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Abstract

Like any foreign object, orthopaedic implants are susceptible to infection when introduced into the 

human body. Without additional preventative measures, the absolute number of annual prosthetic 

joint infections will continue to rise, and may exceed the capacity of health care systems in the 

near future. Bacteria are difficult to eradicate from synovial joints due to their exceptionally 

diverse taxonomy, complex mechanistic attachment capabilities, and tendency to evolve antibiotic 

resistance. When a primary orthopaedic implant fails from prosthetic joint infection, surgeons are 

generally challenged by limited options for intervention. In this review, we highlight the etiology 

and taxonomic groupings of bacteria known to cause prosthetic joint infections, and examine their 

key mechanisms of attachment. We propose that antimicrobial strategies should focus on the most 

harmful bacteria taxa within the context of occurrence, taxonomic diversity, adhesion mechanisms, 

and implant design. Patient-specific identification of organisms that cause prosthetic joint 

infections will permit assessment of their biological vulnerabilities. The latter can be targeted 

using a range of antimicrobial techniques that exploit different colonization mechanisms including 

implant surface attachment, biofilm formation, and/or hematogenous recruitment. We anticipate 

that customized strategies for each patient, joint, and prosthetic component will be most effective 
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at reducing prosthetic joint infections, including those caused by antibiotic-resistant and 

polymicrobial bacteria.
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Currently, prosthetic joint infections (PJI) account for at least 16% of total joint revisions in 

the hip and knee,1,2 yet roughly 30% of joint revisions are thought to be caused by aseptic 

loosening.3–5 Due to the likelihood of undiagnosed PJIs,2,6–8 the exact number of PJI-related 

revisions is unclear. Importantly, however, known PJI-related revisions are more costly and 

time consuming than others, and increase the probability of poor prognosis (e.g., limb 

salvage operations or PJI recurrence).9–11 Therefore, recognizing the unique biological 

characteristics of relevant microbial organisms and their infection-causing mechanisms are 

of utmost importance for both preventing and treating PJIs.

A promising strategy for counteracting the negative effects of bacterial invasion and PJI is a 

multifaceted approach involving physical, chemical, and biological counter measures tested 

at multiple spatial scales both ex vivo and in vivo. The increasing occurrence of antibiotic 

resistance has raised awareness that each bacterial taxon may need a specifically catered 

formula for diagnosis, treatment, and long-term eradication. Further complicating this issue 

is the potential for concerted attacks by multiple types of bacteria (i.e., polymicrobial 

infections). More patients and the continued over-prescription of antibiotics can accelerate 

the rapid evolution of antibiotic-resistant bacteria and increase the potential for PJI 

complications with limited treatment solutions. In this review, we examine the taxa most 

responsible for orthopaedic PJIs, explore key mechanisms of implant PJI, and propose novel 

strategies to reduce the risk of PJI.

Etiology of Prosthetic Joint Infections

The etiologies of PJI in the hip and knee are similar: Staphylococcus is the most prevalent 

causative agent, accounting for more than half of all cases (Table 1). Surprisingly, S. aureus 
is widely known to be very pathogenic,12 but only causes about half of Staphylococcus-

related PJIs. Others are caused by coagulase-negative Staphylococcus (CoNS), which 

includes several species: S. haemolyticus, S. capitis, and S. hominis, and most commonly S. 
epidermidis.13 A key mechanism of action for Staphylococcus-related PJIs is the formation 

of biofilms.

In addition to Staphylococcus, many PJI-causing bacteria can form biofilms, which are 

particularly resistant to treatments14 because they often require genus-specific modes of 

eradication.15 Although biofilm structures vary, multiple species can coexist within one 

biofilm, which facilitates conjugation and could confer antibiotic resistance.16,17 Adding to 

this complexity, the extracellular polymeric substance of biofilms is largely composed of 

polysaccharides that encapsulate bacterial colonies,18 filter antimicrobial chemicals, prevent 

antibiotic perfusion, and limit pharmaceutical efficacy.19 Further, within a biofilm, bacteria 

can communicate via quorum sensing, which has been shown to regulate the expression of 
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genes involved in virulence and dispersal.19 Quorum sensing, which controls gene 

expression in response to fluctuations in the density of microbial populations, has also been 

observed to promote DNA transformation.20 The latter not only elevates the potential for 

antibiotic resistance, but also provides a mechanism for the rapid evolution of harmful 

polymicrobial communities.

Among PJIs, polymicrobial infections occur in approximately, 7–17% of cases overall 

(Table 1) and are often most difficult to treat. Strikingly, though, Benito et al.15 reported a 

fivefold increase in the yearly occurrence of polymicrobial infections from 7.1 to 41.7% 

over a period of 6 years from 2004 to 2010, and an equally alarming increase in the yearly 

proportion of infections caused by gram-negative bacteria (21.4–66.7% over the same 

period). Of these, Enterobacteriaceae are challenging because they resist a wide range of 

antibiotics.21,22 making staged eradications less effective (Table 1). PJIs can occur at 

different times throughout the lifetime of an implant, and therefore, mitigation strategies 

need to consider temporality: Early (<3 m), delayed (3m-2y), and late (>3y).23 Early PJIs 

occur as a result of direct perioperative inoculation (either at the time of surgery or within 2–

4 days of surgery), and according to the results presented by Benito et al.15 includes all 

polymicrobial infections. Delayed PJIs can be caused by perioperative inoculation of a less 

virulent bacterium, or a blood-borne (hematogenous) source. Late onset PJIs are more 

commonly caused by a remote infection (possibly due to an unrelated injury) that leads to 

hematogenous seeding of the implant surface or joint space by harmful bacteria.23 

Remarkably, the species or strain(s) involved in a PJI may vary by time since surgery. For 

example, early and late PJIs are typically caused by virulent species (e.g., S. aureus), while 

delayed onset PJIs are caused by less virulent species that take longer to manifest (e.g., 

CoNS).23 Regardless of the timing of a PJI, treatment options generally follow the same 

algorithm, which results in the removal of an otherwise functional prosthesis.14

Some revisions labeled as “aseptic loosening” may instead be caused by undiagnosed, low-

grade PJIs.2 Limited diagnostic techniques contribute to widely varying estimates of aseptic 

loosening rates;6 some reports state PJI as the cause of failure in 4–13% of revisions 

originally diagnosed as aseptic loosening,7,24 and patterns as high as 72% have been 

presented for this data mislabeling scenario.25 PCR methods can detect DNA from CoNS, 

Streptococcus, Salmonella, Propionibacterium, and Enterococcus species in “aseptic 

loosening” implants.7 Nevertheless, PCR can be prone to detecting false positives and is 

unlikely to accurately characterize polymicrobial PJIs.7 Other factors that could obfuscate a 

PJI include: biofilms, intracellular infections of peri-implant tissue, or phenotypic reductions 

of bacterial colony size in situ.2 Whether undetected PJIs of an implant are primarily 

responsible for loosening remains the subject of considerable debate,2 yet the need for 

preventing bacterial adhesion to orthopaedic implants is crucial for reducing all PJI-related 

complications.

Bacterial Adhesion to Orthopaedic Implants

According to some researchers, nearly 60% of PJIs occur during implantation procedures by 

known sources of pathogenic bacteria such as the patient’s skin or a contaminated surgical 

suite.26 Suboptimal surgical attire can also have generalizable effects on the prevalence of 
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surgical wound infections.27 PJIs begin with bacterial adherence to the implant surface, 

making necessary an accurate understanding of the specific adhesion mechanisms employed 

by PJI-causing bacteria to prevent their establishment. Hip and knee implant surfaces are 

heterogeneous, with each modular component specifically designed to suit a particular 

function within a joint. For example, the femoral stem and acetabular cup of a hip implant 

are designed to promote osseointegration, and have therefore been subject to modifications 

in surface topography and chemistry. In contrast, the necks, liners and femoral heads of 

implants have a smooth composition designed to reduce friction between intercalating 

components.

Any prosthetic component is susceptible to microbial colonization, which can lead to full-

onset PJI. One study, for example, found no significant difference in the preference of 

bacteria between knee and hip implant components,28 possibly due to the heterogeneous 

adhesion abilities of different species of bacteria. Others found that acetabular cups and 

polyethylene liners were most commonly infected.29,30 Although these studies demonstrated 

that all components of knee and hip implants can become infected, they did not address the 

divergent behaviors among multiple species of bacteria. This is due, at least in part, to the 

fact that multiple components can become infected simultaneously or asynchronously, which 

can be difficult to measure in vivo. Further complicating this issue is the observation that 

different species of bacteria may better infect specific implant components creating a 

heterogeneous surface mosaic of infected sites. This is evidenced by an apparent strong 

preference of S. epidermidis for polyethylene liners,30 which is likely due to an adhesion 

mechanism that increases substrate suitability.

Causative agents of PJI have a diverse arsenal of adherence mechanisms. For adherence to 

an inert surface, non-specific adhesion is governed primarily by molecular chemistry (e.g., 

van der Waals, Lewis acid/base, electrostatic, and hydrophobic forces).31–34 Some 

researchers postulate that non-specific adhesion between a microbe and its substrate can 

only be explained by the combined interaction of both weak (van der Waals) and stronger 

(electrostatic) forces.32,34,35 Lewis acid/base forces, caused by the coupling between 

electron-accepting and -donating molecules, drive the potential for adherence. Therefore, on 

a Lewis acidic surface that has electron-accepting potential, bacteria can more readily donate 

electron-pairs. This was observed in three species of rod-shaped bacteria, whereby the 

species with highest electron-donating capacity had greatest attachment success.32 Similarly, 

the charge differential (electrostatic force) between a bacterium and surface can heavily 

influence adhesion potential.33 Thewes et al.31 suggested that hydrophobic interactions are 

the most important predictor of unspecific Staphylococcus adhesion. Using single cell force 

spectroscopy, an attraction between hydrophobic surface and bacteria was measurable to a 

distance of 50 nm, while hydrophilic surfaces resulted in only weak bacterial adhesion. 

These results suggest that the cell wall-bound proteins of Staphylococcus have high affinities 

for hydrophobic surfaces,31 but the responsible proteins have yet to be identified within this 

context. Variables such as surface proteins and overall cell wall charge vary greatly by 

bacterial taxon.36 A greater understanding of such surface proteins (and other key structural 

constituents) are important to consider when examining specific binding profiles, and 

identifying strategies for preventing bacterial adhesion to orthopaedic implants.
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Pili (aka. fimbriae) are cell-bound elongated structures with many functions, such as an 

adhesin for gram-negative bacteria.19,37 Type I and Type IV pili are each critically important 

for the abiotic surface adherence of Escherichia coli38,39 and Pseudomonas aeruginosa,40 

respectively. Most essential though is the role of curli fibers in E. coli adherence.41,42 Of 

note, certain laboratory strains of E. coli could not adhere to abiotic surfaces, but continuous 

culture led to mutants that could adhere.43 In this way, curli become a requirement for E. 
coli adhesion to abiotic surfaces.44 More recently, Mauclaire et al.45 proposed curli-

mediated adhesion as the reason E. coli formed more extensive biofilms than S. aureus. The 

presence of curli may allow E. coli to overcome repulsive charge differentials between cell 

and surface to facilitate adhesion.46 Anatomical structures of bacteria, such as pili and curli, 

which have evolved to improve their survival and reproduction, are not only important for 

understanding cell behavior, but also for focused attempts at preventing their adhesion to 

prosthetic biomaterials in clinical orthopaedic settings.

Curiously, the main causative agents of PJI: S. aureus and S. epidermidis do not have 

anatomic protrusions for mechanistic attachment. Instead, the cell wall enzyme AltE 
increases hydrophobicity of S. epidermidis, while S. aureus has teichoic acids that influence 

cell charge and accommodate adhesion.47,48 Staphylococcus cell wall-anchored proteins 

also serve an important role in abiotic adherence,49 which commonly feature positively 

charged amino acid residues, hydrophobic extracellular domains, and functional adhesins 

that result from exposed ligand-binding domains.12 Chemical interactions (outlined above) 

are the primary forces modulating key proteins under abiotic conditions, making necessary 

ex vivo experimentation and implant optimization within this context to understand 

virulence factors that should be manipulated to attenuate PJIs.

The immune response is activated in PJI, which does not clear the infection, but is 

deleterious in the joint environment. One reason for this pattern is that toxins secreted by S. 
aureus and other pathogens may diminish the immune response. It has been well-established 

that S. aureus biofilms can impair immune responses in recipients of implants, at least in 

part by preventing the destruction of microbes by macrophages. Phenotypic analysis of S. 
aureus isolated from musculoskeletal infections indicates differences in virulence50 and that 

S. aureus may already reside endogenously in many patients prior to PJI occurrence.51 

Therefore, there is considerable interest in the development of vaccines that could 

specifically neutralize the virulence of common PJI-causing bacteria, such as S. aureus, to 

mitigate joint infection rates.52 Recent studies have elucidated potential mechanisms in S. 
aureus biofilms that alter macrophage activity through microbial toxins that disrupt immune 

responses.53 Accurate identification and characterization of PJI-causing bacteria, including 

additional insights into virulence factors, will ultimately improve patient-specific treatment 

strategies.

Among many virulence factors (e.g., evasion or suppression of the host immune response) 

employed by PJI-causing bacteria, adhesins allow for their survival and persistence within 

the joint by facilitating attachment to prosthetic materials.54 Once a prosthesis is implanted, 

autogenous host fluids are quickly adsorbed,12,36,49,55,56 which generates a conditioning 

film (e.g., albumin, fibronectin, fibrinogen, laminin).18 However, bacteria have other 

virulence factors that effectively regulate adhesion to conditioning films.36,49,55 For 
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example, S. aureus and S. epidermidis adhesins specifically bind to microbial surface 

component recognizing adhesive matrix molecules (MSCRAMMs); a class of molecules 

with similar protein structures and ligand binding mechanisms.49,57 Although named for 

attachment to the host extracellular matrix, their functions also include binding to 

conditioning films49,57 via fibronectin binding proteins, collagen adhesins, clumping factors, 

and bone sialoprotein binding protein.58–63 Importantly, virulence factors can interfere with 

host cell activity, accelerate or delay PJI formation, and make treatment strategies 

susceptible to failure or misdiagnosis.54,64

Protein adsorption onto biomaterials may further facilitate bacterial binding in a positive 

feedback fashion, because denaturation exposes additional binding sites.36 The presence of 

specific MSCRAMMs varies among species and strains, as seen in a study involving more 

than 200 PJI-related isolates of S. aureus.55 Fibronectin binding proteins appear crucial for 

S. aureus implant adherence as one study reported that all isolates carried at least one form 

of fibronectin binding protein.65 This observation was supported by Arciola et al.,66 who 

showed an even higher prevalence of fibronectin binding proteins among S. aureus isolated 

from PJIs of the hip and knee.66 Fibronectin binding is not exclusive to Staphylococcus, 

because curli also have this ability.41,67–69 Notably, glycoproteins present in the bloodstream 

can also be used by mannose-binding fimbria (e.g., E. coli and P. aeruginosa possess these 

structures) can also bind to conditioning films.41,70 As outlined, virulent bacteria have 

multiple strategies for adhering to biomaterials, such as orthopaedic implants, and therefore 

require a multifaceted approach to preventing their attachment and progression into a PJI.

Current Methods for Preventing PJI

Recent efforts to reduce prosthetic joint infections include increased surgical suite sterility, 

and improved antibiotic prophylaxis.71,72 Prophylactic antibiotics used in hip and knee 

reconstructions target gram-positive PJIs,71 which may selectively favor gram-negative PJIs. 

Irrigating wounds with a broad-range antimicrobial, such as Betadine, are effective at 

reducing PJI rates,73,74 and widely used due to cost efficiency and availability.73 However, 

further strategies to diminish the evolutionary capacity of bacteria need to be investigated 

and delivered to the exact site of PJI establishment. In particular, the implant itself should 

counteract PJI induction. Biomaterial manufacturing techniques have promoted research into 

optimizing topographies for osseointegration,75 but such modifications could also promote 

bacterial colonization. By combining approaches that negate bacterial attachment and/or kill 

bacteria upon contact, antimicrobial orthopaedic implants have emerged (Table 2).

Topographic Factors

Highly porous metal implants promote osseointegration,76 in part, by allowing diffusion of 

gases and nutrients, while providing attachment sites for bone forming host cells.77 

However, pores are associated with increased surface roughness and higher surface areas, 

which may increase bacterial attachment.33,76–78 Topography-oriented antibacterial 

attachment strategies should consider the pore size and orientation of biomaterials,79 as well 

as micro- and macroporous features. For example, abiotic- and fibronectin-mediated 

adhesion are reduced by shear stress,80,81 such that the macroporous structure of some 

implant interfaces could shield pathogens from the natural flow of host body fluids, thereby 
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promoting PJIs. Braem et al.82 found that implant surface roughness improves bacterial 

attachment, while surface hydrophilicity hinders it. Thus, engineering hydrodynamic porous 

implants may help retain the benefits of both improved osseointegration and resistance to 

bacterial adherence.

Macroscale Features

Modifications to implant surface topography can prevent bacteria from adhering, but are 

difficult to customize because of bacterial adhesin diversity. Anti-adhesive techniques tested 

in vitro have proven effective against aerial bacteria transmission or temporary breaches of 

surgical suite sterility.83 As an example, Ti naturally forms a thin titanium dioxide (TiO2) 

layer when exposed to air,84 and has an antibacterial effect from reactive oxygen species.85 

An increase in reactive oxygen species activity may also be achieved by exposing materials 

to UV light,85,86 which kills both gram-positive and gram-negative bacteria. The TiO2 layer 

can also be thickened through chemical or electrolytic oxidation,87,88 allowing physical 

pliability of nanotopographic features and direct delivery of antibacterial agents.89–91 When 

used in combination with physical and chemical modifications to macroscale surface 

features, changes to the nanoscale topography should have a compounded resistance to PJIs.

Nanoscale Topography

Smaller scale features are also relevant to bacterial adhesion, as smooth surfaces can provide 

suitable substrates for many species. Indeed, Mitik-Dineva et al.92 experimented with glass 

surfaces: one with features >14 nm, and another that was 70% smoother, and showed 3× 

more bacterial adhesion on the smoother surface.92 To circumvent the challenge of 

modifying nanoscale surface features without causing cytotoxic changes,93 Lorenzetti et 

al.94 used TiO2 coatings to reduce bacterial adhesion by reducing available surface area.94 

Similarly, Variola et al.90 modified Ti pores by oxidative “nanopatterning” and caused a 

dramatic decrease in the adhesion of both S. aureus and E. coli.90 Such nanoscale surface 

modifications to metal orthopaedic implants will continue to increase options for preventing 

bacterial adherence, particularly when used to leverage the inherent antimicrobial properties 

of some metals (and metal oxides).

Intrinsic Properties of Metal

Some metal ions have intrinsic antibacterial properties. For example, Burghardt et al.95 

found that copper (Cu) ions were effective at removing planktonic S. aureus and biofilms, 

but also killed mesenchymal stem cells.95 Alternatively, silver (Ag) has a broad range of 

activity that includes some antibiotic resistant bacteria.91,96 Although effective at preventing 

PJI, early experiments with Ag ions also encountered cytotoxicity-related complications.97 

Of note, Ag-coated external fixation screws caused elevated levels of Ag in human serum,97 

emphasizing the importance of controlled release. While manipulating AgNO3 

concentrations, Zhao et al.91 used Ti nanotubes to deliver Ag nanoparticles and kill 

planktonic bacteria for 30 days. To address the potential trade-off between antibacterial 

activity and osseointegration, sol-gel methods were used to produce a hydroxyapatite-Ag 

coating, which increased antibacterial activity against S. aureus and S. epidermidis without 

detriment to bone growth.98 Although provocative, the inherent antimicrobial properties of 
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metals need to be further investigated and optimized to avoid damage to host cells and 

tissues.

Localized Delivery Vehicles

In response to the widespread use of antibiotic-loaded bone cement, researchers have 

examined this method of administering antibiotics directly to the site of implantation.99–101 

However, drug delivery is inefficient (e.g., only 20% release), temperature sensitive 

(exothermic reaction of curing cement), and limited to cemented implant systems.102 In 

contrast, cementless porous metal implants are suited to loading with antibiotic 

microspheres capable of controlled drug release. Ambrose et al.99 demonstrated this using a 

rabbit model; gentamicin-impregnated microspheres were loaded into porous implants and 

completely prevented S. aureus infection without negatively influencing osseointegration.99 

This technique is efficacious and applicable to any implant material with pore diameters >20 

μm. However, for implant components that are meant to be smooth (e.g., acetabular cup 

liners), microsphere delivery of antibiotics is not suitable. A possible alternative antibiotic 

strategy for smooth implants and other surfaces unfitting for localized delivery would be 

tethering them with antibiotics directly.

Antibiotic Tethering

Antibiotics can be immobilized and covalently tethered to an implant surface, thus 

remaining stable indefinitely at high concentrations.103 Antoci et al.100 examined the use of 

vancomycin tethered to Ti surfaces and revealed that exposed concentrations of S. 
epidermidis were much higher than would be encountered in situ, yet colonization was 

significantly reduced, even in the presence of serum proteins (e.g., fibronectin). Also 

promising was that after 8 weeks, antibiotic resistance was not detected. Although an 

exciting PJI-reduction strategy, this technique lacks effectiveness against E. coli (and likely 

other gram-negative bacteria),100 and is limited to stable membrane-disrupting agents. But 

as a key component of temporal mitigation strategies that may specifically reduce the 

potential for long-term hematogenous PJIs, the tethering of antibiotics holds great potential, 

particularly in combination with broad-acting hydrogels adept at controlled release.

Hydrogels

As a way to broaden the activity range of antimicrobial treatments, hydrogels have the 

capability of delivering combinations of multiple antibiotics to the implant site. The basic 

principle is to coat the entire implant in a quickly resorbable hydrogel that administers a 

local antibiotic cocktail, eliminating early bacterial colonization. The advantages of the 

procedure are: customizable antibiotic selection, maintained dosages above minimum 

inhibitory concentration, application to implants that are already in use, and resorption of the 

hydrogel without impediment to osseointegration.104 Although impregnation is effective, the 

overuse of antibiotics may further exacerbate antibiotic resistant PJIs (e.g., 

Enterobacteriaceae), as for the commonly used Carbapenem.21,105,106 Furthermore, 

polymicrobial PJIs are more difficult to treat using hydrogels because drug-resistance is 

conferred in situ from one species to another via horizontal gene transfer.105 A strategy that 

minimizes horizontal gene transfer would prevent the future generation of drug-resistance, 

while broad-spectrum antimicrobials will diminish the overall number of PJI occurrences.
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Broad-Spectrum Antimicrobials

Considering the limitations of specific antibiotics, broad-spectrum antimicrobials such as N, 

N dodecyl, methyl-polyethylenimine (NNDMP), chitosan, and Gendine are becoming more 

relevant. Schaer et al.107 used in vitro models to demonstrate the inhibition of biofilms, and 

treated sheep with NNDMP-coated fracture plates to validate bone healing and antimicrobial 

activity after inoculation with S. aureus.107 Similarly, Chua et al.108 combined chitosan with 

arginine-glycine-aspartic acid to increase antimicrobial activity, promote osteoblast 

proliferation, and minimize detrimental effects on host bone.108 Coating implants with the 

aseptic dye Gendine also has broad range antimicrobial effects,109 and inhibits S. aureus 
adherence in vivo.110 Broad-spectrum antimicrobials are generally favorable because they 

are effective against both gram-positive and gram-negative bacteria, yet the mechanical 

delivery of superficial coating materials may require additional engineering to ensure 

adequate delivery to the implant-bone interface and localized retention within the site(s) of 

PJI establishment.

Mechanical Considerations

Beyond considerations for anti-microbial properties and/or strategies that promote 

osseointegration, it is important to note that implant coatings used to achieve this (whether 

biological or inorganic) may need to withstand significant mechanical forces during surgical 

insertion. Long-term or short-term losses of common coatings (e.g.,111) caused by shear 

forces and/or physical abrasion of the implant could compromise the desired delivery of 

antibiotics or cell-based enhancements. It is to be anticipated that infection-protective 

surface layers on implants will not entirely delaminate during surgery or that solutions could 

be engineered to minimize loss of such coatings.

CONCLUSION

PJIs are not only costly, but potentially devastating to a patients’ joint function. The main 

challenges with treating PJIs are related to the taxonomic diversity of causative bacteria, and 

the increasing prevalence of polymicrobial and antibiotic-resistant bacteria. Suboptimal 

antibiotic delivery strategies can negatively affect patient host cells, reduce osseointegration, 

and compound the problem of diminished joint functionality. Nevertheless, some approaches 

have led to encouraging results, such as whole-implant coating with a generalized 

antibacterial. Antibiotic coating materials, which target a specific taxon of bacteria or 

implant component, will also continue to prove necessary. Ultimately, future strategies for 

preventing PJIs will require multifaceted and multidisciplinary approaches that leverage 

advanced physical and chemical techniques to both disrupt bacterial attachment, and kill 

bacteria by contact over short, intermediate and extended time scales (Fig. 1). Information 

obtained by ex vivo experimentation should be used to direct in vivo eradications of the most 

common and harmful bacteria species by exploiting their individual vulnerabilities. 

Customized, patient-based strategies that prevent PJIs will not only reduce the need for 

costly revision arthroplasty, but also will result in fewer patients that lose mobility.
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Figure 1. 
Conceptual schematic of a hip implant depicting multiple strategies that could be used in 

combination for the prevention of prosthetic joint infections. The strategies illustrated are: 

(a) topographic manipulations to improve osseointegration and minimize bacterial adhesion 

(e.g., scanning electron microscopy shows a porous implant surface covered by osteoblast-

like mesenchymal cells), (b) whole implant coating with a generalized antibiotic (e.g., N,N-

dodecyl methyl polyethylenimine), (c) localized antibiotic delivery vehicles (e.g., tethering 

implant surface with covalently bound antibacterial agents), and (d) customized components 

(e.g., specific antibiotic method designed for each implant component) to reduce 

susceptibility to PJIs.
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