimizations include storing pre-computations and

overloading vector operations. The Cþþ implementation is

described in further detail in the supplementary materials.

3 Examples

3.1 Oxygen and VEGF diffusion in a large tissue
In Figure 1, we simulated 1 hour of diffusive transport in 125 mm3

of vascularized tissue (red curves, panel A) with a large irregular

tumor (green cells, panel A) at 20 lm resolution (15 625 000 voxels)

and Dt ¼ 0:01 min. Oxygen is released by the vessels (a series of

cell-centered sources), diffuses through the tissue and is consumed

by tumor cells. For technical illustration, tumor cells release VEGF

where pO2 < 15 mmHg, which diffuses through the domain.

Further biology, parameter values and references are discussed in

the supplementary materials. In panel A, the vasculature is rendered

up to the gray clipping plane for clearer illustration. Panel B shows

the tumor cells and vessels in the gray clipping plane. Panels C–D

shows the concentration of oxygen and VEGF in this plane. The red

contour marks the tumor boundary. This simulation—with 2.8 mil-

lion cell source/sink terms—required � 80 minutes on a quad-core

desktop computer (Intel i7 4790, 3.60 GHz, 16 GB of memory);

similar problems on 1 million voxels require 5–10 min.

3.2 Convergence testing
Tests for several 1D and 3D problems showed first-order accuracy in

time, second-order accuracy in space and stability even for large time

steps. Using Dt ¼ 0:01 min gave reasonable accuracy for most prob-

lems. The convergence tests are fully detailed in the supplementary

materials.

3.3 Performance testing
We tested diffusion of N ¼ 1 to 128 substrates with D � 105lm2=

min (typical magnitude for cancer biology) in a 1 mm3 domain at 10

lm resolution (1 million voxels) with Dt ¼ 0:01 min.

Computational cost (wall time for 4 min of diffusion) scaled linearly

with N; increasing from 1 to 10 substrates increased computational

cost by � 2:6�. In other tests, computational cost scaled linearly

with the number of voxels (domain size) and the number of cells.

Full results are in the supplementary materials.

4 Obtaining software and licensing

BioFVM is available from BioFVM.MathCancer.org and BioFVM.

sf.net under the Apache License (v2.0). A tutorial on using the code

is included with the BioFVM download, along with several

examples.

5 Discussion

BioFVM can efficiently and accurately simulate several diffusing

substrates in large 3D domains, with both bulk and cell-based

source and uptake terms. While it can run on its own (with minimal

software dependencies), it is well-suited for inclusion in larger mod-

eling packages. Beyond simulating the transport of drugs and

growth substrates, BioFVM’s ability to simulate dozens of com-

pounds should make 3D simulations of multicellular secretomics

and multiscale cell responses feasible. In future releases, we plan to

add upwinded advective solvers, more adaptive time stepping for

cell-based source/sink terms and support for general Voronoi

meshes.
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Fig. 1. Simulation of oxygen and VEGF diffusion in a highly vascularized tis-

sue with a multifocal tumor lesion; vasculature is rendered up to the gray clip-

ping plane (A). Vessels and tumor cells in the gray clipping plane (B). Oxygen

distribution in (C) shows significant hypoxia (blue areas, pO2<15 mmHg)

within the tumor (red outline). Hypoxic tumor cells release VEGF to stimulate

further vascularization (D) (Color version of this figure is available at

Bioinformatics online.)
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